Добірка наукової літератури з теми "Electromagnetic safety"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electromagnetic safety".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electromagnetic safety"

1

R. B. Dubey, R. B. Dubey. "Life Safety in a World of Electromagnetic Radiation Pollution." Indian Journal of Applied Research 3, no. 6 (October 1, 2011): 40–43. http://dx.doi.org/10.15373/2249555x/june2013/15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gandhi, Om P. "Electromagnetic Fields: Human Safety Issues." Annual Review of Biomedical Engineering 4, no. 1 (August 2002): 211–34. http://dx.doi.org/10.1146/annurev.bioeng.4.020702.153447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Guang, Xiao Guang Yue, Juan Yang, Jing Xi Chen, Zi Qiang Zhao, and Xiao Lan Xie. "Electromagnetic Induction Heating Application in Mining Safety Detection." Advanced Materials Research 722 (July 2013): 528–31. http://dx.doi.org/10.4028/www.scientific.net/amr.722.528.

Повний текст джерела
Анотація:
From the status and history the of electromagnetic induction heating, the concept of electromagnetic induction heating, formulas and principles are briefly analyzed. There are some overviews of some examples: the furnace based on electromagnetic induction heating; the plastic processing based on electromagnetic induction heating; the temperature control system based on electromagnetic induction heating. Through these examples, the basic situation of domestic electromagnetic induction heating is summarized. Mining engineering safety detection plays a very important role in mining engineering. A mining safety detection model is designed by using electromagnetic induction heating principle for monitoring the load and the air temperature data. This detection reference model can be used for many areas for mining safety.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vishnevsky, A., and B. Gorodetsky. "Electromagnetic safety of modern marine facilities." Transactions of the Krylov State Research Centre 1, no. 387 (February 11, 2019): 143–54. http://dx.doi.org/10.24937/2542-2324-2019-1-387-143-154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buyakova, Natalya, Vasilij Zakaryukin, and Andrey Kryukov. "Electromagnetic safety of high voltage traction networks." E3S Web of Conferences 139 (2019): 01067. http://dx.doi.org/10.1051/e3sconf/201913901067.

Повний текст джерела
Анотація:
The article provides procedure for simulation modeling of traction power supply systems which allows analyzing electromagnetic safety conditions in perspective high voltage traction net- works. Modeling of electromagnetic fields in the Fazonord software application proved that 50 kV traction system is characterized by the highest electromagnetic strength at a height of 1.8 m above the ground surface, while 2x25 kV system is characterized by the lowest one. Traditional traction system with 27.5 kV voltage is the worst in terms of magnetic field strength, while 2x50 kV is the best; auto- transformer systems of traction power supply create magnetic fields due to demagnetizing effect of power leads.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grigoriev, O. A., Mikhail E. Goshin, A. V. Prokofyeva, and V. A. Alekseeva. "FEATURES OF NATIONAL POLICY IN APPROACHES TO ELECTROMAGNETIC FIELD SAFETY OF RADIO FREQUENCIES RADIATION IN DIFFERENT COUNTRIES." Hygiene and sanitation 98, no. 11 (November 15, 2019): 1184–90. http://dx.doi.org/10.18821/0016-9900-2019-98-11-1184-1190.

Повний текст джерела
Анотація:
The article contains the analysis of modern approaches to determining the limits of the electromagnetic field of radio frequencies. The international discussion about the safe limits of electromagnetic radiation has been going on for half a century. In the 21st century, the national policy of electromagnetic safety is determined by the socio-economic priorities of countries and national legal principles of evidence of harm to health to a greater extent, than scientific data. There are three main approaches to determining the limits of electromagnetic fields. The Anglo-Saxon approach is based on the principle of passive regulation, i.e. using the recommended values of the permissible level of the electromagnetic field. The Soviet-Russian approach is based on establishing the maximum permissible level of the electromagnetic field, which guarantees no harm to present and future generations. The term of the maximum permissible level is historically associated with the concept of the priority of the nervous system responses to the influence of the electromagnetic factor. The state assumes responsibility for the scientific justification of the limit levels and implements the control functions for their observance, which allows excluding any harm to health. The third approach is based on the precautionary principle, the concept of which was first introduced in German law. It is aimed at preventing harm, in the absence of unambiguous, reliable scientific data and, in fact, it is a socially-oriented approach that takes into account social consensus in the context of the development of new technologies. Respectively, this approach implies strict maximum permissible levels (technically achievable), as well as a system of formal restrictions on placement of the electromagnetic field sources in the “susceptible” territories. Separately from the above approaches, a method of managing the safety of the electromagnetic environment in China has been formed: since 2015, electromagnetism has been fully attributed to environmental factors and is controlled by the Ministry of environmental protection. China has abandoned the hygienic regulation of the anthropogenic electromagnetic field, and the system, for establishing and monitoring the electromagnetic environment indices, combines elements of all three mentioned above approaches.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rieznik, D., S. Sukach, T. Kozlovs’ka, and L. Levchenko. "REASONING FOR IMPROVING NORMS OF ELECTROMAGNETIC SAFETY OF EMPLOYEES OF ELECTRICAL ENGINEERING ENTERPRISES." Electromechanical and energy saving systems 2, no. 46 (July 5, 2019): 49–56. http://dx.doi.org/10.30929/2072-2052.2019.2.46.49-56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Apollonskiy, Stanislav M. "Ensuring electromagnetic safety at high-speed maglev transport." Transportation systems and technology 3, no. 3 (September 15, 2017): 90–110. http://dx.doi.org/10.17816/transsyst20173390-110.

Повний текст джерела
Анотація:
High-speed ground maglev transport creates electromagnetic interference of wide frequency spectrum during the movement. Electromagnetic interference spreads both in the surrounding environment and within the transport itself. Mathematically, electromagnetic interference is a vector (and in some cases tensor) field, where the functions are magnetic and electrical tenseness. Purpose. The purpose of the work is to ensure electromagnetic safety of high-speed ground maglev transport’s technical means and people (passengers and staff) by means of optimisation synthesis. Objective. The objective of the works is to optimise the placement of field sources in areas with variable geometric characteristics. Methodology. The method of the work is to synthesise elements of an energy system whose characteristics depend on the behaviour of electromagnetic interference. The mathematical model of the energy system being designed should take into account technological and constructive constraints, and electromagnetic interference. Calculation of electromagnetic interference from several sources in the premises, where the energy system is located by means of solving nonlinear tasks of special type mathematical programming. The peculiarities of this type of problems do not allow using known methods of mathematical programming. Finally, methods of formalisation and algorithms for solving optimisation problems of placement. Practical significance. The search of solution of optimisation tasks became feasible owing to a number of suggestions put forward by the author: introduction of scalar potentials for describing external electromagnetic interference of the electric power plant elements; the introduction of interinfluence taking into account the influence of closely-located sources; development of screening functions in the form of harmonic decompositions; the application of addition theorems which enable describing solutions of mathematical physics equations in different coordinate systems. Conclusion. The suggested method of formation of maglev transport electric energy system may be useful.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gao, Yan Wei, and Jin Ji Jin. "Statistical Analysis and Safety Limit Discussion of Electromagnetic Radiation Major Cities in Jilin Province." Advanced Materials Research 1092-1093 (March 2015): 696–700. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.696.

Повний текст джерела
Анотація:
With the increase of urban electromagnetic radiation source, electromagnetic environment pollution which poses a threat to the health of the residents is increasingly worse, there exists a controversy to the safety limit. In order to master the basic information about urban electromagnetic radiation source of major cities in Jilin, the statistical analysis of environmental comprehensive field monitoring data is conducted in Jilin province’s major cities, Changchun, Yanji and Siping ,the result shows that the electric field intensity of the environmental electromagnetic radiation in three cities is below China electromagnetic radiation safety standard. Then according to the research situation at home and abroad , combining the practical situation of Jilin province, this article discusses the protection standard of environmental electromagnetic radiation and provides the suggested values of the safety threshold limit of electromagnetic radiation .
Стилі APA, Harvard, Vancouver, ISO та ін.
10

APOLLONSKIY, Stanislav M., and Anatoly N. GORSKIY. "Problems of Electromagnetic Safety in Urbanized Environment." Elektrichestvo 7, no. 7 (2020): 65–73. http://dx.doi.org/10.24160/0013-5380-2020-7-65-73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electromagnetic safety"

1

Kharkov, E., and N. Karaeva. "Automation of electromagnetic radiation monitoring as the factor of ecological safety maintenance." Thesis, Видавництво СумДУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/11741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Ming. "Characterization of Pedestrian Electromagnetic Scattering at 76-77GHz." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385579499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Grainger, Peter. "Personal exposure to 50 Hz electromagnetic fields from sources in the home and external environment." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

van, Herel Ryan Marinus Johannes Wilhelmus Maria. "Wire Explosion via Electromagnetic Induction." Thesis, University of Canterbury. Electrical and Computer Engineering, 2011. http://hdl.handle.net/10092/6719.

Повний текст джерела
Анотація:
This research is aimed at exploding a wire via electromagnetic induction, with a preference for obtaining restrike of the exploding wire in a ring shape or otherwise. Literature on both exploding wire and electromagnetic induction are introduced together. A mathematical framework to describe the wire explosion by induction is formulated from first principles using the idea of magnetic flux linkages. The environment in which the experiments took place is described, with reference to matters of laboratory safety and also measurement of transient electrical current and voltage in the wire explosion by induction. The results describe the approaches taken to explode a wire by induction to obtain a plasma conductor. Voltage and current data are displayed and described. Throughout this work, there are long-exposure digital photographic images of the experiments taking place. These contribute to determining the outcome of experiments, and support the conclusions. Wires were exploded by induction in an air-cored mutually coupled coils system, and restrike of those wires was achieved. Electrical characteristics of wire explosion by electromagnetic induction are displayed and discussed based on what is known about straight exploding wires. Future works involving creation of plasma rings, electromagnetic thrust and exploding wires in vacuum are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Семенов, Євгеній Олександрович. "Електромагнітна безпека людини у сучасному світі, як один з найсучасніших напрямків у захисту навколишньго природнього середовища". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/29915.

Повний текст джерела
Анотація:
Електромагніту безпеку потрібно розглядати комплексно, у відповідності до знань, як про людину, так і про оточуюче середовище. Тільки маючи повну картину про комплексний вплив різних випромінювань, можна знайти якісний захист від їх пагубного впливу на людини та навколишне природне середовище.
Electromagnets safety should be considered comprehensively according to knowledge, as a man, and about the environment. Just having a complete picture of the complex effect of various radiation protection of available quality of their detrimental effects on humans and the environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Raphela, Selepeng France. "Occupational exposure to electromagnetic fields in the heavy engineering CO2 welding industry in the Mangaung Metropolitan municipality." Thesis, Bloemfontein : Central University of Technology, Free State, 2013. http://hdl.handle.net/11462/181.

Повний текст джерела
Анотація:
Thesis (D. Tech. (Environmental Health)) -- Central University of technology, Free State, 2013
Some epidemiological studies suggest that exposure to high levels of electromagnetic fields (EMFs) may be linked with the development of adverse health effects. However there is still controversy on this matter. Due to rapid technological growth in the modern society, employees in the welding and electrical industries are highly exposed to electromagnetic fields and may be at a high risk for developing occupational diseases. The health effects which may result from exposure to electromagnetic fields are related to the strength and frequency of the fields. This study was conducted to (i) assess the exposure levels to EMFs in the welding industry, (ii) determine the possible health risks associated with exposure levels, and (iii) develop a health and safety model to guide the industry on how to reduce exposure to EMFs. The study was conducted in one mega welding company in the Mangaung Metropolitan Municipality. Welders, fitters and office workers (88 in total) gave consent to participate in the study and completed questionnaires (ethical clearance attached). Measurements of extremely low frequency EMFs were taken in workshop A, workshop B and working offices. Measurements for magnetic fields were taken at distances of 1, 2 and 3 meters (m) from the EMFs sources. The exposure levels of magnetic fields were very high in the workshops, with welders and fitters exposed to about 7.6 microtesla (μT). Electric fields were relatively low in all workstations. Participants in the study were experiencing symptoms of ill health such as headaches, sleep disorders, fatigue and distress. The symptoms reported by the workers were similar in the both groups (exposed and control). There is no clear relationship between recorded exposure levels and the development of the reported symptoms. The health and safety model was developed to guide the industry to reduce exposure to electromagnetic fields. The model describes the implementation of engineering and administrative control measures in an effort to reduce exposure to EMFs. The model also highlights the importance of wearing personal protective equipment to shield against EMFs amongst others. This study suggests that occupational exposure to high levels of extremely low frequency EMFs may increase the risk for development of chronic diseases such as leukaemia, brain and breast cancer and other diseases among highly exposed employees. Implementation of safety measures is necessary to reduce exposure to EMFs.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shah, Syed Ghulam Sarwar. "Safety of medical device users : a study of physiotherapists' practices, procedures and risk perception." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/6360.

Повний текст джерела
Анотація:
Aims: To study practices and procedures with respect to electrotherapy in physiotherapy departments and to study physiotherapists’ perception of health risk, health consequences and protection of health from different risks including electromagnetic field emissions from electrotherapy devices. Methods: This cross-sectional study was conducted in three phases from June 2002 to December 2003. The first phase was an audit of the practices and procedures regarding electrotherapy in National Health Service physiotherapy departments (N = 46 including 7 departments in pilot study) located in 12 counties in the southeast and southwest of England including Greater London. The second phase comprised one observational visit to each of the same physiotherapy departments to characterise their occupational environment. The third phase was a questionnaire survey of 584 physiotherapists working in these departments. Variables concerned perception of health risk, health consequences and protection of health associated with different risk factors. Results: In the first two phases, the recruitment rate of the departments was 80.7% (46 out of 57) and response rate of those recruited was 100% (n=46). The response rate for the last phase of the study was 66.8% (390 out of 584). Results of the practices and procedures audit show that ultrasound was the most common form of electrotherapy while microwave diathermy was neither available nor used in these departments. Pulsed shortwave diathermy was used 4-5 days per week while continuous shortwave diathermy was used rarely. Electrotherapy was provided to up to 50% of patients per week in the departments. The observational visits to the departments revealed that there were metallic objects within close proximity of diathermy equipment and wooden treatment couches for treatment with PSWD and CSWD were rare. The risk perception survey showed that physiotherapists generally perceived a moderate health risk and health consequences (harm) from exposure to EMF emissions from electrotherapy devices. Protection from EMFs in physiotherapy departments was generally perceived as ‘usually’ possible. Conclusions: Physiotherapy departments report safe electrotherapy practices. Use of diathermy devices that use RF EMFs is declining. The key predictors of physiotherapists’ perception of health risk were perception of health consequences and vice versa. Gender was a significant predictor of the perception of health risks and health consequences. The main predictor of perception of protection against risk was the knowledge of environmental and health issues. Latent dimensions of perceptions of health risk, health consequences and protection from risk were identified and confirmed and their predictors were determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Čurda, Pavel. "Měřicí přístroj HDO signálů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400610.

Повний текст джерела
Анотація:
The thesis deals with the introduction of the measuring instrument SVA - M on the market for compliance with electromagnetic compatibility and electrical safety requirements. Furthermore it deals with determination of measuring accuracy instrument SVA - M and measurement uncertainties. For the determination of accuracy there is a theoretical analysis and subsequent practical measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ramos, Maria Manuela de Andrade e. Silva. "Plano de segurança do paciente para pacientes com sistemas de estimulação encefálica profunda submetidos a exames de imagem por ressonância magnética no Hospital Marcelino Champagnat." Universidade Tecnológica Federal do Paraná, 2016. http://repositorio.utfpr.edu.br/jspui/handle/1/2011.

Повний текст джерела
Анотація:
Em 2013, foi implantado no Brasil o Programa Nacional de Segurança do Paciente (PNSP), que através da Resolução RDC No 36, prevê que as instituições de saúde brasileiras devem apresentar um Plano de Segurança do Paciente (PSP) para as situações que possam proporcionar a ocorrência de eventos adversos (EAs), ou seja, lesão ou dano não intencional causado ao paciente pela intervenção assistencial e não pela doença base. O PSP é um documento com embasamento científico que aponta as situações de risco e descreve estratégias e ações definidas pelo serviço de saúde para a gestão do risco com objetivo de prevenção e redução dos EA em todas as fases da assistência. O implante de eletrodos para estimulação encefálica profunda (EEP) é um procedimento realizado rotineiramente no Hospital Marcelino Champagnat (HMC), localizado na cidade de Curitiba – PR, para melhorar a sintomatologia e a qualidade de vida de pacientes portadores de determinados distúrbios neurológicos crônicos. A confiabilidade e a precisão do posicionamento dos eletrodos cerebrais após a implantação de sistemas de EEP é de suma importância para a eficácia do método, sendo a Imagem por Ressonância Magnética (IRM) pós-operatória, atualmente, o padrão ouro para documentação do correto posicionamento dos eletrodos. Entretanto, a interação do sistema de EEP com o campo de radiofrequência do equipamento de IRM pode constituir uma fonte de EAs, uma vez que possibilita a indução de correntes elétricas com potencial de causar lesões térmicas ao paciente em locais de alta resistência. As recomendações de segurança dos fabricantes para a maioria dos sistemas de EEP implantados são bastante restritivas e resultam em longos tempos de exame ou em imagens de baixa qualidade, fatores que dificultam a prática em muitos centros. Estudos in vitro revelam que o aquecimento excessivo ocorre sob determinadas configurações, enquanto outras não oferecem risco fisiológico ao paciente. Estudos clínicos com base em vasta experiência sustentam a evidência de que é possível realizar exames pós-operatórios de forma satisfatória e sem a ocorrência de EAs utilizando parâmetros menos restritivos que aqueles determinados pelos fabricantes, desde que alguns padrões de segurança sejam cuidadosamente seguidos. Dessa forma, o presente trabalho propõe a elaboração de um PSP para a situação específica de pacientes com sistemas de EEP submetidos à exames de IRM no HMC, com base nas recomendações de segurança do fabricante e na revisão sistemática da literatura. De acordo com a base de dados consultada, um total de 26 artigos científicos foram considerados relevantes e permitiram identificar as possíveis fontes de risco de forma a evitá-las, colaborando com a conclusão satisfatória do PSP. Além de suprir a demanda local, o presente trabalho visou também promover a cultura de segurança do paciente e despertar a atenção para a necessidade de interposição de barreiras às diversas oportunidades de EAs que os setores de radiologia podem oferecer. A metodologia aqui proposta pode servir, ainda, de base para que outros centros de diagnóstico por imagem componham seus próprios PSPs.
In 2013, the National Program Patient Safety (PNSP) was implemented in Brazil through Resolution RDC 36, providing that the Brazilian health institutions must have a Patient Safety Plan (PSP) for situations that may lead to adverse events (AEs), which are unintentional injury or damage caused to the patient by the health care intervention and not by the primary disease. The PSP is a document with scientific basis that points to hazardous situations and describes strategies and actions defined by the health service for risk management in order to prevent and reduce AEs in all phases of patient care. Implantation of Deep Brain Stimulation (DBS) devices is considered a routine procedure at the Hospital Marcelino Champagnat (HMC), located in Curitiba – PR, and it consists in a practice widely used to improve symptoms and quality of life of patients with certain chronic neurological disorders.The reliability and accuracy of the final brain positioning of the leads, after the DBS implantation are of paramount importance to assure efficacy. Currently, post-operative Magnetic Resonance Imaging (MRI) is the gold standard for the documentation of the correct lead positioning. However, the interaction between the DBS system and the MRI radiofrequency field could represent an important source of adverse events (EAs) since it allows electric currents induction with potential to cause local thermal injuries on high resistance sites. The safety recommendations from the DBS system manufacturers for most of the already deployed systems are quite restrictive resulting in long examination times or low quality images, which compromises the practice in many centers. Thus, the present work proposes the development of a PSP based on the manufacturer's safety recommendations and a systematic review of the literature to the specific situation of patients with DBS systems undergoing MRI scans at the HMC. We found a total of 26 papers, that were considered relevant and allowed us to identify the potential sources of risk in order to avoid them, collaborating to the successful elaboration of the PSP. Besides supplying local demand, this work also aims to promote patient safety and draw attention to the need of interposing barriers in order to avoid significant AEs situations that a radiology department may be presented with. Moreover, the methodology proposed here can serve as a basis for other imaging centers to compose their own PSPs.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Завгородній, Олександр Вікторович, Александр Викторович Завгородний та Oleksandr V. Zavgorodnij. "Підвищення функціональної безпеки рейкових РєС–Р» шляхом забезпечення С—С… електромагнітної сумісності Р· тяговою мережею". Thesis, Видавництво Дніпропетровського національного університету залізничного транспорту імені академіка Р’. Лазаряна, 2011. http://195.248.185.225:82/jspui/handle/123456789/811.

Повний текст джерела
Анотація:
Завгородній, О. В. Підвищення функціональної безпеки рейкових кіл шляхом забезпечення їх електромагнітної сумісності з тяговою мережею: авт. дис. к. т. н.: 05.22.20 / О. В. Завгородній; Дніпропетр. нац. ун-т залізн. трансп. ім. акад. В. Лазаряна. - Д., 2011.
UA: АНОТАЦІЯ. РЈ дисертаційній роботі РЅР° РѕСЃРЅРѕРІС– виконаних теоретичних та експериментальних досліджень вирішене науково-практичне завдання підвищення функціональної безпеки рейкових РєС–Р» шляхом забезпечення С—С… електромагнітної сумісності Р· тяговою мережею, що дозволило підвищити безпеку СЂСѓС…Сѓ РїРѕС—Р·РґС–РІ РЅР° швидкісних магістралях. Вперше визначено параметри статистичного розподілу гармонійних завад тягового струму СЏРє нестаціонарного випадкового процесу, розроблено математичні моделі розподілу завад РІ Р Р›, розподілу електромагнітного поля навколо рейки, математичну модель електромагнітного впливу тягової мережі РЅР° рейкові кола РЅР° дільницях зближення швидкісної магістралі Р· електротягою Р·РјС–РЅРЅРѕРіРѕ струму Р· електрифікованою колією Р· тягою постійного струму РїСЂРё наявності екрануючого РїСЂРѕРІРѕРґСѓ. Результати роботи впроваджено РЅР° РџСЂРёРґРЅС–РїСЂРѕРІСЃСЊРєС–Р№ залізниці С– використовуються РїСЂРё розробці методик випробування РЅРѕРІРёС… типів СЂСѓС…РѕРјРѕРіРѕ складу РЅР° електромагнітну сумісність Р· лініями залізничної автоматики, РїСЂРё переобладнанні залізниць для швидкісного СЂСѓС…Сѓ РЅРѕРІРёС… типів електропоїздів, Р° також Сѓ навчальному процесі РЅР° кафедрі «Автоматика, телемеханіка та Р·РІвЂ?СЏР·РѕРєВ» Дніпропетровського національного університету залізничного транспорту С–Рј. акад. Р’.Лазаряна. RU: РђРќРќРћРўРђР¦Р?РЇ Р’ диссертационной работе РЅР° РѕСЃРЅРѕРІРµ выполненных теоретических Рё экспериментальных исследований решена научно-практическая задача повышения функциональной безопасности рельсовых цепей путем обеспечения РёС… электромагнитной совместимости СЃ тяговой сетью, что позволило повысить функциональную безопасность рельсовых цепей Рё вцелом устройств железнодорожной автоматики РЅР° скоростных магистралях. Рельсовые цепи функционируют РІ условиях мощных электромагнитных помех, механических нагрузок, загрязнения балласта, влияния погодных условий Рё РґСЂСѓРіРёС… дестабилизирующих факторов. Помехи тягового тока РјРѕРіСѓС‚ вызвать опасный или мешающий СЃР±РѕР№ РІ РёС… работе. Особенно это касается участков СЃ ускоренным Рё скоростным движением поездов. Таким образом, повышение функциональной безопасности Р Р¦ путем обеспечения РёС… электромагнитной совместимости СЃ тяговой сетью является актуальной научно-практической задачей. Целью диссертационной работы является повышения функциональной безопасности рельсовых цепей путем обеспечения РёС… электромагнитной совместимости СЃ тяговой сетью. Научная РЅРѕРІРёР·РЅР° результатов состоит РІ дальнейшем развитии существующих Рё разработке новых научно обоснованных РїРѕРґС…РѕРґРѕРІ, которые позволили решить научно-практическую задачу повышения функциональной безопасности рельсовых цепей, Р° именно: впервые: определены параметры статистического распределения гармонических помех тягового тока как нестационарного случайного процесса, что позволило предложить процедуру определения вероятностных критериев функциональной безопасности рельсовых цепей; разработана математическая модель распределения гармонических помех РІ рельсовой линии двухпутного участка железной РґРѕСЂРѕРіРё СЃ несколькими локомотивами РІ фидерной Р·РѕРЅРµ, которая учитывает основные конструктивные Рё эксплуатационные параметры тяговой сети Рё рельсовых цепей, что позволило определить максимальные СѓСЂРѕРІРЅРё помех РІ рельсовой линии РІ разных условиях работы Рё влияние электромагнитных помех РЅР° функциональную безопасность рельсовых цепей; разработана математическая модель распределения электромагнитного поля РІРѕРєСЂСѓРі рельса РїСЂРё протекании РІ ней гармонических помех тягового тока, которая учитывает реальную конфигурацию сечения рельса Рё неравномерность распределения плотности тока РІ ней вследствие СЃРєРёРЅ-эффекта, что позволило определить влияние электромагнитных помех РЅР° функциональную безопасность автоматической локомотивной сигнализации; разработана математическая модель электромагнитного влияния тяговой сети РЅР° рельсовые цепи РЅР° участках сближения скоростной магистрали СЃ электротягой переменного тока СЃ электрифицированной колеей СЃ тягой постоянного тока РїСЂРё наличии экранирующего РїСЂРѕРІРѕРґР°, что позволило научно обосновать повышение функциональной безопасности рельсовых цепей Рё эффективность РёС… защиты РѕС‚ электромагнитных помех тяговой сети смежной колеи, предложить устройство Рё определить рациональную конфигурацию системы защиты Р Р¦. Основные результаты теоретических Рё экспериментальных исследований состоят РІ следующем. Усовершенствована методика экспериментальных исследований влияния помех РѕС‚ электроподвижного состава РЅР° Р Р¦, РїСЂРё которой одновременно измеряются помехи тягового тока РЅР° локомотиве Рё РІ рельсовой линии, что позволило провести статистический анализ помех Рё определить взаимные корреляционные функции между РЅРёРјРё. Найдено, что амплитуды помех тягового тока СЃ частотами 25, 420, 480, 520, 729, 780 Гц для почти стационарных процессов отвечают нормальному закону распределения, Р° для нестационарных процессов экспоненциальному. Определены параметры распределения гармоник для всех основных частот, которые используются РІ Р Р¦. Р’ нестационарных процессах действующий ток помех СЃ частотами 25В±2 Гц РІ отдельные промежутки времени (продолжительностью ~1,6 СЃ) повышался РґРѕ 1,05 Рђ. Определен характер распределения гармонических помех РІ Р Р› двухпутного участка железной РґРѕСЂРѕРіРё СЃ несколькими локомотивами РІ фидерной Р·РѕРЅРµ. Определен характер распределения электромагнитного поля РІРѕРєСЂСѓРі рельсовой линии РїСЂРё протекании РІ ней гармонических помех тягового тока. Определена рациональная РїРѕ критерию максимального ослабления влияния помех РЅР° Р Р¦ высота подвеса активного экранирующего РїСЂРѕРІРѕРґР° над землей. Результаты работы внедрены РЅР° Приднепровской железной РґРѕСЂРѕРіРµ Рё используются РїСЂРё разработке методик испытания новых типов подвижного состава РЅР° электромагнитную совместимость СЃ линиями железнодорожной автоматики, РїСЂРё переоборудовании железных РґРѕСЂРѕРі для организации движения новых типов электропоездов, Р° также РІ учебном процессе кафедры «Автоматика, телемеханика Рё СЃРІСЏР·СЊВ» Днепропетровского национального университета железнодорожного транспорта РёРј. акад. Р’.Лазаряна EN: SUMMARY. In the thesis the scientific and practical task of increasing of rail circuits functional safety by ensuring of their electromagnetic compatibility with a traction network has been carried out that allows to increase traffic safety of high-speed trains. For the first time parameters of statistical distribution of harmonious handicapes of a traction current as non-stationary casual process was determined, the mathematical model of distribution of harmonious handicapes in a rail line, the mathematical model of distribution of an electromagnetic field around of a rail and the mathematical model of electromagnetic influence of a traction network on rail circuits were developed. Results of work are used for carrying out of test procedure for new types of a rolling stock on electromagnetic compatibility with lines of railway signalization systems.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electromagnetic safety"

1

Electromagnetic fields and radiation: Human bioeffects and safety. New York: Marcel Dekker, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jeromin, Gerd. Kommentar zur 2. Neufassung des deutschen EMV-Gesetzes. München: KM Verlagsgesellschaft, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

The EMF book: What you should know about electromagnetic fields, electromagnetic radiation, and your health. New York, NY: Warner Books, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

C, Lin James, and International Union of Radio Science. General Assembly, eds. Electromagnetic interaction with biological systems. New York: Plenum Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Centre européen pour la médicine des catastrophes. Le onde elettromagnetiche: Rischi e certezze : atti del Seminario su ELF e RF, San Marino, 28-30 marzo 2001. San Marino: AIEP, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nielsen, Poul O. EMC direktivet og national lovgivning. København: Undervisningsministeriet, Erhvervsskoleafdelingen, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Elektromagnetische Strahlung und öffentliches Recht. Frankfurt am Main: P. Lang, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lawton, R. M. System guidelines for EMC safety-critical circuits: Design, selection, and margin demonstration. MSFC, Ala: National Aeronautics and Space Administration,Marshall Space Flight Center, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Prata, Stephen. EMF handbook: Understanding and controlling electromagnetic fields in your life. Corte Madera, CA: Waite Group Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Warning--the electricity around you may be hazardous to your health: How to protect yourself from electromagnetic fields. Miami Beach, Fla: Miriam Press, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electromagnetic safety"

1

O’Connor, Mary Ellen. "Safety Issues in Electromagnetic Medicine." In Emerging Electromagnetic Medicine, 291–98. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3386-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Grandolfo, Martino, and Paolo Vecchia. "Existing Safety Standards for High Voltage Transmission Lines." In Electromagnetic Biointeraction, 153–73. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5706-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Violette, J. L. Norman, Donald R. J. White, and Michael F. Violette. "Grounding and Bonding for Safety Control." In Electromagnetic Compatibility Handbook, 256–88. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-7144-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhai, Li. "Wireless Charging System Electromagnetic Safety and Electromagnetic Compatibility." In Electromagnetic Compatibility of Electric Vehicle, 223–93. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6165-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gandhi, Om P. "Advances in RF Dosimetry: Their Past and Projected Impact on the Safety Standards." In Electromagnetic Biointeraction, 11–26. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5706-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Armstrong, Keith. "Including Electromagnetic Interference (EMI) in Functional Safety Risk Assessments." In Achieving Systems Safety, 97–114. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-4471-2494-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, Han-Joon, Zhenya Dong, and John S. Ho. "Wireless Bioelectronic Interfaces Electromagnetic Performance and Safety." In Handbook of Neuroengineering, 1–26. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-2848-4_24-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aniołczyk, Halina. "EM Noise and Its Impact on Human Health and Safety." In Advanced Materials for Electromagnetic Shielding, 11–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119128625.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Higel, B., D. Dei-Svaldi, and B. Clauzade. "Effects of Electromagnetic Interferences on Programmable Electronic Systems (PES)." In Safety and Reliability of Programmable Electronic Systems, 186–98. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4317-9_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Miclaus, S., and L. Beldean. "Electromagnetic Fields of MRI Scanners and Human Exposure Safety." In IFMBE Proceedings, 109–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04292-8_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electromagnetic safety"

1

Marshman, C. "Railway Safety - Electromagnetic Compatibility (EMC)." In IET Seminar on Railway Safety Assurance: Management and Method in a Safe Network. Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/ic.2013.0189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Van Loock, Walter. "Electromagnetic Fields, Safety and Health." In 2006 4th Asia-Pacific Conference on Environmental Electromagnetics. IEEE, 2006. http://dx.doi.org/10.1109/ceem.2006.257911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Baskakova, Darya Y., Olga Y. Belash, Alexander V. Muravyev, Nikolai G. Ryzhov, and Mikhail Y. Shestopalov. "Electromagnetic safety: Potential for development." In 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT&QM&IS). IEEE, 2017. http://dx.doi.org/10.1109/itmqis.2017.8085761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Murphy, Michael R., and Ronald C. Petersen. "Developing Safety Standards for Electromagnetic Energy: The IEEE International Committee on Electromagnetic Safety (ICES)." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4398347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Murphy, Michael R., and Ronald C. Petersen. "Developing Safety Standards for Electromagnetic Energy: The IEEE International Committee on Electromagnetic Safety (ICES)." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bevacqua, Cipollone, Morviducci, and Venditti. "Lightning hazard and data safety." In International Symposium on Electromagnetic Compatibility. IEEE, 1989. http://dx.doi.org/10.1109/isemc.1989.240861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jaekel, Bernd W. "EMC and Functional Safety - Challenges and Standards." In 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. IEEE, 2007. http://dx.doi.org/10.1109/emceco.2007.4371689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Van Loock, W. "Human Safety and Health in Electromagnetic Fields." In 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology. IEEE, 2007. http://dx.doi.org/10.1109/emceco.2007.4371721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seborsky, Stanislav. "Safety related Systems and Electromagnetic Compatibility." In 2006 International Conference on Applied Electronics. IEEE, 2006. http://dx.doi.org/10.1109/ae.2006.4382991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cartwright, R. A. "Electromagnetic hazards, safety and human interaction." In IEE Colloquium on Electromagnetic Hazards, Safety and Human Interaction. IEE, 1997. http://dx.doi.org/10.1049/ic:19970313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electromagnetic safety"

1

Crowe, R. D., and W. D. Wittekind. Ferrocyanide safety program: In-tank application of electromagnetic induction (EMI) moisture measurements FY1995 report. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/409795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ewing, P. D., and K. Korsah. Technical basis for evaluating electromagnetic and radio-frequency interference in safety-related I&C systems. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10147702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ewing, P. D., and R. T. Wood. Recommended electromagnetic operating envelopes for safety-related I and C systems in nuclear power plants: Draft report for comment. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/578632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dahal, Sachindra, and Jeffery Roesler. Passive Sensing of Electromagnetic Signature of Roadway Material for Lateral Positioning of Vehicle. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-039.

Повний текст джерела
Анотація:
Autonomous vehicles (AV) and advanced driver-assistance systems (ADAS) offer multiple safety benefits for drivers and road agencies. However, maintaining the lateral position of an AV or a vehicle with ADAS within a lane is a challenge, especially in adverse weather conditions when lane markings are occluded. For significant penetration of AV without compromising safety, vehicle-to-infrastructure sensing capabilities are necessary, especially during severe weather conditions. This research proposes a method to create a continuous electromagnetic (EM) signature on the roadway, using materials compatible with existing paving materials and construction methods. Laboratory testing of the proposed concept was performed on notched concrete-slab specimens and concrete prisms containing EM materials. An induction-based eddy-current sensor and magnetometers were implemented to detect the EM signature. The detected signals were compared to evaluate the effects of sensor height above the concrete surface, type of EM materials, EM-material volume, material shape, and volume of EM concrete prisms. A layer of up to 2 in. (5.1 cm) of water, ice, snow, or sand was placed between the sensor and the concrete slab to represent adverse weather conditions. Results showed that factors such as sensor height, EM-material volume, EM dosage, types of the EM material, and shape of the EM material in the prism were significant attenuators of the EM signal and must be engineered properly. Presence of adverse surface conditions had a negligible effect, as compared to normal conditions, indicating robustness of the presented method. This study proposes a promising method to complement existing sensors’ limitations in AVs and ADAS for effective lane-keeping during normal and adverse weather conditions with the help of vehicle-to-pavement interaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії