Добірка наукової літератури з теми "Electron Cyclotron Resonance Plasmas"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electron Cyclotron Resonance Plasmas".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electron Cyclotron Resonance Plasmas"

1

Girard, A., D. Hitz, G. Melin, and K. Serebrennikov. "Electron cyclotron resonance plasmas and electron cyclotron resonance ion sources: Physics and technology (invited)." Review of Scientific Instruments 75, no. 5 (May 2004): 1381–88. http://dx.doi.org/10.1063/1.1675926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

San Andrés, E., A. Del Prado, A. J. Blázquez, I. Mártil, and G. González-Díaz. "Procesos de oxidación de Si mediante plasma de resonancia ciclotrónica de electrones." Boletín de la Sociedad Española de Cerámica y Vidrio 43, no. 2 (April 30, 2004): 379–82. http://dx.doi.org/10.3989/cyv.2004.v43.i2.546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Girard, A., C. Pernot, G. Melin, and C. Lécot. "Modeling of electron-cyclotron-resonance-heated plasmas." Physical Review E 62, no. 1 (July 1, 2000): 1182–89. http://dx.doi.org/10.1103/physreve.62.1182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Outten, C. A., J. C. Barbour, and W. R. Wampler. "Characterization of electron cyclotron resonance hydrogen plasmas." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 9, no. 3 (May 1991): 717–21. http://dx.doi.org/10.1116/1.577350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shufflebotham, P. K., and D. J. Thomson. "Stability and spatial characterization of electron cyclotron resonance processing plasmas." Canadian Journal of Physics 69, no. 3-4 (March 1, 1991): 195–201. http://dx.doi.org/10.1139/p91-032.

Повний текст джерела
Анотація:
This paper presents preliminary measurements of the spatial variation of the plasma density, electron temperature, plasma potential, and floating voltage within a divergent magnetic field electron cyclotron resonance (ECR) plasma processing reactor. The measurements are performed using an orbital-motion-limited cylindrical Langmuir probe designed specifically for use in these plasmas. A brief discussion of the stability and uniformity of divergent field plasmas in general, and qualitative techniques for the diagnosis of these properties, is also given. It was found that these plasmas generally occurred in distinct "modes," characterized by unique shapes and dependences on system variables, and between which discontinuous, noisy, and often bistable transitions occurred. Axially resolved probe measurements performed under ECR conditions showed that the plasma density exhibited a broadly peaked profile, while the electron temperature showed a sharp peak at ECR. The differences in these profiles leads to three qualitatively different plasma regions available for use in ECR processing. The variation of the plasma potential explains the origin of the axial ion beams that commonly occur in these systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jiang, Wence, Daniel Verscharen, Seong-Yeop Jeong, Hui Li, Kristopher G. Klein, Christopher J. Owen, and Chi Wang. "Velocity-space Signatures of Resonant Energy Transfer between Whistler Waves and Electrons in the Earth’s Magnetosheath." Astrophysical Journal 960, no. 1 (December 20, 2023): 30. http://dx.doi.org/10.3847/1538-4357/ad0df8.

Повний текст джерела
Анотація:
Abstract Wave–particle interactions play a crucial role in transferring energy between electromagnetic fields and charged particles in space and astrophysical plasmas. Despite the prevalence of different electromagnetic waves in space, there is still a lack of understanding of fundamental aspects of wave–particle interactions, particularly in terms of energy flow and velocity-space characteristics. In this study, we combine a novel quasilinear model with observations from the Magnetospheric Multiscale mission to reveal the signatures of resonant interactions between electrons and whistler waves in magnetic holes, which are coherent structures often found in the Earth’s magnetosheath. We investigate the energy transfer rates and velocity-space characteristics associated with Landau and cyclotron resonances between electrons and slightly oblique propagating whistler waves. In the case of our observed magnetic hole, the loss of electron kinetic energy primarily contributes to the growth of whistler waves through the n = −1 cyclotron resonance, where n is the order of the resonance expansion in linear Vlasov–Maxwell theory. The excitation of whistler waves leads to a reduction of the temperature anisotropy and parallel heating of the electrons. Our study offers a new and self-consistent understanding of resonant energy transfer in turbulent plasmas.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hansen, S. K., S. K. Nielsen, J. Stober, J. Rasmussen, M. Salewski, M. Willensdorfer, M. Hoelzl, and M. Stejner. "Parametric Decay Instabilities during Electron Cyclotron Resonance Heating of Fusion Plasmas, Problems and Possibilities." EPJ Web of Conferences 277 (2023): 01002. http://dx.doi.org/10.1051/epjconf/202327701002.

Повний текст джерела
Анотація:
We review parametric decay instabilities (PDIs) expected in connection with electron cyclotron resonance heating (ECRH) of magnetically confined fusion plasmas, with a specific focus on conditions relevant for the ITER tokamak. PDIs involving upper hybrid (UH) waves are likely to occur in O-mode ECRH scenarios at ITER if electron density profiles allowing trapping of UH waves near the ECRH frequency are present. Such PDIs may occur near the plasma center in ITER full-field scenarios heated by 170 GHz O-mode ECRH and on the high-field side of half-field ITER plasmas heated by 110 GHz or 104 GHz O-mode ECRH. Additionally, 110 GHz O-mode ECRH of half-field ITER scenarios may have low ECRH absorption, due to the electron cyclotron resonance being located on the high-field side of the main plasma. This potentially allows PDIs driven by a significant amount of ECRH radiation reaching the UH resonance in X-mode to occur, as X-mode radiation can be generated by reflection of unabsorbed O-mode radiation from the high-field side wall. The occurrence of PDIs during ECRH may damage microwave diagnostics, such as the electron cyclotron emission and low-field side reflectometer systems at ITER, as well as complicate the calculation of heating and current drive characteristics. However, if PDIs are induced in a controlled manner, they may provide novel diagnostic tools and allow the generation of a moderate fast ion population in plasmas heated only by ECRH.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Castagna, T. J., J. L. Shohet, D. D. Denton, and N. Hershkowitz. "X rays in electron‐cyclotron‐resonance processing plasmas." Applied Physics Letters 60, no. 23 (June 8, 1992): 2856–58. http://dx.doi.org/10.1063/1.106846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Goeckner, M. J., J. A. Meyer, G. ‐H Kim, J. ‐S Jenq, A. Matthews, J. W. Taylor, and R. A. Breun. "Role of contaminants in electron cyclotron resonance plasmas." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 5 (September 1993): 2543–52. http://dx.doi.org/10.1116/1.578605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Racz, Richárd, Sándor Biri, and József Palinkas. "Visible Light Emission of Electron Cyclotron Resonance Plasmas." IEEE Transactions on Plasma Science 39, no. 11 (November 2011): 2462–63. http://dx.doi.org/10.1109/tps.2011.2150244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electron Cyclotron Resonance Plasmas"

1

Peterschmitt, Simon. "Development of a Stable and Efficient Electron Cyclotron Resonance Thruster with Magnetic Nozzle." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX053.

Повний текст джерела
Анотація:
Les propulseurs plasmas sont le sujet d’un intérêt grandissant pour équiper de petits satellites. Des miniaturisations de technologies matures ont été proposées ainsi que des concepts innovants, tels le propulseur à résonance cyclotron électronique muni d’une tuyère magnétique (ECRT). Ce propulseur pourrait réaliser une rupture technologique car il est sans grilles, sans neutraliseur et n’a besoin que d’un seul générateur. Le présent travail consiste à développer un ECRT accompagné du dispositif expérimental nécessaire, capable de démontrer avec précision une grande efficacité durant un fonctionnement prolongé en régime permanent. Les précédentes études sur l’ECRT étaient limitées par un manque de précision sur des mesures clés, en raison du dispositif et des technologies nécessaires à l’étude de ce propulseur. La procédure et le dispositif expérimentaux sont donc largement améliorés pour augmenter la précision des mesures. Toutefois, des spécificités dues à la tuyère magnétique compliquent l’interprétation des mesures de densité de courant d’ion. Notre analyse s’appuie donc principalement sur des mesures de poussées obtenues avec une balance. Par ailleurs, nous montrons que les performances du propulseur augmentent significativement quand on diminue la pression dans le caisson de test jusqu’à 10-7 mbar Xénon. En outre, d’éventuels effets de caisson sont explorés en testant le propulseur à l’ONERA (Palaiseau, France) et à JLU (Giessen, Allemagne). En prenant en considération ces difficultés expérimentales, nous étudions l’efficacité du propulseur en fonction de la géométrie de l’injection de gaz neutre, de la topologie du champ magnétique, et des conditions aux limites de la tuyère magnétique. De plus, nous abordons la question de l’érosion du propulseur, de deux manières : premièrement par une modification des matériaux et deuxièmement par une modification de la structure de couplage (coaxiale, ou guide d’onde circulaire). Le couplage de type guide d’onde produit des ions à des énergies trop faibles pour les exigences de la propulsion spatiale ; en revanche, une structure de couplage coaxiale usinée en graphite semble diminuer substantiellement l’érosion sans compromettre l’efficacité. Ces résultats permettent de concevoir et de tester un propulseur ~ 30 W et un propulseur ~ 200 W dont les performances sont répétables dans le temps. L’efficacité et la durée de vie sont considérablement augmentées : une première campagne de test indique une efficacité allant jusqu’à ~ 50% et une durée de vie estimée de un à quelques milliers d’heures. Pour éclairer les résultats expérimentaux, nous proposons une nouvelle démarche de modélisation, fondée sur l’étude des trajectoires des électrons et sur une approche du chauffage électronique au moyen d’une équation de Fokker-Planck. Cette démarche débouche sur le calcul de la fonction de distribution en énergie des électrons dans le propulseur ; celle-ci détermine le courant d’ions extrait et l’énergie des ions
Plasma thrusters are the subject of growing interest as a means for small satellite propulsion. Miniaturizations of mature technologies as well as innovative concepts have been proposed such as the electron-cyclotron resonance thruster with magnetic nozzle (ECRT). This thruster appears as a potentially disruptive technology because it is gridless, neutralizerless, and only requires one power supply. This work consists in the development of an ECRT with magnetic nozzle and its accompanying experimental test bench, able to accurately demonstrate high thruster efficiency during prolonged steady state operation. Previous studies on the ECRT were limited by a significant lack of accuracy on key measurements, due to the specific setup and technology needed for this thruster. The experimental procedure and the setup are thus heavily upgraded to improve the accuracy of experimental data. However, peculiarities of the magnetic nozzle complicate the interpretation of the ion current density measurements, thus our analysis of performance is mainly based on thrust balance measurements. Besides, thruster performance is shown to significantly increase when decreasing vacuum tank pressure down to 10-7 mbar Xenon, and facility effects are investigated by testing the thruster both at ONERA (France) and at JLU (Germany). Well aware of these experimental difficulties, we study the efficiency of the thruster as a function of neutral gas injection, magnetic field topology, and boundary conditions of the magnetic nozzle. In addition, we address erosion issues in two ways: first by a change of materials, and second by a change of coupling structure (coaxial, or circular waveguide). Waveguide coupling yields insufficient ion energies for space propulsion requirements but manufacturing the coaxial coupling structure with graphite appears to substantially mitigate erosion. These results enable to design and test a ~ 30 W and a ~ 200 W thruster consistently yielding state-of-the-art efficiencies as compared to other thruster types while having sufficient estimated lifetime. In order to shed light on the experimental outcomes, a new modelling approach is developed based on the study of electron trajectories and a Fokker-Planck heating model calculating the formation of the electron energy distribution function in the thruster
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rashid, Riyaz. "Low temperature electron cyclotron resonance plasma deposition of silicon dioxide." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Majeri, Nassim. "Production de rayons X par plasma ECR." Thesis, Orléans, 2009. http://www.theses.fr/2009ORLE2077/document.

Повний текст джерела
Анотація:
Durant cette thèse nous avons caractérisé et amélioré une nouvelle source de rayons X avec unplasma ECR (résonance cyclotronique électronique) permettant de générer des électronsénergétiques de 10 à 120 keV, qui vont ensuite produire le rayonnement X par freinage(bremsstrahlung). Les améliorations de l’installation ont permis d’obtenir une source stable, pouvantfonctionner une journée entière de travail (huit heures) sans arrêt. Dans la première partie de l’étudeexpérimentale on a étudié et déterminé les paramètres optimaux de la source : la pression, lapuissance micro-onde et la configuration magnétique sur le rayonnement X du plasma. Nous avonségalement confirmé la localisation des électrons énergétiques sur un anneau due à la configurationmagnétique. L’intensité trop faible et la zone d’émission non ponctuelle du rayonnement plasma, nepermettant pas l’utilisation de la source à plasma, une cible a été insérée sur la trajectoire desélectrons énergétique pour résoudre ces deux problèmes.Le principal avantage de notre source par rapport aux tubes X, est l’absence de haute tension (20 à400 kV). Pour chauffer les électrons, nous utilisons une onde de 2,45 GHz, qui est la fréquenceindustrielle autorisée dans les fours à micro-ondes, délivrée par un magnétron. Les éléments simplesqui composent notre source donne un coût plus faible qu’un système classique de tubes X, dûprincipalement au prix élevé du générateur HT pour les tubes X. De plus, nous n’avons pas besoind’un vide très poussé car, à la différence des tubes X, la source ECRX fonctionne avec une pressionrésiduelle de 0,1mPa. Et enfin notre source est compacte ce qui la rend facilement transportable. Lesapplications de cette source sont nombreuses comme la radiologie, la stérilisation et le contrôle nondestructif industriel
During this thesis we have characterised and developed a new X-ray source with an ECR plasma(electron cyclotron resonance) generating energetic electrons from 10 to 120 keV, which will emit adeceleration radiation (the Bremsstrahlung). The improvements of the installation permit to obtain astable source, which can work during one day (eight hours) without stop. In first part of theexperimental study we have studied and determined the optimal parameters of the source: pressure,micro-wave power and the magnetic configuration on the X radiation of the plasma. We also confirmedthe localisation of the energetic electron on a ring due to the magnetic configuration. The low intensityand the non punctual emission size of the X radiation, don’t allow the use of the source, so a target isinserted in the trajectory of the energetic electron to solve these two weaknesses.The main advantage of our source compared with X-ray tubes, is the absence of high voltage (20 to400 kV). For heating the electron, we use a 2,45 GHz wave, that is the industrial frequency authorizedfor the micro-wave oven, delivered by the magnetron. The simple elements that compose our sourceare less expensive than the classical X-ray tubes, due to mainly the high cost of the X-ray generator.Moreover, we don’t need a high vacuum, mandatory for the X-ray tubes; an ECRX operates at aresidual pressure of 0,1 mPa. And finally, we have a compact source. Applications will be various frommedical, like radiological, sterilization, to non-destructive industrial control
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kroely, Laurent. "Process and material challenges in the high rate deposition of microcrystalline silicon thin films and solar cells by Matrix Distributed Electron Cyclotron Resonance plasma." Phd thesis, Ecole Polytechnique X, 2010. http://pastel.archives-ouvertes.fr/pastel-00550241.

Повний текст джерела
Анотація:
High deposition rates on large areas are industrial needs for mass production of microcrystalline silicon (μc-Si:H) solar cells. This doctoral work aims at exploring the usefulness of Matrix Distributed Electron Cyclotron Resonance (MDECR) plasmas to process the intrinsic layer of μc-Si:H p-i-n solar cells at high rates. With the high dissociation of silane achieved in MDECR plasmas, deposition rates as high as 6nm/s and 2.8nm/s have been demonstrated in our lab for amorphous and microcrystalline silicon respectively, without hydrogen dilution. This technique is also promising because it can be easily scaled up on large areas, just by extending the matrix of elementary microwave applicators. This subject was a unique opportunity to cover the whole chain of this field of research : A new MDECR reactor has been specially designed and assembled during this project. Its maintenance and its improvement have been important technical challenges : for example, the addition of a load-lock enabled us to lower the oxygen concentration in our films by a factor of 10. The impact of the deposition parameters (e.g. the ion energy, the substrate temperature, different gas mixtures, the microwave power) has been explored in extensive parametric studies in order to optimize the material quality. Great efforts have been invested in the characterization of the films. Our strategy has been to develop a wide range of diagnostics (ellipsometry, Raman spectroscopy, SIMS, FTIR, XRD, electrical characterizations etc.). Finally, p-i-n cells have been processed with the selected interesting materials. The successive successful improvements in the material quality (e.g. diffusion lengths of holes parallel to the substrate as high as 250 nm) did unfortunately not result in high efficiency solar cells. Their limited performance is in particular due to a very poor response in the red part of the spectrum resulting in low current densities. Consequently, the potential sources of limitation of the reactor, the material and the device have been studied : e.g. the presence of “cracks” prone to post-oxidation in the highly crystallized materials and the risk of deterioration of the ZnO substrate or of the p-doped layer by a too high process temperature or by hydrogen diffusing from the plasma.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

GAUDIN, CHRISTELLE. "Emission de rayons x dans un plasma ecr (electron cyclotron resonance) en vue d'applications medicales." Toulouse 3, 1999. http://www.theses.fr/1999TOU30089.

Повний текст джерела
Анотація:
Nous avons developpe et etudie une nouvelle source de rayons x (dans la gamme 10-100 kev) en utilisant un plasma a la resonance cyclotronique des electrons. Le dispositif experimental a ete concu et ameliore afin d'obtenir une source a la fois compacte, stable et plus intense. Pour etudier le transfert d'energie de l'onde incidente aux electrons, nous avons d'abord calcule numeriquement la trajectoire des particules dans un champ magnetique homogene et obtenu la dependance de l'energie maximale de l'electron en fonction du champ electrique de l'onde. De plus, nous avons considere un processus de conversion de mode de l'onde electromagnetique incidente en onde de bernstein. Plusieurs etudes experimentales ont ete realisees sur le plasma de la source. Un anneau d'electrons energetiques, dans le plan median du miroir magnetique, a ete mis en evidence avec une camera stenope. Les populations ionique et atomique ont ete etudiees par spectroscopie dans le visible ; la densite et la temperature des zones externes du plasma ont ete estimees par sonde de langmuir. Les electrons energetiques, qui nous interessent particulierement pour produire des rayons x medicaux, ont ete caracterises par un diagnostic fonde sur l'analyse des spectres de bremsstrahlung. Nous avons montre l'influence des parametres de fonctionnement de la source (pression, puissance micro-onde, configuration magnetique) sur l'energie et sur l'intensite du rayonnement x produit par le plasma. Ensuite, pour augmenter l'intensite du rayonnement x, une cible a ete interposee de maniere judicieuse dans l'anneau d'electrons energetiques. Les resultats (dosimetrie, analyse des spectres en energie, etude de la taille du foyer) ont ete discutes du point de vue des applications medicales en radiologie et mammographie. Nous avons realise plusieurs types de radiographie.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sakildien, Muneer. "Plasma characterisation of an electron cyclotron resonance ion source by means of x-ray spectroscopy." Thesis, University of the Western Cape, 2012. http://hdl.handle.net/11394/5212.

Повний текст джерела
Анотація:
>Magister Scientiae - MSc
The ultimate aim of any multiply-charged ion source, like the Electron Cyclotron Resonance Ion Source, ECRIS, is the production of multiply-charged ions, in sufficiently large quantities. These multiplycharged ions, in the case of the ECRIS, are created by a step-by-step ionisation process, whereby neutral atoms are ionised by energetic electrons. The goal of this thesis was to gain an understanding of the relative importance of various ECRIS parameters on the production of these energetic electrons. This was done by measuring the bremsstrahlung continuum emitted by the mirror confined plasma of an ECR ion source. The focus of our study was to investigate the influence of neutral pressure, incident microwave power and magnetic field configuration on spectral temperature and electron density of the warm electron population of the ECRIS plasma. The thesis begins by familiarising the reader with various aspects of plasma physics as it relates to the measurements. The measurements were done with a high-purity germanium detector and processed with the DGF Pixie-4 module. Analyses of the measured spectra were done with subroutines written in Root. From the measured result, it was concluded that by increasing the incident microwave power from 50 W to 300 W, the spectral temperature increases by 14.01% for helium plasma and 7.88% for argon plasma. Evidence of saturation of spectral temperature and electron density with increasing microwave power was also noticed, as reported by other groups investigating plasma bremsstrahlung. The increase of spectral temperature with neutral pressure was found to be considerable, increasing by 20.23% as the neutral pressure in the plasma chamber of the ECRIS was decreased. This increase in spectral temperature was accompanied by a 40.33% decrease in electron density, which led us to conclude that the increase in spectral temperature was most likely due to an increase in the mean free path of the electrons. The influence of the magnetic field configuration on both spectral temperature and electron density was also investigated. During this investigation, one of the solenoid coil currents was increased, whilst keeping the other constant. This amounts to moving the plasma volume around axially in the plasma chamber of the ECRIS. This was found to significantly enhance the spectral temperature and this effect was attributed to more efficient heating of the electrons near the resonance zone. The electron density on the other hand was found to remain relatively constant, if one excludes the electron density as a result of one particularly setting of the solenoid coils. The decrease of electron density as a result of this particular setting of the solenoid coils enhanced the electron losses through the magnetic bottle. This is evidenced by the increase in photon counts as measured by our detector. The influence of neutral pressure, incident microwave power and magnetic field configuration on the extracted ion beam intensities was also investigated. This investigation led us to conclude that the mean charge state extracted increases with spectral temperature. This result was in agreement with those measured by other groups.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jaju, Vishwas. "Device quality low temperature gate oxide growth using electron cyclotron resonance plasma oxidation of silicon." [Ames, Iowa : Iowa State University], 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zaïm-Bilheux, Hassina. "Design and initial comparative evaluation studies of conventional "surface" and new concept "volume"-type, all permanent magnet electron cyclotron resonance (ECR) ion sources." Versailles-St Quentin en Yvelines, 2003. http://www.theses.fr/2003VERS0008.

Повний текст джерела
Анотація:
Les sources d'ions à "Résonance cyclotronique d'électrons"(RCE)constituent, à l'heure actuelle, le meilleur choix parmi les sources existantes en ce qui concerne la production des faisceaux continus d'ions positifs hautement chargés. Ces sources produisent des rapports charge-sur-masse très élevés (jusqu'à 0,35 pour l'uranium) et des intensités par charge du [microampère] au mA, ce qui fait leur succès auprès des accélérateurs d'ions lourds à haute énergie. Depuis la naissance du concept dans les années 1970, leurs performances ont régulièrement progressé (amélioration du confinement du plasma, utilisation d'ondes électromagnétiques à fréquence élevée, amélioration de la qualité du vide, addition d'électrons "froids", disque polarisé, effet Malter et utilisation d'un gaz plus léger). Récemment, il a été suggéré que les performances des sources RCE pouvaient être notablement améliorées en augmentant le volume de résonance soit en étendant la zone d'induction résonante soit en élargissant la bande HF de l'onde. Une source RCE à aimants permanents fonctionnant à la fréquence 6 GHz, avec la possibilité de créer un large volume de plasma résonant, a été dessinée, construite et testée au Laboratoire National d'Oak Ridge (ORNL), en avant-première. Le champ magnétique est flexible, de sorte qu'il peut être configuré en champ plat("volume") ou en champ conventionnel à B minimum ("surface") afin de pouvoir comparer directement les performances des deux types de sources dans des conditions expérimentales équivalentes. Les résultats expérimentaux préliminaires montrent que la source à champ plat surpasse celle en champ conventionnel, en terme de distribution de charge et d'intensité
ECR ion sources are clearly the best choice of existing sources for the generation of CW beams of highly charged ions, and therefore, they are at a premium for high-energy accelerator-based applications. The technology of the source has slowly but steadily advanced over the past several years (improvement in plasma confinement; use of very high frequency microwave radiation; improvement in vacuum quality; supplementing their plasma discharges with cold electrons; biased disks; and gas mixing effect). Recently, it has been suggested that their performances can be significantly further enhanced by incresing the physical sizes of their ECR zones in relation to the sizes of their plasma volumes (spatial and frequency domain methods). A 6 GHz, all-permanent magnet ECR ion source with à large resonant plasma volume has been designed, constructed and initially tested at the Oak Ridge National Laboratory. The conventional minimum-B("surface") resonance conditions so that direct comparaisons of the performances of the two source types can be made under identical operating conditions. According to initial test results, the flat-B source performs better than its conventionnal-B conterpart, in terms of charge-state distribution and intensity within a particular charge-state. This is attributable to the very large ECR zones present in the source and their locations with respect to the launch direction of the RF power
Стилі APA, Harvard, Vancouver, ISO та ін.
9

パスクワ, ロメーロ カミール フェイス, and Camille Faith Pascua Romero. "Development of an electron cyclotron resonance plasma source with an internal antenna for carbon film deposition." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0, 2018. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB13071665/?lang=0.

Повний текст джерела
Анотація:
An electron cyclotron resonance (ECR) plasma source which couples microwave to the plasma using an internal antenna was developed. The use of internal antenna provides a "windowless" power coupling method that can eliminate the issues of contamination which require frequent source maintenance. Antenna structure, magnetic configuration and plasma parameters were modified for carbon film deposition by chemical sputtering. The ECR source generated low-plasma-potential (10 V), high-plasma-density (10^16 m^-3) discharges at low gas pressures (10^-1 Pa) and low input power (100 W). The antenna realized stable operation for more than 5 h and can be utilized for carbon film deposition.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vialis, Théo. "Développement d’un propulseur plasma à résonance cyclotron électronique pour les satellites." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS344.

Повний текст джерела
Анотація:
Ce travail de thèse porte sur le propulseur électrique de type ECR (résonance cyclotron électronique) développé à l’ONERA. Ce propulseur quasi-neutre, qui utilise une tuyère magnétique pour accélérer le plasma, produit une poussée d’environ 1 mN pour des puissances inférieures à 50 W. Dans cette thèse, on se propose de développer et d’optimiser les diagnostics de mesure des performances du propulseur ECR, d’identifier les paramètres expérimentaux pouvant influencer les performances et d’améliorer la compréhension des phénomènes physiques ayant lieu dans le propulseur. Ces objectifs ont pour finalité l’amélioration des performances. Pour répondre à ces objectifs, plusieurs prototypes à aimant permanent ont été développés, et une balance permettant de mesurer directement la poussée a été modifiée pour caractériser le propulseur. Différentes études paramétriques ont été conduites, qui ont montré que les performances dépendaient directement du rapport entre le débit de xénon et la puissance micro-onde injectée. Il a également été observé que la longueur du conducteur externe de la source plasma et la pression ambiante ont une influence significative sur le niveau de performance. Après optimisation de la géométrie, un rendement total supérieur à 12 % a été obtenu. Des mesures séparées de la poussée thermique et magnétique ont permis de montrer que la composante magnétique était la contribution principale de la poussée dans tous les cas testés. Un code PIC 1D-3V a été utilisé pour simuler le comportement du propulseur, et a permis de reproduire le chauffage des électrons par résonance et l’accélération des espèces chargées dans la tuyère. L’ensemble des travaux ont mis en avant le rôle des composantes parallèle et perpendiculaire de la pression électronique
Electric propulsion is an alternative technology to the chemical propulsion that enables reducing propellant consumption for satellites. ONERA is developing an electric ECR thruster with a thrust around 1 mN and an electric power less than 50 W. The thruster creates a plasma by electron cyclotron resonance and accelerates it through a magnetic nozzle. In this thesis work, an optimization of the measurement diagnostics is done. The work also aims at identifying the important parameters for the performances of the thruster and at improving the understanding of underlying physics, in order to increase the thruster efficiency. Several prototypes have been developed and a thrust stand that can directly measure the thrust has been modified. Some parametric studies have been led and have shown that the thruster performance strongly depends on xenon mass-flow rate to microwave power ratio. It has also shown that the external conductor of the plasma source and the ambient pressure have a significant influence on the performances. Following a geometric optimization, a maximum total efficiency of more than 12% has been obtained. Separate measurements of the magnetic and thermal thrust have shown that the magnetic thrust is the main component of the total thrust. A 1D-3V PIC code has been used to simulate the behavior of the thruster. The analysis of the results has shown that the ECR heating and particle acceleration in the magnetic nozzle could be properly computed. The role of the parallel and perpendicular component of electron pressure has been evidenced by this work
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electron Cyclotron Resonance Plasmas"

1

Guest, Gareth. Electron cyclotron heating of plasmas. Weinheim: Wiley-VCH, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hansen, Flemming Ramskov. Electron cyclotron resonance heating of a high-density plasma. Roskilde, Denmark: Riso National Laboratory, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

John, Lohr, and World Scientific (Firm), eds. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. Singapore: World Scientific, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

John, Lohr, and World Scientific (Firm), eds. Proceedings of the Fifteenth Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating: Yosemite National Park, California, USA, 10-13 March 2008. Singapore: World Scientific, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wākushoppu Taka Ion Seiseiyō Kōkōritsu Kogata ECR Ion-gen (1999 KEK). Wākushoppu Taka ion seiseiyō kōkōritsu kogata ECR ion-gen: Proceedings of the Workshop on the Compact ECR Ion Source for Highly Charged Ions with High Efficiency, November 29-30, 1999, KEK, Tanashi, Japan. Tsukuba-shi: High Energy Accelerator Research Organization (KEK), 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Danny. Dry passivation studies of GaAs(110) surfaces by gallium oxide thin films deposited by electron cyclotron resonance plasma reactive molecular beam epitaxy for optoelectronic device applications. Ottawa: National Library of Canada, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Girka, Volodymyr, Igor Girka, and Manfred Thumm. Surface Electron Cyclotron Waves in Plasmas. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hellblom, Goran. Negative Hydrogen Ions From A Mirror Electron Cyclotron Resonance Source. Nykoping: Studsvik Energiteknik AB, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

International, Workshop on E. C. R. Ion Sources (16th 2004 Berkeley California). Electron cyclotron resonance sources: 16th International Workshop on ECR Ion Sources ECRIS'04, Berkeley, California, 26-30 September 2004. Melville, N.Y: American Institute of Physics, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Topical, Conference on Radio Frequency Power in Plasmas (17th 2007 Clearwater Florida). Radio frequency power in plasmas: 17th Topical Conference on Radio Frequency Power in Plasmas : Clearwater, Florida, 7-9 May 2007. Melville, N.Y: American Institute of Physics, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electron Cyclotron Resonance Plasmas"

1

Joseph, J., Y. Z. Hu, and E. A. Irene. "Kinetics of Oxidation of Silicon by Electron Cyclotron Resonance Plasmas." In The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2, 55–62. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kaganovich, I., M. Misina, A. Bogaerts, and R. Gijbels. "Investigation of the Electron Distribution Functions in Low Pressure Electron Cyclotron Resonance Discharges." In Advanced Technologies Based on Wave and Beam Generated Plasmas, 543–44. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pankove, J., V. Hornback, S. Sritharan, J. Wilson, S. Asher, R. Dhere, J. Goral, et al. "Electron-Cyclotron-Resonance Plasma Deposition of Carbon onto Silicon." In Springer Proceedings in Physics, 60–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75048-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Burke, Rudolf R. "Applications of Distributed Electron Cyclotron Resonance (DECR) to Plasma-Surface Interaction." In Microwave Discharges, 503–8. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1130-8_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Masumoto, Hiroshi, Takashi Goto, Yoshitomo Honda, Osamu Suzuki, and Keiichi Sasaki. "Preparation of Titania Films on Implant Titanium by Electron Cyclotron Resonance Plasma Oxidation." In Key Engineering Materials, 565–68. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Masumoto, Hiroshi, Takashi Goto, Yusuke Orii, Yoshitomo Honda, Osamu Suzuki, and Keiichi Sasaki. "Osteoconductivity of Titania Films Prepared by Electron-Cyclotron-Resonance Plasma Oxidation of Implant Titanium." In Bioceramics 20, 717–20. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-457-x.717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Agius, B., M. C. Hugon, N. Jiang, F. Plais, D. Pribat, and T. Carriere. "Comparison of SiO2 Thin Film Properties Deposited by Distributed Electron Cyclotron Resonance Plasma Using Two Different Oxidant Gases: N2O or O2." In The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2, 157–64. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1588-7_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shirkov, Grigori D., and Günter Zschornack. "Electron-Cyclotron Resonance Ion Sources." In Electron Impact Ion Sources for Charged Heavy Ions, 123–52. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09896-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Girka, Volodymyr, Igor Girka, and Manfred Thumm. "Surface Electron Cyclotron TM-Mode Waves." In Surface Electron Cyclotron Waves in Plasmas, 45–116. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Girka, Volodymyr, Igor Girka, and Manfred Thumm. "Surface Electron Cyclotron X-Mode Waves." In Surface Electron Cyclotron Waves in Plasmas, 117–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17115-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electron Cyclotron Resonance Plasmas"

1

Niu, X., H. Liu, B. X. Zhang, and D. R. Yu. "The influence of operating parameters on the dynamic characteristics of minimized electron cyclotron resonance ion thruster for space gravitational wave detection." In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, L., and X. M. Zhu. "A novel concept, “excited-state-system”: applicable to determining the active-particle number density in nitrogen, oxygen and carbon tetrafluoride electron cyclotron resonance plasma." In 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gottscho, Richard A., Toshiki Nakano, Nader Sadeghi, Dennis J. Trevor, and Rod W. Boswell. "Ion velocity distributions in electron cyclotron resonance plasmas." In Process Module Metrology, Control and Clustering, edited by Cecil J. Davis, Irving P. Herman, and Terry R. Turner. SPIE, 1992. http://dx.doi.org/10.1117/12.56650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Michel, G., P. Brand, H. Braune, V. Erckmann, G. Gantenbein, W. Kasparek, H. P. Laqua, et al. "Electron Cyclotron Resonance Heating for W7-X." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 18th Topical Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3273813.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sathyanarayana, K. "Electron Cyclotron Resonance heating system on Tokamak Aditya." In RADIO FREQUENCY POWER IN PLASMAS:14th Topical Conference. AIP, 2001. http://dx.doi.org/10.1063/1.1424193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jin, Shu, Richard Molnar, Donald Y. Jong, and Theodore D. Moustakas. "Characterization of electron cyclotron resonance plasmas for diamond deposition." In San Diego '92, edited by Albert Feldman and Sandor Holly. SPIE, 1992. http://dx.doi.org/10.1117/12.130760.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ram, Abhay K., and Abraham Bers. "Electron Cyclotron Resonance Heating of Plasmas in Spherical Tori." In Proceedings of the 12th Joint Workshop. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705082_0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mascali, D., S. Gammino, L. Celona, G. Ciavola, Cynthia K. Phillips, and James R. Wilson. "RF Heating in Electron Cyclotron Resonance Ion Sources." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 19th Topical Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3665026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jiang, Y., X. Chang, J. L. Hirshfield, M. Fedurin, M. Palmer, and W. Stern. "Compact Electron Cyclotron Resonance Accelerator." In 2023 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2023. http://dx.doi.org/10.1109/icops45740.2023.10480943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meis, C., A. Compant La Fontaine, P. Louvet, and R. L. Meyer. "Electron Cyclotron Resonance Plasma Heating in a Flaring Magnetic Field Zone." In Radio frequency power in plasmas. AIP, 1992. http://dx.doi.org/10.1063/1.41640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electron Cyclotron Resonance Plasmas"

1

Tsai, C. C., L. A. Berry, S. M. Gorbatkin, H. H. Haselton, J. B. Roberto, D. E. Schechter, and W. L. Stirling. Potential applications of an electron cyclotron resonance multicusp plasma source. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7097370.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vernon, R. J. High-power microwave transmission systems for electron-cyclotron-resonance plasma heating. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5182806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vernon, R. High-power microwave transmission systems for electron cyclotron resonance plasma heating. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/6647695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Berry, L. A., S. M. Gorbatkin, and R. L. Rhoades. Cu deposition using a permanent magnet electron cyclotron resonance microwave plasma source. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10178692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hu, Y. Z., J. Joseph, and E. A. Irene. An In-Situ Spectroscopic Ellipsometry Study of the Electron Cyclotron Resonance Plasma Oxidation of Silicon and Interfacial. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada242833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fruchtman, A., K. Riedel, H. Weitzner, and D. B. Batchelor. Strong cyclotron damping of electron cyclotron waves in nearly parallel stratified plasmas. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/7242112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pardo, R., and Physics. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/968489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Felch, K., C. Hess, H. Huey, E. Jongewaard, H. Jory, J. Neilson, R. Pendleton, and M. Tsirulnikov. Progress in producing megawatt gyrotrons for ECR (electron cyclotron resonance) heating. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6570521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Choe, W., M. Ono, and C. S. Chang. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10196164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ren, Chuang. A study of tearing modes via electron cyclotron emission from tokamak plasmas. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/677101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії