Добірка наукової літератури з теми "Electronic Properties - Metal Clusters"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electronic Properties - Metal Clusters".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electronic Properties - Metal Clusters"

1

Pastor, G. M. "Electronic properties of divalent-metal clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 19, no. 1-4 (March 1991): 165–67. http://dx.doi.org/10.1007/bf01448282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jena, P., S. N. Khanna, and B. K. Rao. "CLUSTERS WITH NOVEL PROPERTIES." International Journal of Modern Physics B 06, no. 23n24 (December 1992): 3657–66. http://dx.doi.org/10.1142/s0217979292001717.

Повний текст джерела
Анотація:
The size specific nature of the electronic and structural properties of small metal clusters is reviewed. Three specific examples are illustrated: the nature of hydrogen interaction with neutral and charged metal clusters, the stability and electronic properties of metal-carbon complexes and the role of electron shell filling and close atomic packing on synthesizing very stable and chemically inert clusters.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maryam Darvishpour, Maryam Darvishpour, and Mohammad Hossein Fekri Mohammad Hossein Fekri. "Investigation of the Magnetic and Electronic Properties of Copper Nanocluster Cu14 Contaminated with Fe, Ni and Co." Journal of the chemical society of pakistan 42, no. 3 (2020): 399. http://dx.doi.org/10.52568/000647.

Повний текст джерела
Анотація:
We have presented density functional calculations of the electronic structures and magnetic properties of bimetallics nanoclusters Cu14-nMn (n=1-3) (M=Fe, Ni and Co) in the FCC crystal structure. For the calculations of the physical properties of the compounds, we have used the full potential linearized augmented plane wave method. The magnetic nature, semiconducting, half metallicity and metalloid of transition metals clusters in the FCC crystal structure are investigated. Results show that studied systems have ferromagnetic properties against Cu14Cluster. It is found that band gap of the clusters decreases with doping of atoms compared to pure cluster Cu14, Particularly for Fe. These calculations show that Cu14 and Cu12Co2 are metals, while Cu13Fe, Cu12Fe2, Cu13Co, Cu11Co3 and Cu11Ni3 are half-metals and Cu11Fe3 and Cu12Ni2 are metalloid. Between these clusters, Cu13Ni is semiconductor. The spin polarization and the magnetic moment of the systems are dependent on number and type of the host transition metal atoms. The Cu13Ni has maximum spin polarization and stability. These results provide a new candidate for applications this series of compounds as dilute magnetic clusters and half-metal in spintronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maryam Darvishpour, Maryam Darvishpour, and Mohammad Hossein Fekri Mohammad Hossein Fekri. "Investigation of the Magnetic and Electronic Properties of Copper Nanocluster Cu14 Contaminated with Fe, Ni and Co." Journal of the chemical society of pakistan 42, no. 3 (2020): 399. http://dx.doi.org/10.52568/000647/jcsp/42.03.2020.

Повний текст джерела
Анотація:
We have presented density functional calculations of the electronic structures and magnetic properties of bimetallics nanoclusters Cu14-nMn (n=1-3) (M=Fe, Ni and Co) in the FCC crystal structure. For the calculations of the physical properties of the compounds, we have used the full potential linearized augmented plane wave method. The magnetic nature, semiconducting, half metallicity and metalloid of transition metals clusters in the FCC crystal structure are investigated. Results show that studied systems have ferromagnetic properties against Cu14Cluster. It is found that band gap of the clusters decreases with doping of atoms compared to pure cluster Cu14, Particularly for Fe. These calculations show that Cu14 and Cu12Co2 are metals, while Cu13Fe, Cu12Fe2, Cu13Co, Cu11Co3 and Cu11Ni3 are half-metals and Cu11Fe3 and Cu12Ni2 are metalloid. Between these clusters, Cu13Ni is semiconductor. The spin polarization and the magnetic moment of the systems are dependent on number and type of the host transition metal atoms. The Cu13Ni has maximum spin polarization and stability. These results provide a new candidate for applications this series of compounds as dilute magnetic clusters and half-metal in spintronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rao, B. K., S. N. Khanna, and P. Jena. "Structural and electronic properties of compound metal clusters." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 3, no. 2-3 (June 1986): 219–22. http://dx.doi.org/10.1007/bf01384810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oleshko, Vladimir P., Peter A. Crozier, Nick Schryvers, and Michail Vargaftik. "Mesostructure Of Pd And Pt Nanoclusters Chemically Stabilized With Phosphide And Phenanthroline Ligands: Hrtem And Aem Characterization." Microscopy and Microanalysis 5, S2 (August 1999): 184–85. http://dx.doi.org/10.1017/s1431927600014240.

Повний текст джерела
Анотація:
The noble metal (Me = Au, Pd, Rh, and Pt) polynuclear coordination compounds of Chini’s type eventually serve as a remarkable bridge between molecular clusters and metal colloids. The sizes of the metal cores of the cluster compounds are close to lower sizes of colloidal metal particles. However, chemically stabilized nanoclusters have a distinct ligand environment with a definite stoichiometry inherent to molecular clusters. Interest in structures of the cluster compounds has increased in recent years in view of their unique selective catalytic properties under mild conditions, which, in principle, open a way to the development of a new branch of catalysis by metal clusters, quantum-size effects in the thermodynamic properties, and applications as nano-sized electronic devices (quantum dots). A key feature in structural characterization of such species (they are amorphous solids usually unsuitable for x-ray diffraction analysis) is to understand the relations between the atomic arrangement, electronic structure and chemical reactivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Phaahla, TM, PE Ngoepe, RA Catlow, and HR Chauke. "The effect of doping with pt impurity on ti clusters: a density functional theory study." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 40, no. 1 (January 24, 2022): 75–78. http://dx.doi.org/10.36303/satnt.2021cosaami.15.

Повний текст джерела
Анотація:
Transition metal nanoclusters have been greatly investigated in various areas such as catalysis, energy conversion and sensing due to their unique chemical, optical, structural, and electronic properties. Doping monometallic clusters with other metals offer the opportunity to enhance these properties. Extensive work has been done on late transition metal clusters i.e., noble and platinum metals. However, less work has been done on titanium metal clusters. The structural properties of TiN-1Pt (N = 2 – 16) clusters have been investigated using the density functional theory method with the PBEsol exchange-correlation functional. Our results showed that the binding energies for both systems decrease with cluster size N. The Ti12Pt cluster was found to be more enhanced in comparison with pure Ti revealed by the binding energy, relative stability and dissociation energy. Furthermore, binding, relative stability and dissociation energies were found to be enhanced as compared to the energies for Ti monometallic clusters.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

GOODMAN, D. W. "CATALYSIS BY METALS: FROM EXTENDED SINGLE CRYSTALS TO SMALL CLUSTERS." Surface Review and Letters 01, no. 04 (December 1994): 449–55. http://dx.doi.org/10.1142/s0218625x94000424.

Повний текст джерела
Анотація:
Model oxide-supported metal cluster catalysts have been prepared by evaporating the corresponding metal (e.g., Cu, Pd, Ni) onto a oxide thin film (~100 Å), which in turn is supported on a refractory metal (Mo, W, Ta) surface. The deposited metal films, upon annealing, form small metallic clusters on the oxide surface whose size are dependent upon the initial metal film thickness. The surface structures and cluster morphologies have been characterized using scanning probe microscopies, temperature-programed desorption, X-ray, and ultraviolet photoemission; and high-resolution electron energy loss spectroscopy/infrared reflection-absorption spectroscopy of adsorbed carbon monoxide. The catalytic properties of these clusters have also been investigated with respect to several reactions including CO/O 2 and CO/NO. The chemical and electronic properties of the metal clusters with respect to size are compared to the analogous properties of extended single crystal surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nguyen, Hong Van, That Van Nguyen, Bong Thi Le, Huong Thi Thanh Do, and Truc Thi Thanh Huynh. "Theoretical study on structures and electronic properties of Na8TM clusters (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn)." Science and Technology Development Journal - Natural Sciences 2, no. 2 (May 16, 2019): 54–61. http://dx.doi.org/10.32508/stdjns.v2i2.734.

Повний текст джерела
Анотація:
Na8TM (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) clusters are optimized by DFT calculations combining the Triple zeta valence plus polarization (TZVP) method to determine magnetic torque values on orbits, point groups, electron structures, and spin density images of the atomic groups. The results indicate that Na atoms in Na8TM cluster strongly affect the total magnetic moment of the whole group of atoms. In a cluster, each Na atom contributes one electron which combines with valence electron of transition metal for creating a sum of valence electron of the cluster. Atomic groups with the highest magnetic moments are Na8V (5 B) and non-magnetic clusters are Na8Ni and Na8Zn. The electronic structure and magnetic properties of the clusters resemble those of some metals and transition metal ions. This study will orientate to substitution in magnetic materials by metal clusters.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

NOZUE, Y., T. KODAIRA, S. OHWASHI, N. TOGASHI, and O. TERASAKI. "FERROMAGNETISM OF ALKALI-METAL CLUSTERS INCORPORATED IN THE PERIODIC SPACE OF ZEOLITE LTA." Surface Review and Letters 03, no. 01 (February 1996): 701–6. http://dx.doi.org/10.1142/s0218625x96001261.

Повний текст джерела
Анотація:
Magnetic properties are reported for rubidium and potassium clusters arrayed in a simple-cubic structure in zeolite LTA crystal. A ferromagnetism is observed, although no magnetic element is contained there. The result clearly indicates the intercluster interaction. The ferromagnetic properties vary depending on the average number of ns electrons of cluster. Optical properties reveal quantum electronic levels of cluster. The ferromagnetism is interpreted qualitatively in terms of the itinerant electron model based on the quantum levels of cluster. The magnetic properties of various clusters observed in zeolites are discussed from the microscopic point of view.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electronic Properties - Metal Clusters"

1

Raparla, Mrudula. "Study of the structural and electronic properties of aluminum nano clusters by DFT." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stoll, Tatjana. "Ultrafast electronic, acoustic and thermal properties of metal nanoparticles and clusters." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10332/document.

Повний текст джерела
Анотація:
Nous avons étudié par spectroscopie pompe-sonde résolue en temps la réponse optique ultrarapide d'agrégats de très petite taille (< 2 nm), pour lesquelles une transition d'un comportement de type solide à un comportement moléculaire est attendue. Les modifications des processus de thermalisation interne (interactions électrons-électrons et électrons phonons) avec la réduction de taille ont été étudiées dans des nanosphères d'argent triées en masse entourées de silice, et dans des échantillons d'or atomiquement définis stabilisées par des surfactants. Ces expériences ont mis en évidence les effets de confinement quantique des états électroniques sur la cinétique électronique. L'étude des vibrations acoustiques de nanoparticules dans le même régime de taille a été effectuée. Les vibrations observées dans les agrégats d'or sont dominées par leur mode de respiration radial avec une période proportionnelle à leur diamètre, an analogie avec les nanoparticules plus grandes. Le mode de respiration observé sur les nanoobjets bimétalliques de type cœur/couronne Pt-Au et Ni-Ag est en accord quantitatif avec les estimations du modèle élastique macroscopique, malgré une épaisseur de couronne monoatomique. La spectroscopie résolue en temps a également été utilisée pour étudier le transfert de chaleur à travers l'interface d'une nanoparticule sphérique. Dans ce but, l'évacuation de la chaleur dans des nanoparticules d'or, nues ou enrobées de silice, en solution colloïdale a été étudiée expérimentalement et modélisée de manière quantitative grâce à la prise en compte de la contribution de l'environnement (échauffement du solvant) au signal optique
We used ultrafast time-resolved pump-probe spectroscopy to experimentally investigate the optical response of small metal nano-objects in the few nanometer range (< 2 nm), where a transition from a small solid behaviour to a molecular one is expected. The modification of the intrinsic thermalization processes (electron-electron and electron-phonon interactions) has been studied both on glass-embedded mass-selected silver samples and chemically synthesized ligand-stabilized atomic-defined gold clusters. Electron gas internal thermalization and cooling with the lattice are shown to be affected by size reduction and the concomitant discretization of electronic states. The acoustic response in the same small size range has been investigated. Vibrations of gold clusters were characterized by a quasi-breathing mode scaling with their size, in analogy with larger nanoparticles. The breathing mode of bimetallic core/shell Pt-Au and Ni-Ag nanospheres appeared to be in good quantitative agreement with predictions of continuous elastic models, despite the monoatomic thickness of the layer shell. The same time-resolved approach was used to investigate heat transfer through the nanoparticles interfaces. In this context, heat evacuation of bare or silica-encapsulated gold
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Irawan, Thomas Christoph Eng Fuk. "Geometric and electronic properties of size selected metal clusters on surfaces." Berlin Pro Business, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?id=2899406&prov=M&dok_var=1&dok_ext=htm.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

VERONESE, MARCO. "ELECTRONIC AND MAGNETIC PROPERTIES OF IMPURITIES AND CLUSTERS ON METAL SURFACES." Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12556.

Повний текст джерела
Анотація:
2002/2003
La struttura elettronica ed il magnetismo di atomi singoli e impurezze di metalli di transizione deposti su superfici metalliche sono stati studiati per mezzo di tecniche dicroiche di assorbimento dei raggi X (XMCD) e misure di magnetizzazione, in alti campi magnetici ed a temperature criogeniche. Le caratteristiche uniche delle XMCD nell'investigare sia momenti magnetici di spin che orbitali con selettività chimica sono state applicate a sistemi estremamente diluiti, con concentrazione di superficie dell'ordine di 1012 atomi cm-2 , fino al limite di atomi isolati. Questo genere di misure è stato applicato ai sistemi di impurezze di superficie soltanto in ultimi anni grazie alla disponibilità di sorgenti di radiazione di sincrotrone di elevata brillanza. Ad oggi queste misure rappresentano un esempio di punta nello studio sul magnetismo delle impurezze di superficie. l risultati sono riportati per tre gruppi di sistemi: Impurezze di V e Mn sulla superficie dei metalli alcalini (Cs, K, Na); atomi isolati di Mn, V, Fe, Co sulla superficie Cu(100) ed atomi isolati di Co su Pt(111 ).Inoltre è presentato uno studio della distribuzione dei momenti magnetici di uno strato monoatomico di manganese accoppiato alla superficie Fe(1 00). Il manganese su potassio è stato indicato possedere una configurazione elettronica simile a quella atomica d5 . Questa configurazione elettronica è particolarmente stabile per i piccoli cambiamenti di ibridazione indotti dal cambiamento della densità elettronica nei dai metalli alcalini. Se l'ibridazione è ulteriormente aumentata come nel caso di atomi di M n deposti su Al(1 00) le caratteristiche spettroscopiche che si evidenziano in strutture di multipletti atomici negli spettri sono soppresse e con esse il magnetismo. Le impurezze di vanadio sulle superfici alcaline mostrano una configurazione elettronica che non più così simile a quella degli atomi liberi, come ad esempio le configurazioni d o d4 .11 momento orbitale è trovato essere piccolo, minore di 0.5 f.ls, rispetto al momento orbitale delle configurazioni puramente atomiche, ma in similitudine con esse è allineato antiparallelamente al momento di spin. Inoltre il momento orbita le diminuisce risalendo lungo la colonna dei metalli alcalini (gruppo 1 A della tabella periodica degli elementi), cioè andando dal Cs al Li, mentre la densità elettronica è aumentata. Questo effetto è legato all'aumento dell'ibridazione dovuta alla maggiore densità elettronica. l momenti magnetici misurati sono dell'ordine di 3 f.ls e non possono essere spiegati con parametri puramente atomici. Due meccanismi possibili vengono proposti per spiegare l'estinzione parziale del momento orbitale: l'effetto di un debole campo cristallino e l'effetto dell'ibridazione in concomitanza con maggiore larghezza dello stato regato di Friedel nel caso dei primi elementi della serie dei metallo di transizione 3d. Gli atomi isolati di Fe sulla superficie del Cu(1 00) mostrano una grande anisotropia magnetica, di 1,5 me V/atomo ed un momento magnetico orbitale aumentato rispetto al Fedi volume. Il substrato di Cu non contribuisce considerevolmente all'anisotropia come nel caso del Co su platino. All'opposto gli atomi isolati di Co su Cu(100) non mostrano alcuni dicroismo e quindi alcun magnetismo. Questo risultato è spiegato in termini di effetto Kondo, poiché i singoli atomi di Co sono stati trovati per essere un sistema di Kondo con T K=88 K. Un confronto dei dati sperimentali per impurezze di V, M n, Fe e Co su Cu(1 00) con il comportamento magnetico calcolato dei adatomi lungo la serie 3d, mostra un buon accordo generale, ma con deviazioni importanti per le impurezze di Co e di V. Atomi singoli atomi di Co sulla superficie del Pt(111) hanno una straordinaria anisotropia magnetica di circa 9,2 meV/atomo (circa 1000 volte quella del Co di volume) ed ad oggi la più alta energia di anisotropia magnetica misurata per un sistema magnetico. L'origine di un effetto cosi' grande risiede in un momento orbitale aumentato dalla ridotta coordinazione del singolo atomo, alla rottura di simmetria sulla superficie ed all'effetto dell'ibridazione del platino, conseguenza di un mescolamento di stati 3d-5d tra Co ePt, che porta il substrato a contribuire all'anisotropia magnetica totale.
The electronic structure and the magnetism of transition metal single atoms and magnetic impurities on metal surfaces have been studied by means of x-ray absorption dichroic techniques (XMCD, and magnetization measurements) in high magnetic fields and at low temperatures. The unique capabilities of XMCD to probe the both spin and orbital magnetic moments with element selectivity have been applied to diluted systems with low surface concentration (1012 atoms cm-2 ) down to the limit of isolated atoms. This kind of measurements have been applied to surface impurity systems only in the last few year thanks to the availability of high flux and brilliance synchrotron radiation sources. At the present these measurements represent the state of the art in the study of the magnetism of surface impurities. Results are reported for three different classes of systems: Mn and V impurities on the surface of alkali metals (Cs, K, N a); M n, V, Fe, Co single atoms on the Cu(1 00) surface an d Co single atoms on the Pt(111) surface. Furthermore results have been presented, regarding the magnetic moment distribution of a Mn monolayer coupled to the Fe(1 00) surface. Manganese on potassium has been shown to possess an atomic like magnetic d5 electronic configuration. This electronic configuration is particularly stable for small hybridization changes induced by alkali metals of increased electronic density. lf the hybridization is further increased as on Al(100) the spectroscopic features related to atomic multiplets are suppressed together with magnetism. Vanadium impurities on alkali metal surfaces also show atomic multiplet features. The electronic configuration is not an atomic-like configuration as d3 or d4 . The orbital moment is found to be small, less than 0.5 !-ls with respect to the purely atomic configurations and to be antiparallel to the spin. lt decreases along the alkali metals column (group 1A) of the periodic table, as the electronic density is increased, i.e. going from Cs to Li. This effect is related to an increased hybridization with the substrate due to the larger electronic density. The measured magnetic moments are of the order of 3)-ls, and cannot be explained with simple atomic parameters. Two possible mechanisms have been proposed to explain the partial quenching of the orbital moment, the effect of a weak crystal field and the effect of hybridization through the larger width of Friedel resonant bound state for the early elements of 3d transition metal series. Fe single atoms on Cu(100) surface have a large ot1f of plane magnetic anisotropy of 1.5 meV/atom and enhanced orbital magnetic moment with the respect to the bulk. The Cu substrate does not contribute considerably to the anisotropy as in the case of Co o n Pt. At the apposite Co single atoms on Cu(1 00) surface do not show any dichroism an d hence magnetism. This result ca n be explained on the basis of the Kondo effect, since Co single atoms have been found to be a Kondo system with T K=88 K. A comparison of the experimental data for V, Mn, Fe, Co impurities on Cu(100) with the calculated magnetic behavior of adatoms along the 3d series, gives an overall reasonable agreement, with important deviations for V and Co impurities. Co single atoms on the Pt(111) surface have an extraordinary large out of plane magnetic anisotropy of about 9.2 meV/atom due to the interplay between an enhanced orbital moment, consequence reduced coordination of the single atom, at the surface, and the effect of Pt hybridization, consequence of a d-d mixing between Co and Pt orbitals. This result is of particular relevance since this magnetic anisotropy is the highest measured, by now, for any system.
XVI Ciclo
1971
Versione digitalizzata della tesi di dottorato cartacea.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rittmann, Jochen [Verfasser], and Thomas [Akademischer Betreuer] Möller. "Electronic Properties of Transition Metal Doped Silicon Clusters / Jochen Rittmann. Betreuer: Thomas Möller." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2011. http://d-nb.info/1016730470/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fernández, Villanueva Estefanía. "Theoretical Study of the Geometrical, Electronic and Catalytic properties of Metal Clusters and Nanoparticles." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/135277.

Повний текст джерела
Анотація:
[ES] Dado su tamaño subnanométrico, los clusters metálicos están regidos por el confinamiento cuántico, lo que les hace más "moleculares" y menos "metálicos". En consecuencia, manifiestan propiedades que difieren con respecto a las de partículas más grandes del mismo elemento, y que a menudo son ventajosas para la catálisis de reacciones específicas. Además, su menor tamaño los hace más económicos, con una mayor superficie expuesta. Todo ello hace que los clusters sean opciones muy interesantes en catálisis, y su estudio, síntesis y aplicación ha crecido continuamente desde su descubrimiento en los años 90. Esta tesis se ha centrado principalmente en el cobre, del que se presenta, en primer lugar, un estudio fundamental sobre la disociación de oxígeno por clusters de diferentes tamaños. Después, se explora computacionalmente la catálisis de las oxidaciones de CO y propeno, confirmando que los clusters de Cu5 (o inferior) son prometedores para reacciones de oxidación. Las dos reacciones utilizadas son buenos ejemplos de la aplicación potencial en industria, sea para reducir emisiones de CO o para producir epóxido de propeno, que es un intermedio importante en la producción de plásticos y adhesivos, entre otros. Además, también se estudió la influencia de dos soportes en los clusters de cobre y su capacidad de oxidación: N-grafeno como un sistema más inerte y ceria como uno que puede participar activamente en reacciones de oxidación. Finalmente, se incluyen otros dos estudios más específicos, sobre la capacidad de los clusters de Pt3 y Pd3 para catalizar reaciones de acoplamiento C-C como la reacción de Heck, importante para la síntesis de productos de la química fina, y sobre la reacción CO + NO en clusters de Pt, motivado por su uso potencial como catalizadores para la conversión de esas especies en los menos perjudiciales CO2 y N2 en motores de combustión interna.
[CAT] Atès que són de grandària subnanomètrica, els clusters metàl·lics estan regits pel confinament quàntic, el qual els fa més "moleculars" i menys "metàl·lics". En conseqüència, manifesten propietats que són diferents a les de partícules més grans del mateix element, i que sovint són avantatjoses per a la catàlisi de reaccions específiques. A més a més, la seua menor grandària fa que siguen més econòmics, amb una major superfície exposada. Així, els clusters són una opció molt interesant en catàlisi, i el seu estudi, síntesi i aplicació ha cres-cut contínuament des del seu descobriment als anys 90. Aquesta tesi s'ha centrat principalment en el coure, del qual es presenta, en primer lloc, un estudi fonamental sobre la dissociació de l'oxígen per clusters de diferents grandàries. Després, s'explora computacionalment la catàlisi de les oxidacions de CO i de propè, confirmant que els clusters de Cu5 (o inferior) són prometedors per a reaccions d'oxidació. Les dues reaccions utilitzades són bons exemples de l'aplicació potencial en indústria, siga per reduir emissions de CO o per produir epòxid de propè, que és un intermedi important en la producció de plàstics i adhesius, entre altres. A més, també es va estudiar la influència de dos suports en els clusters de coure i la seua capacitat d'oxidació: N-grafè com a un sistema més inert i cèria com a un que pot participar activament en reaccions d'oxidació. Finalment, s'inclouen altres dos estudis més específics, sobre la capacitat dels clusters de Pt3 y Pd3 per catalitzar reaccions d'acoblament C-C com la reacció de Heck, important per a la síntesi de productes de la química fina, i sobre la reacció CO + NO als clusters de Pt, motivat pel seu ús potencial com a catalitzadors per a la conversió d'eixes espècies en els menys perjudicials CO2 i N2 als motors de combustió interna.
[EN] Due to their subnanometric size, metal clusters belong to the regime affected by quantum confinement, which makes them more "molecular" and less "metallic". As a result, they exhibit properties that differ with respect to those of larger particles of the same element, and which are often advantageous in the catalysis of specific reactions. Besides, their smaller size makes them more economic and with a higher surface exposed. All of this renders metal clusters very interesting options for catalysis, and their study, synthesis and application has steadily increased since their discovery in the 90s. In this work we have largely focused on copper, of which a fundamental study on the oxygen dissociation by clusters of different sizes is first presented. Then, the catalysis of the CO and propene oxidation reactions is theoretically explored, confirming that Cu5 (or smaller) clusters are promising systems for oxidation reactions. The two reactions used are good examples of the potential application in industry, either to reduce CO emissions or to produce propene epoxide, an important intermediate in the production of plastics and adhesives, among others. In addition, the influence of two supports in the copper clusters and their oxidation capability is explored: on N-graphene as a more inert system and on ceria as one that can actively participate in oxidation reactions. Finally, two other more specific studies are included, regarding the capability of Pt3 and Pd3 clusters to undergo C-C coupling reactions such as the Heck reaction, important for the synthesis of many products of fine chemistry, and regarding the CO + NO reaction on Pt clusters, motivated by their potential use as catalysts for the conversion of those species in less harmful CO2 and N2 in internal combustion engines.
En primer lugar me gustaría agradecer al Ministerio de Economía y Competitividad de España (MINECO) por la financiación de esta tesis mediante el programa Severo Ochoa (SVP-2013-068146), incluyendo los costes adicionales de mi estancia de investigación (EEBB-I-17-12057).
Fernández Villanueva, E. (2019). Theoretical Study of the Geometrical, Electronic and Catalytic properties of Metal Clusters and Nanoparticles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/135277
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hoffmann, Sabrina [Verfasser], Heinz [Akademischer Betreuer] Hövel, and Shaukat [Akademischer Betreuer] Khan. "Structure and electronic properties of supported noble metal clusters / Sabrina Hoffmann. Betreuer: Heinz Hövel. Gutachter: Shaukat Khan." Dortmund : Universitätsbibliothek Dortmund, 2013. http://d-nb.info/1099912806/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sinha, Roy Rajarshi. "Ab initio simulation of optical properties of noble-metal clusters." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0017/document.

Повний текст джерела
Анотація:
L'intérêt de la recherche fondamentale pour les morceaux nanométriques de métaux nobles est principalement dû à la résonance localisée des plasmons de surface (LSPR) dans l'absorption optique. Différents aspects, liés à la compréhension théorique de la LSPR dans le cas de clusters de métaux nobles de taille dite intermédiaire, sont étudiés dans ce manuscrit. Afin d'avoir une vision plus large nous utilisons deux approches : l'approche électromagnétique classique et le formalisme ab initio en temps réel de la théorie de la fonctionnelle de la densité dépendant du temps (RT-TDDFT). Une comparaison systématique et détaillée de ces deux approches souligne et quantifie les limitations de l'approche électromagnétique lorsqu'elle est appliquée à des systèmes de taille quantique. Les différences entre les excitations plasmoniques collectives et celles impliquant les électrons d, ainsi que leurs interactions, sont étudiées grâce au comportement spatial des densités correspondantes. Ces densités sont obtenues en appliquant une transformée de Fourier dans l'espace à la densité obtenue par les simulations DFT utilisant une perturbation delta-kick. Dans ce manuscrit, des clusters de métaux nobles nus et protégés par des ligands sont étudiés. En particulier, motivé par de récents travaux sur les phénomènes d'émergence de plasmon, l'étude par TD-DFT de nano-alliages Au-Cu de taille tout juste inférieure à 2nm à fourni de subtiles connaissances sur les effets d'alliages sur la réponse optique de tels systèmes
The fundamental research interest in nanometric pieces of noble metals is mainly due to the localized surface-plasmon resonance (LSPR) in the optical absorption. Different aspects related to the theoretical understanding of LSPRs in `intermediate-size' noble-metal clusters are studied in this thesis. To gain a broader perspective both the real-time \ai formalism of \td density-functional theory (RT-TDDFT) and the classical electromagnetics approach are employed. A systematic and detailed comparison of these two approaches highlights and quantifies the limitations of the electromagnetics approach when applied to quantum-sized systems. The differences between collective plasmonic excitations and the excitations involving $d$-electrons, as well as the interplay between them are explored in the spatial behaviour of the corresponding induced densities by performing the spatially resolved Fourier transform of the time-dependent induced density obtained from a RT-TDDFT simulation using a $\delta$-kick perturbation. In this thesis, both bare and ligand-protected noble-metal clusters were studied. In particular, motivated by recent experiments on plasmon emergence phenomena, the TDDFT study of Au-Cu nanoalloys in the size range just below 2~nm produced subtle insights into the general effects of alloying on the optical response of these systems
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Chaofan. "Multicomponent Clusters/Nanoparticles : An Investigation of Electronic and Geometric Properties by Photoelectron Spectroscopy." Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205651.

Повний текст джерела
Анотація:
Clusters/nanoparticles are aggregates of a “small” number of building blocks, atoms or molecules, ranging from two up to millions of atoms. Two main groups of clusters have been studied using photoelectron spectroscopy based on synchrotron radiation. They are dry/wet alkali-halide clusters, including pure water clusters, and metal-based nanoparticles. For the dry alkali halide clusters, analysis of the data and theoretical modeling has allowed us insights into the local electronic properties at nanoscale: a change of polarizability of ions in the alkali-halide clusters due to the varying environment has been suggested. The study of the wet salt clusters shows that the alkali-halides are already solvated at the nanoscale reached by water clusters doped with salt vapor. The photoelectron angular distribution of water cluster shows lower anisotropy parameters as compared to the separate monomers. A model based on intracluster scattering has been built to partly explain the reduction. In the last part of the thesis, metal-based multi-component nanoparticles have been produced by self-assembly processes using reactive magnetron sputtering. Depending on the specific metal element, oxidation processes have been applied before or after the aggregation. Clearly radial distributions such as core-shell and “sandwich-like” structures have unambiguously determined by photoelectron spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Woodruff, Daniel. "Organometallic and metal-amide precursors for transition metal and lanthanide cluster complexes with interesting electronic an magnetic properties." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/organometallic-and-metalamide-precursors-for-transition-metal-and-lanthanide-cluster-complexes-with-interesting-electronic-an-magnetic-properties(d35cea40-6e84-4d19-ba6a-7a7fe1e4a135).html.

Повний текст джерела
Анотація:
This project exploited the Brönsted basicity of the organometallic/metal-amide compounds,MnCp2 and Ln[N(SiMe3)2]3·LiCl(THF)3 (Ln = Gd, Tb and Dy) in attempts to synthesizepolymetallic cluster compounds via deprotonation of X-H (X = N or S) bond containing proligands.The chemical, electronic and magnetic properties of the resulting compounds werestudied with a variety of methods.The reaction of Ln[N(SiMe3)2]3·LiCl(THF)3 (Ln = Gd, Tb and Dy) with EtSH yieldsa series of [{Ln(N(SiMe3)2)(μ2-SEt)2}4(μ3-SEt)][Li(THF)4] “Ln4” squares in which theterbium and dysprosium analogues show SMM behaviour in zero field, with the dysprosiumanalogue displaying a fast relaxation process which can be “switched off” by the applicationof a 2000 Oe external field.Reactions of MnCp2 with Me3SiNP(NHR)3 (R = nPr, Cy, tBu) afforded a series ofcompounds; [CpMn{Me3SiN=P(NHnPr)2(μ-NnPr)}]2, [Mn{Me3SiN=P(NHCy)2(NCy)}2]and [CpMn{Me3SiN=P(NHtBu)2(NtBu)}]. Q-band EPR studies of these complexes revealthat altering the R group attached to the ligand causes a variation in coordination geometryaround the manganese centers and as such alters the electronic properties of the manganesecentres present in each complex.In order to avoid the synthesis of potentially unstable organometallic/metal-amideprecursors, one pot synthetic methodologies were developed to allow the isolation a series ofμ8-oxo centred Li7M cubes [MLi7(μ8-O)(μ-hpp)6]+ (M = Co, Mn and Zn). Addition ofstiochiometric amounts of water to the initial reaction mixture produced the Li7M cubes inhigh yields.Extension of the one pot synthetic strategy to the use of DyCl3 and YbCl3 inreactions with Li-TMP (TMP = 2,2,6,6-tetramethylpipiridine) afforded the lanthanidedimers [Ln(TMP)2(μ-OEt)]2 (Ln = Dy and Yb) in which the EtO- ligands were formed via insitu ether cleavage and the dysprosium analogue shows SMM behaviour under a 7000Oeapplied field.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electronic Properties - Metal Clusters"

1

1957-, Vollmer Michael, ed. Optical properties of metal clusters. Berlin: Springer, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kreibig, Uwe, and Michael Vollmer. Optical Properties of Metal Clusters. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-09109-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Basseet, Jamal Omar Al. Magnetic properties of some metal clusters. Norwich: University of East Anglia, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Meiwes-Broer, Karl-Heinz. Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Metal-oxygen clusters: The surface and catalytic properties of heteropoly oxometalates. New York: Kluwer Academic/Plenum Publishers, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Toshihiro, Arai, ed. Mesoscopic materials and clusters: Their physical and chemical properties. [Tokyo]: Kodansha, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

George, Maroulis, ed. Structures and properties of clusters: From a few atoms to nanoparticles. Leiden, The Netherlands: Brill Academic, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Readman, Jennifer Elizabeth. Structural and electronic properties of metal- and metal-oxide containing zeolites. Birmingham: University of Birmingham, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bersuker, Isaac B. Electronic Structure and Properties of Transition Metal Compounds. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470573051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Motizuki, Kazuko. Electronic structure and magnetism of 3d- transition metal pnictides. Heidelberg: Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electronic Properties - Metal Clusters"

1

Rao, B. K., S. N. Khanna, and P. Jena. "Structural and Electronic Properties of Compound Metal Clusters." In Metal Clusters, 119–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71571-6_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Heer, W. A., and W. D. Knight. "Electronic Properties of Metal Clusters." In Elemental and Molecular Clusters, 45–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73501-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pastor, G. M. "Electronic properties of divalent-metal clusters." In Small Particles and Inorganic Clusters, 165–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76178-2_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cox, D. M., M. R. Zakin, and A. Kaldor. "Metal Clusters: Size Dependent Chemical and Electronic Properties." In Physics and Chemistry of Small Clusters, 741–54. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-0357-3_99.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Masubuchi, Tsugunosuke, and Atsushi Nakajima. "Electronic Properties of Transition Metal-Benzene Sandwich Clusters." In Theoretical Chemistry for Advanced Nanomaterials, 313–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0006-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jena, P., and S. N. Khanna. "Electronic and Structural Properties of Caged Metal Clusters." In Nanophase Materials, 371–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1076-1_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ellis, D. E. "Theory of Electronic Properties of Metal Clusters and Particles." In Physics and Chemistry of Metal Cluster Compounds, 135–57. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-1294-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Koutecký, J., V. Bonacić-Koutecký, I. Boustani, P. Fantucci, and W. Pewestorf. "Electronic Structure and Basic Properties of Small Alkali Metal Clusters." In The Jerusalem Symposia on Quantum Chemistry and Biochemistry, 303–17. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4001-7_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fantucci, P., V. Bonačić-Koutecký, and J. Koutecký. "General properties of the electronic structure of alkali metal clusters and Ia-IIa mixed clusters." In Small Particles and Inorganic Clusters, 307–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74913-1_71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Elzain, M. E., A. A. Yousif, A. D. Al Rawas, A. M. Gismelseed, H. Widatallah, K. Bouziani, and I. Al-Omari. "The Electronic and Magnetic Properties of FCC Iron Clusters in FCC 4D Metals." In SSP 2004, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-36794-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electronic Properties - Metal Clusters"

1

Mertig, M. "Nucleation and Growth of Metal Clusters on a DNA template." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baumert, T., R. Thalweiser, V. Weiss, E. Wiedenmann, and G. Gerber. "Femtosecond Dynamics of Nan and Hgn Metal-Cluster." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.thb.4.

Повний текст джерела
Анотація:
In recent years clusters and in particular metal clusters have been the fascinating subject of many experimental and theoretical studies. Cluster physics bridge the gap between molecular physics and solid state physics. Metal clusters exhibit distinct features ranging from molecular properties seen in small particles to solid state like behaviour of large aggregates. We report cluster size dependent studies of physical and chemical properties such as absorption resonances, lifetimes, decay channels and ionisation processes of the one- and two electron metal clusters Nan and Hgn. For these studies we introduced a new experimental technique consisting of the combination of a cluster beam, ion- and electron spectroscopy and tunable femtosecond laser pump-probe techniques. A major result of our femtosecond experiments is that the conventional view of the optical response of metal cluster, e.g. absorption, ionisation and decay processes as well as the relevant time scale, had to be changed. Our results clearly show that for Nan and cluster sizes n≤21 molecular structure, excitations and properties prevail over collective excitations and surface plasmon-like properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Park, Y. H., and I. Hijazi. "Ground State Structure of Cu Nanoclusters." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57748.

Повний текст джерела
Анотація:
The study of metal clusters has attracted much attention in recent years. Noble metal nanoparticles are of particular interest since their chemical, thermodynamic, electronic, and optical properties make them interesting candidates as building blocks of nanostructure materials. Delineation of these properties requires a complete and definitive characterization of the cluster’s geometrical structure. To find the ground state structure for a cluster, the potential-energy surface (PES) needs to be searched. In this paper, we proposed an efficient hierarchical search method to determine a ground state structure of copper clusters using an effective Monte Carlo simulated annealing method, which employs the Aggregate-Volume-Bias Monte Carlo (AVBMC) algorithm. Incorporated in the Monte Carlo method, is an efficient Embedded Atom Method (EAM) potential developed by the authors.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Park, Y. H., and I. Hijazi. "Properties of Bimetallic Core-Shell Nanoclusters." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78242.

Повний текст джерела
Анотація:
Gold (Au) and copper (Cu) materials and their combination exhibit the most of the main wanted properties in nanostructures. Nobel metals such as Au and Cu have important magnetic, electronic, optical, catalytic and thermal properties. Compared to monometallic clusters, bimetallic nanoclusters have more degrees of freedom and distinct properties due to the presence of two different metals. It is also well known that the shape, surface topography, segregation, mixing, ordering, energetic stability, and electronic structures of bimetallic nanoclusters may depend significantly on their composition. This affords greater opportunity to control their properties by modifying composition as well as size. In this work, we investigated magnetic and electronic properties for AuCu bimetallic core-shell structures and showed that the CuAu coreshell can have a half-metal property through chemical composition modification. Half-metallic ferromagnets attract increasing research interest as potential materials for spintronic device applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pinegar, Jacqueline C., Jon D. Langenberg, and Michael D. Morse. "Spectroscopy of Jet-Cooled Ag2Au." In High Resolution Spectroscopy. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/hrs.1993.pd1.

Повний текст джерела
Анотація:
While the electronic structure of metallic atoms can be calculated accurately using ab initio quantum chemistry, and infinite metallic solids are rather well understood through the methods of solid state physics, metallic clusters ranging in size between these two extremes are understood to a much lesser extent. The study of these small metal clusters provides fundamental information about bonding in metals, such as the contribution of the various orbitals to the bonding and the effect this has on bond strengths and other properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Das, Nishith K., and T. Shoji. "First-Principles Study of Atomic Hydrogen and Oxygen Adsorption on Doped-Iron Nanoclusters." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60516.

Повний текст джерела
Анотація:
Density functional theory calculations have been used to calculate the ground state structure and oxygen and hydrogen adsorption properties of the pure and doped-iron nanoclusters. Small atomic clusters containing two to six atoms have been considered and a single Fe atom has replaced by a minor element i.e. Zr, Ti, and Sc. Doping of a minor element increases the cluster stability and octahedron Fe5Zr is the most stable structure within this study. Zr- and Sc-doped clusters have the highest oxygen and hydrogen adsorption energy. The electronic structure shows a strong hybridization between the metal 3d and oxygen 2p orbitals with a small contribution from metal 4s and 3p orbitals. Additionally, H s and metal 4s states form a new peak below the Fermi energy and a small modification is observed for 3d orbitals near the Fermi level. A small amount of Zr- and Sc-doping into the Fe-based alloys might improve the oxide film adherence.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stella, A., M. Nisoli, S. De Silvestri, O. Svelto, G. Lanzani, P. Cheyssac, and R. Kofman. "Confinement Effects on the Electron Thermalization Process in Tin Nanocrystals." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.48.

Повний текст джерела
Анотація:
Clusters and aggregates of atoms in the nanometer size range have been the object of intensive work particularly in the case of semiconductors quantum dots [1]. Less extensive investigations have been performed on metallic nanoparticles [2-3]. For particle size greater than 10 Å the behavior of the nanoparticles tends to approach that of the bulk metal, but with some significant differences concerning thermodynamic properties (like decrease of melting temperature with size) and non-linear effects in the optical spectra [4]. A careful investigation of the role of particle dimensions on the electron relaxation dynamics appears to be essential to improve our knowledge of the basic properties of metal nanoparticles as compared to bulk.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kee Hag Lee, Wang Ro Lee, and Han Myoung Lee. "Electronic structure and properties of high-T/sub c/- substituted YBCO superconductors: II. charged model clusters relating to high-T/sub c/- C1-substituted YBCO suerconductors." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Spassova, E., J. Assa, I. Jivkov, G. Danev, and J. Ihlemann. "Laser Effect on Vacuum Deposited Polyimide-Aluminium Composites." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cwf68.

Повний текст джерела
Анотація:
Vacuum co-evaporation of polymer materials and metals or their compounds allows the production of thin layers of specific properties. The method is technologically convenient and presents a certain alternative to the "sol-gel" technologies. Composite thin layers (1-1.5 μm) have been obtained by the simultaneous evaporation (10 A/sec) of two monomers (oxydiamline and pyromellitdianhydride) and a metal. As metal a thermally evaporated Al (0.6 A/sec) or an organometalic compound [(CH3)3NAlH3] have been used. The Al-organic compound is thermally decomposed during the first stage of imidization taking place at a temperature of 173 - 177 °C. Electron micrographs exhibit evenly distributed Al particles in the volume of the polyimide matrix with very small dispersivity values (2.5 - 5.0 nm - 90%). The second thermal stage od imidization (270 °C) does not cause coalescence of Al particles. It is assumed that a micro metal synthesis occurs by the build-up of strong C-O-Al bonds which fix the aluminium clusters. The optical parameters of the obtained composites have been measured at the various stages of the imidization process of the matrix. XeCl laser action (308 nm, 30 nsec, 30 to 4000 mJ/cm2) on the materials has been studied envisaging possibilities for micro-structuring. X-ray photoelectron spectroscopy in the exposure area shows a shift of Al2O3 (2.4 eV) which is higher than the Al photoelectron peak (1.7 eV). It is suggested that the laser action does not only break the imide bonds, but also stimulates the course of the chemical reaction on the particles' surfaces. Scanning micrographs demonstrate that the laser ablation process influences the average size of the Al particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, Keeyung. "Magnetic properties of 4d transition metal clusters." In Similarities and differences between atomic nuclei and clusters. AIP, 1997. http://dx.doi.org/10.1063/1.54550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electronic Properties - Metal Clusters"

1

Author, Not Given. (Vibrational and electronic properties of clusters and ultrathin films). Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6004445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lannin, J. S. Vibrational and electronic properties of clusters and ultrathin films. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6675629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krishnan Balasubramanian. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities. Office of Scientific and Technical Information (OSTI), July 2009. http://dx.doi.org/10.2172/959347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lannin, J. S. Vibrational and electronic properties of clusters and ultrathin films. Progress report. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10142449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reifenberger, R. (Electronic and structural properties of individual nanometer-size supported metallic clusters). Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5871939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reifenberger, R. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Progress report. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10115501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Reifenberger, R. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10177319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bowen, Kit H. Measuring Complementary Electronic Structure Properties of both Deposited and Gas Phase Clusters using STM, UPS, and PES: Size-Selected Clusters on Surfaces. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1122129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jena, P., B. K. Rao, and S. N. Khanna. Electronic structure and geometries of small compound metal clusters: Progress report, August 1, 1988--July 31, 1989. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6280635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lad, Robert J. Structural, electronic and chemical properties of metal/oxide and oxide/oxide interfaces and thin film structures. Office of Scientific and Technical Information (OSTI), December 1999. http://dx.doi.org/10.2172/758832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії