Добірка наукової літератури з теми "Electron donor-acceptor complexes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electron donor-acceptor complexes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electron donor-acceptor complexes"

1

Rubtsov, I. V., and K. Yoshihara. "Vibrational Coherence in Electron Donor−Acceptor Complexes." Journal of Physical Chemistry A 103, no. 49 (December 1999): 10202–12. http://dx.doi.org/10.1021/jp991998r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Postigo, Al. "Electron Donor-Acceptor Complexes in Perfluoroalkylation Reactions." European Journal of Organic Chemistry 2018, no. 46 (September 25, 2018): 6391–404. http://dx.doi.org/10.1002/ejoc.201801079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hurst, DT, UB Thakrar, CHJ Wells, and J. Wyer. "An N.M.R. Study of Electron Donor-Electron Acceptor Interaction Between Aromatic Hydrocarbons and Diazines." Australian Journal of Chemistry 42, no. 8 (1989): 1313. http://dx.doi.org/10.1071/ch9891313.

Повний текст джерела
Анотація:
Equilibrium constants have been measured by n.m.r , spectroscopy for the electron donor- electron acceptor interaction between a number of aromatic hydrocarbons and diazines . The values obtained have shown that the interaction is weak, and that the aromatic hydrocarbon acts as the electron donor and the diazine as the electron acceptor in the systems studied. Chemical-shift data have provided evidence for the relative positioning of the donor and acceptor components within the various complexes. The effect of temperature on the equilibrium constant for complex formation between (1H6)benzene and pyrazine has shown that the enthalpy of formation is close to zero.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhong, Cheng, Jinwei Zhou, and Charles L. Braun. "Electron-transfer absorption of sterically bulky donor–acceptor pairs: electron donor–acceptor complexes or random pairs?" Journal of Photochemistry and Photobiology A: Chemistry 161, no. 1 (November 2003): 1–9. http://dx.doi.org/10.1016/s1010-6030(03)00233-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dobrowolski, Jan Cz, and Michał H. Jamróz. "Infrared evidence for CO2 electron donor—acceptor complexes." Journal of Molecular Structure 275 (December 1992): 211–19. http://dx.doi.org/10.1016/0022-2860(92)80196-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schreiber, Michael, Barbara Kirchner, and Christofer Fuchs. "Dynamics of electron transfer in donor-acceptor complexes." Journal of Luminescence 66-67 (December 1995): 506–10. http://dx.doi.org/10.1016/0022-2313(95)00199-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Zhonglie, Yutong Liu, Kun Cao, Xiaobin Zhang, Hezhong Jiang, and Jiahong Li. "Synthetic reactions driven by electron-donor–acceptor (EDA) complexes." Beilstein Journal of Organic Chemistry 17 (April 6, 2021): 771–99. http://dx.doi.org/10.3762/bjoc.17.67.

Повний текст джерела
Анотація:
The reversible, weak ground-state aggregate formed by dipole–dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor–acceptor (EDA) complex. Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Singh, Joaquín O., Jorge D. Anunziata та Juana J. Silber. "n–π Electron donor–acceptor complexes. II. Aliphatic amines with dinitrobenzenes". Canadian Journal of Chemistry 63, № 4 (1 квітня 1985): 903–7. http://dx.doi.org/10.1139/v85-150.

Повний текст джерела
Анотація:
The interaction of several aliphatic amines as n-donors and dinitrobenzenes (DNB) as π-acceptors has been studied in n-hexane. The formation of electron donor – acceptor (EDA) complexes is proposed to explain the spectroscopic behaviour of the mixtures. The stability constants (Ks) for these complexes have been calculated by an iterative procedure. For a given acceptor, the donor strength of RNH2 > R2NH > R3N was found. This order is explained by considering the role that steric effect may play in the EDA complex formation. On the other hand, the fact that for a given donor Ks follows the order 1,2-DNB > 1,3-DNB > 1,4-DNB, and that 1,2-DNB reacts with primary amines, led to the proposal of orientational complexes. These EDA complexes may be considered intermediates in aromatic nucleophilic substitution reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Konarev, D. V., G. Zerza, M. Scharber, N. S. Sariciftci, and R. N. Lyubovskaya. "Photoinduced electron transfer in solid C60 donor/acceptor complexes." Synthetic Metals 121, no. 1-3 (March 2001): 1127–28. http://dx.doi.org/10.1016/s0379-6779(00)00972-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sheka, Elena F. "Intermolecular interaction in C60-based electron donor-acceptor complexes." International Journal of Quantum Chemistry 100, no. 4 (2004): 388–406. http://dx.doi.org/10.1002/qua.20063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electron donor-acceptor complexes"

1

Cubberley, Mark Stull. "Investigation of solvent effects in aromatic electron donor-acceptor interactions /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LEE, CHERYLYN. "PHOTO-INDUCED RADICAL COPOLYMERIZATIONS OF ELECTRON-RICH OLEFINS WITH ELECTRON-POOR OLEFINS." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184135.

Повний текст джерела
Анотація:
This study is a systematic investigation of the parameters and conditions necessary for photo-induced radical copolymerizations of donor olefins with acceptor olefins in the absence of an initiator. Very few cases have been previously reported and no mechanistic details of the initiation have been proposed in the literature. Our results show that the photoinitiation depends on the relative donor and acceptor strengths of the monomers, as well as the solvent. The highest occupied molecular orbital (HOMO) of the donor and the lowest unoccupied molecular orbital (LUMO) of the acceptor must be at the appropriate energy levels in order to produce a radical initiating species upon photoexcitation of the electron donor-acceptor (EDA) complex. If the donor-acceptor interaction is too weak, no copolymerization occurs. The excited complex (contact ion pair) presumably decays back to the ground state faster than producing an initiating species. If the donor-acceptor interaction is too strong, the excited complex dissociates to the free ions which could initiate ionic homopolymerization rather than radical copolymerization. The solvent may also determine the course of the reaction. In two cases, copolymerizations, which could be photo-induced in 1,2-dichloroethane, could not be photo-induced in acetonitrile. Dissociation of the excited complex (contact ion pair) is favored in polar solvents, such as acetonitrile, which are able to stabilize the ion radicals. This initiation method produces high molecular weight copolymers that may be cast into transparent films.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Caulfield, Jason M. "Magnetic quantum oscillations in organic metals based on the molecule bis(ethylenedithio)tetrathiafulvalene." Thesis, University of Oxford, 1994. http://ora.ox.ac.uk/objects/uuid:5fbf2599-96d8-4eac-b882-ac74213ac3a5.

Повний текст джерела
Анотація:
ET charge transfer salts (where ET is bis(ethylenedithio)- tetrathiafulvalene) have relatively simple quasi two-dimensional Fermi surface topologies, making them ideal for the study of the relationship between bandstructure and properties such as superconductivity. Experimental studies of the Fermi surface areas and associated effective masses have been carried out using the Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) effects. By comparing the experimental results to theoretical bandstructure calculations the strength of many body interactions has been estimated. High pressure magnetotransport experiments have been carried out on the superconductor κ-ET2Cu(NCS)2. The observation of SdH and magnetic breakdown oscillations has allowed the pressure dependences of the Fermi surface topology and effective masses to be deduced and compared with simultaneous measurements of the superconducting critical temperature. The data strongly suggest that the enhancement of the effective mass and the superconducting behaviour are directly connected. The results are compared with several current theories of superconductivity. The dHvA effect has been used to probe the superconducting mixed state of κ-ET2Cu(NCS)2. A recent model of the superconducting mixed state is applied to the experimental data in an attempt to determine the value and symmetry of the superconducting energy gap. SdH measurements up to 30 T have been used to study spin densitywave formation in α-ET2KHg(SCN)4, and the reasons why a very slight increase of the unit cell volume (i.e. replacing the K in α-ET2KHg(SCN)4 by NH4) stabilises a superconducting state. Galvanomagnetic techniques have been used to measure the quasi onedimensional Fermi surface orientation below the spin-density-wave transition, and to accurately determine the shape of the quasi twodimensional Fermi surface above it. The application of pressure has been used to gradually reduce the onset temperature of a metal-insulator transition and to eventually stabilise a superconducting state in ET3Cl22H2O. The bandstructure of ET3C122H2O has been investigated using the SdH effect whilst hydrostatic pressure has been used to pass through the superconducting part of the phase diagram.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Yunhua. "Synthesis and Photoinduced Electron Transfer of Donor-Sensitizer-Acceptor Systems." Doctoral thesis, Stockholm : Department of Organic Chemistry, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Holman, K. Travis. "The host-guest chemistry of new members in the cyclotriveratrylene family of cavitands /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Svarovsky, Serge A. "Structure, stability and reactivity of small organic sulfinic and sulfonic acids toxicological implications ; Role of charge transfer complexes in oxidation cleavage of benzpinacols by iron (III) trispenanthroline /." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pui, Yung-lin. "Syntheses, luminescence studies and host-guest chemistry of d10 and d6 metal complexes containing diimine and/or chalcogenolate ligand." Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B43894367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

裴雍蓮 and Yung-lin Pui. "Syntheses, luminescence studies and host-guest chemistry of d10 and d6metal complexes containing diimine and/or chalcogenolate ligand." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B43894367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Furman, Gary S. "The contribution of charge-transfer complexes to the color of kraft lignin." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dornan, Thomas Joseph. "Calcium Transport Inhibition, Stimulation, and Light Dependent Modulation of the Skeletal Calcium Release Channel (RyR1) by the Prototropic Forms of Pelargonidin." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1931.

Повний текст джерела
Анотація:
The principle calcium regulator in the muscle cell is the calcium ion release channel (RyR). Improper calcium homeostasis in the muscle cell is the foundation of many pathological states and has been targeted as a contributing factor to ventricular tachycardia, which is known to precede sudden cardiac arrest. Numerous endogenous and exogenous compounds can affect the way RyR regulates calcium. In this study the anthocyanidin Pelargonidin (Pg), an important natural colorant and dietary antioxidant, is evaluated for its effect on regulating the transport of calcium through the RyR1 of skeletal muscle sarcoplasmic reticulum. Pelargonidin undergoes time dependent structural changes in aqueous solutions at physiological pH and a mixture of up to seven forms of Pelargonidin are present in solution simultaneously. Pelargonidin is a unique RyR1 modulator. It can both stimulate and inhibit the RyR1 depending on the experimental conditions. In addition, when Pelargonidin is irradiated with white light, its inhibition properties on the RyR1 are essentially nullified. Proposed mechanisms include excited state charge shift within RyR1-Pg complexes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electron donor-acceptor complexes"

1

E, Meador Willard, Chang C. Ken, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

1946-, Gokel George W., and Koga Kenji 1938-, eds. United States-Japan Seminar on Host-Guest Chemistry: Proceedings of the U.S.-Japan Seminar on Host-Guest Chemistry, Miami, Florida, U.S.A., 2-6 November 1987. Dordrecht: Kluwer Academic Publishers, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jaworska-Augustyniak, Anna. Fotochemiczne własności elektrono-donorowo-akceptorowych kompleksów ferrocenu, kobaltocenu i niklocenu. Poznań: Wydawn. Nauk. Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kapinus, E. I. Fotonika molekuli͡a︡rnykh kompleksov. Kiev: Nauk. dumka, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Drago, Russell S. Applications of electrostatic-covalent models in chemistry. Gainesville, FL (P.O. Box 13413, Gainesville 32604): Surfside Scientific Publishers, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

T, Pantelides Sokrates, ed. Deep centers in semiconductors: A state-of-the-art approach. 2nd ed. Yverdon, Switzerland: Gordon and Breach Science Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1939-, Vögtle F., and Weber E, eds. Host guest complex chemistry: Macrocycles : synthesis, structures, applications. Berlin: Springer, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

T, Pantelides Sokrates, ed. Deep centers in semiconductors: A state of the art approach. New York: Gordon and Breach, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pawlukojć, Andrzej. Badania widm oscylacyjnych, w obszarze niskich częstości, wybranych kompleksów molekularnych z przeniesieniem ładunku oraz ich składników metodą nieelastycznego rozpraszania neutronów termicznych. Warszawa: Instytut Chemii i Techniki Jądrowej, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1908-, Gutmann Felix, ed. Charge transfer complexes in biological systems. New York: M. Dekker, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electron donor-acceptor complexes"

1

Bockman, T. M., and J. K. Kochi. "Electron Donor-Acceptor Interactions and Photo-Induced Electron Transfer of Organometallic Compounds." In Catalysis by Metal Complexes, 407–48. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2626-9_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fukuzumi, Shunichi. "Photoinduced Electron-Transfer Functions of π-Electron Donor–Acceptor Supramolecular Complexes". У Chemical Science of π-Electron Systems, 529–43. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55357-1_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Verhoeven, J. W., M. N. Paddon-Row, and J. M. Warman. "Rigid Alkane-Bridged Donor-Acceptor Systems as Tools for the Investigation of Solvent-, Distance-, and Conformation-Effects in Electron Transfer Processes." In Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules. Experiment and Theory, 271–98. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2698-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nxumalo, Lawrence M., and Thomas A. Ford. "The Fourier-transform Infrared Spectra of the 1:1 Electron Donor-acceptor Complexes of Boron Trifluoride with Dimethyl Ether and Dimethyl Sulphide in Cryogenic Matrices." In Progress in Fourier Transform Spectroscopy, 383–85. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6840-0_89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haaland, Arne. "Electron donor–acceptor complexes." In Molecules and Models, 241–56. Oxford University Press, 2008. http://dx.doi.org/10.1093/acprof:oso/9780199235353.003.0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Enoki, Toshiaki, Morinobu Endo, and Masatsugu Suzuki. "Introduction." In Graphite Intercalation Compounds and Applications. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195128277.003.0003.

Повний текст джерела
Анотація:
There are two important features in the structure and electronic properties of graphite: a two-dimensional (2D) layered structure and an amphoteric feature (Kelly, 1981). The basic unit of graphite, called graphene is an extreme state of condensed aromatic hydrocarbons with an infinite in-plane dimension, in which an infinite number of benzene hexagon rings are condensed to form a rigid planar sheet, as shown in Figure 1.1. In a graphene sheet, π-electrons form a 2D extended electronic structure. The top of the HOMO (highest occupied molecular orbital) level featured by the bonding π-band touches the bottom of the LUMO (lowest unoccupied molecular orbital) level featured by the π*-antibonding band at the Fermi energy EF, the zero-gap semiconductor state being stabilized as shown in Figure 1.2a. The AB stacking of graphene sheets gives graphite, as shown in Figure 1.3, in which the weak inter-sheet interaction modifies the electronic structure into a semimetallic one having a quasi-2D nature, as shown in Figure 1.2b. Graphite thus features a 2D system from both structural and electronic aspects. The amphoteric feature is characterized by the fact that graphite works not only as an oxidizer but also as a reducer in chemical reactions. This characteristic stems from the zero-gap-semiconductor-type or semimetallic electronic structure, in which the ionization potential and the electron affinity have the same value of 4.6 eV (Kelly, 1981). Here, the ionization potential is defined as the energy required when we take one electron from the top of the bonding π-band to the vacuum level, while the electron affinity is defined as the energy produced by taking an electron from the vacuum level to the bottom of the anti-bonding π*-band. The amphoteric character gives graphite (or graphene) a unique property in the charge transfer reaction with a variety of materials: namely, not only an electron donor but also an electron acceptor gives charge transfer complexes with graphite, as shown in the following reactions: . . .xC + D → D+ C+x. . . . . .(1.1). . . . . .xC + A → C+x A−. . . . . .(1.2). . . where C, D, and A are graphite, donor, and acceptor, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kochi, Jay K. "Electron Transfer in the Thermal and Photochemical Activation of Electron Donor-Acceptor Complexes in Organic and Organometallic Reactions." In Advances in Physical Organic Chemistry Volume 29, 185–272. Elsevier, 1994. http://dx.doi.org/10.1016/s0065-3160(08)60077-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Matti Linnanto, Juha. "Electronic Structure of Chlorophyll Monomers and Oligomers." In Chlorophylls [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104089.

Повний текст джерела
Анотація:
This chapter deals with the electronic structure of chlorophyll molecules and their complexes. Different theoretical and quantum chemical calculation methods are used to study the molecular and electronic structure of chlorophylls. Studied spectral region covers ultraviolet and infrared spectral regions, containing blue side of the Soret band, as also traditional Qy band region. Thus, there are not only focusing on the traditional Qy, Qx, and Soret transitions of chlorophylls but also high-energy transitions (in this region also proteins and nuclei acids absorb light). The aim is to show the effect of molecular conformation on the electronic states and thus on the absorption and emission spectra of monomers and oligomers. In chlorophyll-protein complexes, such conformation effect finetuning the spectral transitions and increases overlap between donor and acceptor states of energy transfer processes. Also, the role of vibronic transition in the shape of absorption and emission spectra of the studied systems will be considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Electronic Excitation Energy Transfer between Molecules of Carbocyanine Dyes in Complexes with DNA: Distribution of Distances in Donor-Acceptor Pairs." In Nanopolymers and Modern Materials, 105–22. Apple Academic Press, 2013. http://dx.doi.org/10.1201/b15464-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kumar Cheedarala, Ravi. "3D Ionic Networked Hydrophilic-Hydrophobic Nano Channeled Triboelectric Nanogenerators." In Novel Nanomaterials. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95324.

Повний текст джерела
Анотація:
The power demand is increasing day by day owing to the diminishing of fossil fuel reserves on the globe. To overcome the future energy crises, there is a strong need to fulfill the energy loophole by novel technologies such as triboelectric nanogenerators to harvest miniature resources from renewable natural resources. Here, I discussed the synthesis and fabrication of novel triboelectric nanogenerators (TENGs) using highly reproducible power generators as electropositive surfaces from the monomers of naphthalene tetracarboxylic dianhydride, benzdiene diamine, and sulfonated polyimide (Bno-Spi), and modified nonwoven carbon fibers (Wcf) and polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) as electronegative TENG electrodes, respectively. Here, novel double characteristic hydrophilic and hydrophobic nano-channels concerned with Bno-Spi films were proposed through contact electrification process through ion and electron transfer by an electron-donor-acceptor complex mechanism. The proposed Bno-Spi-TENG system High triboelectric open circuit voltage 75 V (Voc) and short circuit current 1 μA (Jsc) have been achieved from Bno-Spi-TENGs, in particular, and for SO3H.Bno-Spi-TENG at 6 Hz. Besides that, we used improved knitted woven carbon fiber composite (wcf-COOH), as one of the TENGs to generate a greater open-circuit voltage (Voc), and short circuit current (Isc). Also, I aimed the contact and separation mode TENG which is using spring structure through oxidation of Wcf into Wcf-COOH followed by coupling of aniline through and one-step oxidative polymerization to get woven carbon fiber-polyaniline emraldine salt (Wcf-Pani.Es). The Wcf-PANI.Es composite film (thickness ~ 100 nm) shows the surface resistivity of 0.324 Ω m, and functions as a rubbing surface to produce charges through harvesting of energy using vertical contact-separation mode TENG. The vibrant exchanges of novel Wcf-Pani.Es, and PVDF membrane produced higher Voc of 95 V, and Isc of 180 μA, correspondingly. In specific, Wcf-Pani.Es -TENG is shown an enhancement of 498% of Voc concerning Wcf-COOH-TENG due to the availability of the Pani.Es layer. The novel Bno-Spi-TENGs and Wcf-Pani.Es are the potential candidates for fulfilling the need for improved energy harvesting devices as an alternate substantial choice for contact-separation mode TENGs.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electron donor-acceptor complexes"

1

Kononov, D. E., and S. V. Feskov. "Brownian simulation algorithm for the coherent optical excitation of electron-donor-acceptor complexes." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5137918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sarkas, Harry W., and Zakya H. Kafafi. "C60:Electron Donor Nanocomposites and Multilayer Structures for Nonlinear Optics." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wb.7.

Повний текст джерела
Анотація:
Since the development of preparative scale syntheses of the fullerenes,1 we have examined the nonlinear optical (NLO) properties of C60 in the solid state.2-4 Following the characterization of solid films of pure C60, we have explored means of altering the optical and NLO properties of this molecule via chemical modification including photopolymerization, oxygen doping, and the creation of charge transfer (CT) complexes in both the ground and excited states.5-7 Studies on solutions of C60 with the electron donor, N,N,N′,N′-tetramethyl-1,4-phenylene-diamine (TMPD) revealed the formation of a 1:1 CT complex where C60 acted as the acceptor. NLO studies conducted on solutions of C60/TMPD at 675 nm (near the λmax of the CT absorption) showed a great enhancement in the third-order optical susceptibility, χ x x x x (3), of the complex relative to C60 Direct optical excitation in the CT band accessed higher-lying excited states with larger absorption cross-sections than the ground state, which contributed to the enhanced NLO response observed for the TMPD:C60 complex.5
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schuster, P. R., C. A. Viands, and R. S. Potember. "Nonlinear-optical response in suspensions of organic and inorganic colloidal systems." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thy21.

Повний текст джерела
Анотація:
The third-order nonlinear optical response of various colloidal suspensions has been investigated. The transmissive properties of these systems are of particular interest in terms of the speed of the switching response, the switching threshold, the recovery time, and the dynamic range over which optical density is generated. We have seen resonant and non-resonant behavior in the nonlinear response of these materials. These suspensions are composed of both inorganic and organic materials homogeneously distributed within a dielectric matrix. In certain studies, these materials have been synthesized as charge-transfer complexes by using an inorganic electron donor combined with an organic electron acceptor. Our results concerning the third-order nonlinear optical properties of these materials; our development of methods for the enhancement of their nonlinear optical response will also be reported.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bruni, Paolo, Elisabetta Giorgini, Giorgio Tosi, and Angela Zampini. "Electron-Donor-Acceptor (EDA) Complexes Of Aromatic Hydrocarbons With Organic Acceptors In Solution And In The Solid State. A Quantitative FT-IR Investigation." In Intl Conf on Fourier and Computerized Infrared Spectroscopy, edited by David G. Cameron. SPIE, 1989. http://dx.doi.org/10.1117/12.969494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hormann, A., E. J. C. Olson, P. F. Barbara, M. R. Arkin, E. D. A. Stemp, R. E. Holmlin, and J. K. Barton. "Time Resolved Electron Transfer Studies Between Metallointercalators in DNA." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.sab.6.

Повний текст джерела
Анотація:
This paper reports the first ultrafast studies on the rates of DNA-mediated forward and reverse electron transfer between photoexcited [M(phen)2dppz]2+ (M=Ru or Os, phen =1,10-phenanthroline, dppz = dipyrido[3,2:a-2′,3′:c]-phenazine) and various electron acceptors in order to ultimately determine the distance dependence of electron transfer kinetics with DNA as an environment.1,2 Previously Barton, Turro, and coworkers have presented evidence that electron transfer in DNA can occur rapidly over an extraordinarily large distance3 with a more shallow distance dependence than that for other media, such as liquids and proteins.4,5 Some theoretical work supports the shallow distance dependence which is attributed to a long range, thermally activated coherent mechanism involving virtual excitation of the DNA "bridge".6 Utilizing time-correlated single photon counting (TCSPC), we observe a substantial fraction of photoexcited [M(phen)2dppz]2+ (M=Ru, Os) exhibits fast oxidative quenching (kq > 3 x 1010 s−1) in the presence of intercalating Rh(III) acceptors while the remaining excited-state species exhibit a range of quenching constants less than 108 s_1. Transient-absorption experiments on the picosecond timescale indicate that, for a series of donors bound to mixed sequence DNA, the majority of back electron transfer is also very fast (ca. 1010 s−1). Importantly, the rate constant for the fast ground-state recovery is independent of loading of Rh(III) intercalators on DNA. As shown in Figure 1, regardless of whether the average loading of metal complexes is 1 in 33 basepairs or 1 in 10 basepairs, the fast bleach recovery exhibited by [Ru(phen)2dppz]2+ is well fit under all conditions by an exponential decay of 9 x 109s−1. Separate ultrafast data suggests that, like the recombination reaction, the fast quenching *M2+ is simple first-order at early time. If the early time electron transfer kinetics were not simple first order, and the electron transfer rate decayed with an exponential distance dependence (i.e. ≅ a factor of 30 per base step [3.4 Å]), our TCSPC apparatus should be able to observe some evidence of the slower components with rate constants in the range of 1010 - 108 s−1. The absence of rates in this range is evidence that the electron transfer is simple first order at time < 10 ns. This result has implications with regards to the donor-acceptor separations on DNA. Throughout most of the titration, intercalators are dilute on the double helix and statistics show that the amount of fast quenching and ground-state recovery observed is too great to be accounted for by random loading of nearest-neighbor pairs. Thus, either the electron transfer reaction must involve clustering of the donor and acceptor on the helix or the DNA-mediated interaction must occur over long distance.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tykwinski, Rik R., Martin Schreiber, Rolf Spreiter, Christian Bosshard, Corinne Boudon, Jean-Paul Gisselbrecht, François Diederich, Peter Günter, and Maurice Gross. "Donor-Acceptor Systems Derived from Tetraethynylethene." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.md.3.

Повний текст джерела
Анотація:
An increasing number of conjugated, organic molecules and polymers are finding application as materials for electronics and photonics due to their inherent synthetic flexibility, potential ease of processing and the possibility of tailoring material characteristics to suit a desired property.1 To more efficiently design organic materials to specific tasks, it is necessary to understand how and to what degree alteration of molecular electronic structure affects materials properties. Investigation of a comprehensive series of synthetically related molecules and the relationship between their electronic and physical properties is perhaps the best approach to the rational design of useful organic materials. Hence, we have synthesized a complete series of conjugated, electronically varied molecules based on a tetraethynylethene (TEE, 1) framework. Study of the optical and electrical properties of these electronically diverse building blocks will aid in tuning specific properties for the ultimate formation of functionalized polytriacetylenes (PTAs, 2).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

McGuire, Brett, Michael McCarthy, and Marie-Aline Martin-Drumel. "THE ETHANOL-CO2 DIMER IS AN ELECTRON DONOR-ACCEPTOR COMPLEX." In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.rh06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cha, Myoungsik, Akira Otomo, William E. Torruellas, George I. Stegeman, David Beljonne, Jean Luc Brédas, Winfried H. G. Horsthuis, and Guus R. Möhlmann. "Nonlinear Spectroscopy of DANS Side Chain Polymers." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.ma.5.

Повний текст джерела
Анотація:
Molecular systems, in particular polymers, with π-electron donor-acceptor groups are becoming potential candidates in applications where large bandwidth and low costs are desired for electro-optical modulation of optical information. Di-Phenyl molecules including Disperse-Red-1 and Di-Amino-Nitro-Stilbene (DANS) embody most of the requirements in stability, high loading, processability and very large electro-optical figures of merit1. However little is known about their electronic structure represented by their excited state spectrum and responsible for their nonlinear optical response, for both second and third order. We present a complete spectroscopic study of the DANS molecular system and compare our theoretical predictions to the second order nonlinear spectrum and four third order nonlinear optical spectra of amorphous DANS side-chain polymers. In particular we can successfully explain shifts of the nonlinear spectrum compared to the linear absorption one by properly accounting for Frank-Condon type displacements2.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tayebati, P., and D. Mahgerefteh. "Photorefractive effect in the presence of shallow trapping sites." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mr6.

Повний текст джерела
Анотація:
To explain a number of anomalous photorefractive effects, we present a complete analytical solution to a band transport model of the photorefractive effect which includes a shallow trapping level in addition to the deep donor and acceptor levels of the conventional models. We assume that a single charge carrier, for example, electrons, is responsible for transport. At room temperature and in the dark, the shallow level is completely empty, while the deep donor level is partially full. Light excites charges from each level to the conduction band. In addition, the electrons in the shallow traps can be thermally excited to the conduction band. The free carriers are assumed to recombine to either level in a time which is short compared to the grating build-up time. We solve for the space charge grating in each level and the space charge field in steady state as a function of light intensity and grating spacing. We also solve for the time development of these gratings in the dark in a certain regime of parameters. The predictions of the model agree well with results of photorefractive dark decay experiments in both Bi12SiO20 and BaTiO3, as well as transient photoconductivity experiments in Bi12SiO20.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electron donor-acceptor complexes"

1

Isied, Stephan S. Transition Metal Donor-Peptide-Acceptor Complexes: From Intramolecular Electron Transfer Reactions to the Study of Reactive Intermediates. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/899301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії