Добірка наукової літератури з теми "Electroluminescent Devices -Semiconductor Nanocrystals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electroluminescent Devices -Semiconductor Nanocrystals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electroluminescent Devices -Semiconductor Nanocrystals"

1

Erdem, Talha, and Hilmi Volkan Demir. "Colloidal nanocrystals for quality lighting and displays: milestones and recent developments." Nanophotonics 5, no. 1 (June 1, 2016): 74–95. http://dx.doi.org/10.1515/nanoph-2016-0009.

Повний текст джерела
Анотація:
AbstractRecent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals), colloidal quantum rods (nanorods), and colloidal quantum wells (nanoplatelets) as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently,we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also,we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Jing, Lijin Wang, Fei Chen, Aiwei Tang, and Feng Teng. "Optical properties of multinary copper chalcogenide semiconductor nanocrystals and their applications in electroluminescent devices." Chinese Science Bulletin 66, no. 17 (February 9, 2021): 2162–78. http://dx.doi.org/10.1360/tb-2020-1633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bertoni, Cristina, Diego Gallardo, Steve Dunn, Nikolai Gaponik, and Alexander Eychmüller. "Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals." Applied Physics Letters 90, no. 3 (January 15, 2007): 034107. http://dx.doi.org/10.1063/1.2433030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Whi Dong, Dahin Kim, Da-Eun Yoon, Hyeonjun Lee, Jaehoon Lim, Wan Ki Bae, and Doh C. Lee. "Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals." Chemistry of Materials 31, no. 9 (April 22, 2019): 3066–82. http://dx.doi.org/10.1021/acs.chemmater.8b05366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jun, Shinae, Eunjoo Jang, Jongjin Park, and Jongmin Kim. "Photopatterned Semiconductor Nanocrystals and Their Electroluminescence from Hybrid Light-Emitting Devices." Langmuir 22, no. 6 (March 2006): 2407–10. http://dx.doi.org/10.1021/la051756k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

He, Majun, Deren Yang, and Dongsheng Li. "Electroluminescence from metal–oxide–semiconductor devices based on erbium silicate nanocrystals and silicon nanocrystals co-embedded in silicon oxide thin films." Journal of Materials Science: Materials in Electronics 32, no. 15 (July 16, 2021): 20659–67. http://dx.doi.org/10.1007/s10854-021-06579-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thung, Yi Tian, Zitong Zhang, Fei Yan, Hilmi Volkan Demir, and Handong Sun. "Narrow electroluminescence in bromide ligand-capped cadmium chalcogenide nanoplatelets." Applied Physics Letters 120, no. 24 (June 13, 2022): 241105. http://dx.doi.org/10.1063/5.0094798.

Повний текст джерела
Анотація:
Colloidal zinc blende II–VI semiconductor nanoplatelets (NPLs) demonstrate as a promising class of materials for optoelectronic devices due to their unique excitonic characteristics, narrow emission linewidth, and quantum well-structure. Adopting heterostructures for these nanocrystals allows tuning of their optical features and enhances their photostability, photoluminescence (PL), quantum yield (QY), and color purity for further device integration. Exchanging of carboxylate capping ligands on top and bottom [001] facets of CdSe NPLs with halide ligands is an alternative to achieve the aims of spectral tunability and improve surface passivation, but to date there have been no reports on integrating the advantages of halide ligand exchanged CdSe NPLs for device fabrication. In this work, we demonstrate green electroluminescence (EL) of bromide ligand-capped CdSe NPLs as active emitters in an electrically driven light emitting diode (LED) with a low turn-on voltage of 3.0 V. We observed EL emission at 533.1 nm with a narrow linewidth of 19.4 nm, a maximum luminance of 1276 cd/m2, and the highest external quantum efficiency (EQE) of 0.803%. These results highlight the ability of halide ligand exchange in tuning the EL properties of CdSe NPL-LEDs and potential of bromide ligand-capped CdSe NPLs in contributing to the green emission region of NPL-LEDs, demonstrating its potential for future device integration and contribution to a high color rendering index of future NPL displays.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gautam, Nitendra Kumar, Meera Ramrakhiani, R. K. Kuraria, and S. R. Kuraria. "Electroluminescence in Organically Capped Cd1-xZnxSe Chalcogenide Nanocrystals." Defect and Diffusion Forum 361 (January 2015): 215–30. http://dx.doi.org/10.4028/www.scientific.net/ddf.361.215.

Повний текст джерела
Анотація:
Currently there is a great interest in II–VI semiconductor nanoparticles, particularly organically capped soluble particles of cadmium or zinc sulphide and selenide, for their ready to use application in devices. For electroluminescence (EL) devices, it is expected to cover a broad spectrum and to tune various specific colours by preparing Cd1-xZnx Se instead of CdSe and ZnSe. Ternary alloys have composition dependent properties; therefore Cd1-xZnxSe has attracted much attention in the fields of luminescence and optoelectronic devices. It has wide optical band-gap and good stability with respect to environment. In this study, Cd1-xZnxSenanoparticles have been synthesized by using starch as a capping agent through a chemical synthesis route at room temperature. Samples have been prepared varying composition factor ‘x’ in ternary alloy Cd1-xZnxSe. Cubic structure of all has been confirmed by XRD. Crystallite size calculated from XRD was found in the range of 3-5 nm and it was observed that size reduces on increasing Zn content in ternary compound. Optical absorption spectra showed the blue shift in absorption edge with increasing Zn content. Band gap has been obtained by absorption studies and increase in band gap observed on increasing Zn content in the compound. Electroluminescence studies reveal that lower threshold voltage is required for samples with lower ‘x’ value. The Brightness increases on increasing the voltage above threshold voltage and the variation pattern is almost exponential for all samples. The voltage-current curve represents ohmic nature of the EL cell. Impedance was found to increase on increasing ‘x’ value. The increase in EL intensity is faster for higher frequency. EL spectra revealed that light emission is in violet-green region corresponding to band gap for both Cd0.75 Zn 0.25Se and Cd0.5 Zn 0.5Se, with a slight blue shift on increasing Zn content. A ternary system Cd1–xZnxSe, may be engineered better for application purpose by suitably choosing the composition parameter ‘x’.Contents of Paper
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Manzoor, K., S. R. Vadera, N. Kumar, and T. R. N. Kutty. "Multicolor electroluminescent devices using doped ZnS nanocrystals." Applied Physics Letters 84, no. 2 (January 12, 2004): 284–86. http://dx.doi.org/10.1063/1.1639935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Qiao, Fen. "Semiconductor Nanocrystals for Photovoltaic Devices." Materials Science Forum 852 (April 2016): 935–38. http://dx.doi.org/10.4028/www.scientific.net/msf.852.935.

Повний текст джерела
Анотація:
Recently, photovoltaic devices based on colloidal semiconductor nanocrystals (NCs) have attracted a great interest due to their flexible synthesis with tunable band gaps and shape-dependent optical and electronic properties. However, the surface of NCs typically presents long chain with electrically insulating organic ligands, which hinder the device applications for NCs. So the major challenge of NCs for photovoltaic devices application is to decrease the inter NC space and the height of the tunnel barriers among NCs, therefore increase the transport properties of NCs. In this article, recent development of colloidal semiconductor NCs and possible routes for improving transport properties of colloidal NCs were reviewed. Among those methods, the thermal annealing approach provides a simple and cost-effective way to fabricate superlattice and to decrease the inter-space among NCs, which may be used for the preparation of other nanocrystalline superstructure and functional devices.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electroluminescent Devices -Semiconductor Nanocrystals"

1

Zheng, Tianhang Henry, and 郑天航. "High performance organic thin film semiconductor devices: light emission properties and resonant tunnelingbehaviors." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43753152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zheng, Tianhang Henry. "High performance organic thin film semiconductor devices light emission properties and resonant tunneling behaviors /." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43753152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hafiz, Shopan d. "Optical investigations of InGaN heterostructures and GeSn nanocrystals for photonic and phononic applications: light emitting diodes and phonon cavities." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4199.

Повний текст джерела
Анотація:
InGaN heterostructures are at the core of blue light emitting diodes (LEDs) which are the basic building blocks for energy efficient and environment friendly modern white light generating sources. Through quantum confinement and electronic band structure tuning on the opposite end of the spectrum, Ge1−xSnx alloys have recently attracted significant interest due to its potential role as a silicon compatible infra-red (IR) optical material for photodetectors and LEDs owing to transition to direct bandgap with increasing Sn. This thesis is dedicated to establishing an understanding of the optical processes and carrier dynamics in InGaN heterostructures for achieving more efficient visible light emitters and terahertz generating nanocavities and in colloidal Ge1−xSnx quantum dots (QDs) for developing efficient silicon compatible optoelectronics. To alleviate the electron overflow, which through strong experimental evidence is revealed to be the dominating mechanism responsible for efficiency degradation at high injection in InGaN based blue LEDs, different strategies involving electron injectors and optimized active regions have been developed. Effectiveness of optimum electron injector (EI) layers in reducing electron overflow and increasing quantum efficiency of InGaN based LEDs was demonstrated by photoluminescence (PL) and electroluminescence spectroscopy along with numerical simulations. Increasing the two-layer EI thickness in double heterostructure LEDs substantially reduced the electron overflow and increased external quantum efficiency (EQE) by three fold. By incorporating δ p-doped InGaN barriers in multiple quantum well (MQW) LEDs, 20% enhancement in EQE was achieved due to improved hole injection without degrading the layer quality. Carrier diffusion length, an important physical parameter that directly affects the performance of optoelectronic devices, was measured in epitaxial GaN using PL spectroscopy. The obtained diffusion lengths at room temperature in p- and n-type GaN were 93±7 nm and 432±30 nm, respectively. Moreover, near field scanning optical microscopy was employed to investigate the spatial variations of extended defects and their effects on the optical quality of semipolar and InGaN heterostructures, which are promoted for higher efficiency light emitters owing to reduced internal polarization fields. The near-field PL from the c+ wings in heterostructures was found to be relatively strong and uniform across the sample but the emission from the c- wings was substantially weaker due to the presence of high density of threading dislocations and basal plane stacking faults. In case of heterostructures, striated regions had weaker PL intensities compared to other regions and the meeting fronts of different facets were characterized by higher Indium content due to the varying internal field. Apart from being the part and parcel of blue LEDs, InGaN heterostructures can be utilized in generation of coherent lattice vibrations at terahertz frequencies. In analogy to LASERs based on photon cavities where light intensity is amplified, acoustic nanocavity devices can be realized for sustaining terahertz phonon oscillations which could potentially be used in acoustic imaging at the nanoscale and ultrafast acousto-optic modulation. Using In0.03Ga0.97N/InxGa1-xN MQWs with varying x, coherent phonon oscillations at frequencies of 0.69-0.80 THz were generated, where changing the MQW period (11.5 nm -10 nm) provided frequency tuning. The magnitude of phonon oscillations was found to increase with indium content in quantum wells, as demonstrated by time resolved differential transmission spectroscopy. Design of an acoustic nanocavity structure was proposed based on the abovementioned experimental findings and also supported by full cavity simulations. Optical gap engineering and carrier dynamics in colloidal Ge1−xSnx QDs were investigated in order to explore their potential in optoelectronics. By changing the Sn content from 5% to 23% in 2 nm-QDs, band-gap tunability from 1.88 eV to 1.61 eV, respectively, was demonstrated at 15 K, consistent with theoretical calculations. At 15 K, time resolved PL spectroscopy revealed slow decay (3 − 27 μs) of luminescence, due to recombination of spin-forbidden dark excitons and effect of surface states. Increase in temperature to 295 K led to three orders of magnitude faster decay (9 − 28 ns) owing to the effects of thermal activation of bright excitons and carrier detrapping from surface states. These findings on the effect of Sn incorporation on optical properties and carrier relaxation and recombination processes are important for future design of efficient Ge1−xSnx QDs based optoelectronic devices. This thesis work represents a comprehensive optical study of InGaN heterostructures and colloidal Ge1−xSnx QDs which would pave the way for more efficient InGaN based LEDs, realization of terahertz generating nanocavities, and efficient Ge1−xSnx based silicon compatible optoelectronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lee, Jong Jin Kwong Dim-Lee. "A study on the nanocrystal floating-gate nonvolatile memory." 2005. http://repositories.lib.utexas.edu/bitstream/handle/2152/1975/leej77040.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Jong Jin. "A study on the nanocrystal floating-gate nonvolatile memory." Thesis, 2005. http://hdl.handle.net/2152/1975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Yueran 1975. "Novel flash memory with nanocrystal floating gate." Thesis, 2006. http://hdl.handle.net/2152/2819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sarkar, Joy 1977. "Non-volatile memory devices beyond process-scaled planar Flash technology." Thesis, 2007. http://hdl.handle.net/2152/3666.

Повний текст джерела
Анотація:
Mainstream non-volatile memory technology dominated by the planar Flash transistor with continuous floating-gate has been historically improved in density and performance primarily by means of process scaling, but is currently faced with significant hindrances to its future scaling due to fundamental constraints of electrostatics and reliability. This dissertation is based on exploring two pathways for circumventing scaling limitations of the state-of-the-art Flash memory technology. The first part of the dissertation is based on demonstrating a vertical Flash memory transistor with nanocrystal floating-gate, while the second part is based on developing fundamental understanding of the operation of Phase Change Memory. A vertical Flash transistor can allow the theoretical minimum cell area and a nanocrystal floating-gate on the sidewalls is shown to allow a thinner gate-stack further conducive to scaling while still providing good reliability. Subsequently, the application of a technique of protein-mediated assembly of preformed nanocrystals to the sidewalls of the vertical Flash transistor is also demonstrated and characterized. This technique of ordering pre-formed nanocrystals is beneficial towards achieving reproducible nanocrystal size uniformity and ordering especially in a highly scaled vertical Flash cell, rendering it more amenable to scaling and manufacturability. In both forms, the vertical Flash memory cell is shown to have good electrical characteristics and reliability for the viability of this cell design and implementation. In the remaining part of this dissertation, studies are undertaken towards developing fundamental understanding of the operational characteristics of Phase Change Memory (PCM) technology that is expected to replace floating-gate Flash technology based on its potential for scaling. First, a phenomenon of improving figures of merit of the PCM cell with operational cycles is electrically characterized. Based on the electrical characterization and published material characterization data, a physical model of an evolving "active region" of the cell is proposed to explain the improvement of the cell parameters with operational cycles. Then, basic understanding is developed on early and erratic retention failure in a statistically significant number of cells in a large array and, electrical characterization and physical modeling is used to explain the mechanism behind the early retention failure.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tang, Shan 1975. "Protein-mediated nanocrystal assembly for floating gate flash memory fabrication." 2008. http://hdl.handle.net/2152/18156.

Повний текст джерела
Анотація:
As semiconductor device scaling is reaching the 45 nm node, the need for novel device concept, architecture and new materials has never been so pressing as today. Flash memories, the driving force of semiconductor memory market in recent years, also face the same or maybe more severe challenges to meet the demands for high-density, low-cost, low-power, high-speed, better endurance and longer retention time. As traditional continuous floating gate flash struggles to balance the trade-off between high speed and retention requirement, nanocrystal (NC) floating gate flash has attracted more and more interest recently due to its advantages over traditional flash memories in many areas such as better device scaling, lower power consumption and improved charge retention. However, there are still two major challenges remaining for embedded NC synthesis: the deposition method and the size and distribution control. Nowadays using bio-nano techniques such as DNA, virus or protein for NC synthesis and assembly has become a hot topic and feasible for actual electronic device fabrication. In this dissertation a new method for NC deposition wherein a colloidal suspension of commercially-available NCs was organized using a self-assembled chaperonin array. The chaperonin array was applied as a scaffold to mediate NCs into an assembly with uniform spatial distribution on Si wafers. By using this method, we demonstrated that colloidal PbSe and Co NCs in suspension can self-assemble into ordered arrays with a high density of up to 10¹²cm⁻². MOSCAP and MOSFET memory devices were successfully fabricated with the chaperonin protein mediated NCs, showing promising memory functions such as a large charge storage capacity, long retention time and good endurance. The charge storage capacity with respect to material work function, NC size and density was explored. In addition to NC engineering, the tunnel barrier was engineered by replacing traditional SiO₂ by high-k material HfO₂, giving a higher write/erase speed with a reduced effective oxide thickness (EOT). Suggestions for future research in this direction are presented in the last part of this work.
text
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Watt, Tony L. "Abberation-corrected atomic number contrast scanning transmission electrion [sic] microscopy of nanocrystals and nanomaterial-based systems for use in next-generation photovoltaic devices." Diss., 2008. http://etd.library.vanderbilt.edu/ETD-db/available/etd-07222008-122245/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Heng, C. L., Wee Kiong Choi, Wai Kin Chim, L. W. Teo, Vincent Ho, W. W. Tjiu, and Dimitri A. Antoniadis. "Charge Storage Effect in a Trilayer Structure Comprising Germanium Nanocrystals." 2002. http://hdl.handle.net/1721.1/3969.

Повний текст джерела
Анотація:
A metal-insulator-semiconductor (MIS) device with a trilayer insulator structure consisting of sputtered SiO₂ (~50nm)/evaporated pure germanium (Ge) layer (2.4nm)/rapid thermal oxide (~5nm) was fabricated on a p-type Si substrate. The MIS device was rapid thermal annealed at 1000°C. Capacitance-voltage (C-V) measurements showed that, after rapid thermal annealing at 1000°C for 300s in Ar, the trilayer device exhibited charge storage property. The charge storage effect was not observed in a device with a bilayer structure without the Ge middle layer. With increasing rapid thermal annealing time from 0 to 400s, the width of the C-V hysteresis of the trilayer device increased significantly from 1.5V to ~11V, indicating that the charge storage capability was enhanced with increasing annealing time. High-resolution transmission electron microscopy results confirmed that with increasing annealing time, the 2.4nm amorphous middle Ge layer crystallized gradually. More Ge nanocrystals were formed and the crystallinity of the Ge layer improved as the annealing time was increased. When the measurement temperature was increased from –50°C to 150°C, the width of the hysteresis of the MIS device reduced from ~10V to ~6V. This means that the charge storage capability of the trilayer structure decreases with increasing measurement temperature. This is due to the fact that the leakage current in the trilayer structure increases with increasing measurement temperature.
Singapore-MIT Alliance (SMA)
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electroluminescent Devices -Semiconductor Nanocrystals"

1

Optical properties of semiconductor nanocrystals. Cambridge, UK: Cambridge Unviersity Press, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marc, Favreau. Burgeoning markets for blue semiconductor light-emitting devices and materials. Norwalk, CT: Business Communications Co., 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manasreh, Mahmoud Omar. Introduction to nanomaterials and devices. Hoboken, N.J: Wiley-Interscience, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

H, Kafafi Zakya, and Society of Photo-optical Instrumentation Engineers., eds. Organic light-emitting materials and devices III: 19-21 July, 1999, Denver, Colorado. Bellingham, Washington: SPIE, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

OLED display fundamentals and applications. Hoboken, N.J: Wiley, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meeting, Materials Research Society, and Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2009 : San Francisco, Calif.)., eds. Amorphous and polycrystalline thin-film silicon science and technology--2009: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. / editors, A. Flewitt ... [et al.]. Warrendale, Pa: Materials Research Society, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meeting, Materials Research Society, and Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2010 : San Francisco, Calif.)., eds. Amorphous and polycrystalline thin-film silicon science and technology--2010: Symposium held April 5-9, 2009, San Francisco, California / editors, Qi Wang ... [et al.]. Warrendale, Pa: Materials Research Society, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gaspar, Daniel J., and Evgueni Polikarpov. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gaspar, Daniel J., and Evgueni Polikarpov. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

(Editor), Zhigang Li, and Hong Meng (Editor), eds. Organic Light-Emitting Materials and Devices (Optical Science and Engineering Series). CRC, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electroluminescent Devices -Semiconductor Nanocrystals"

1

Ray, S. K., N. Gogurla, and T. Rakshit. "Size- and Shape-Controlled ZnO Nanostructures for Multifunctional Devices." In Semiconductor Nanocrystals and Metal Nanoparticles, 39–94. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tay, Y. Y., S. Li, and M. L. Liang. "Defect Mediated Photonic Behavior of ZnO Nanocrystals." In Semiconductor Photonics: Nano-Structured Materials and Devices, 83–85. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.83.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Patil, Padmashri. "Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals." In Physics of Semiconductor Devices, 343–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Singha, R. K., K. Das, S. Das, A. Dhar, and S. K. Ray. "Characteristics of Ge Nanocrystals Grown by RF Magnetron Sputtering." In Semiconductor Photonics: Nano-Structured Materials and Devices, 89–91. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Huy, P. T., and P. H. Duong. "Intense Photoluminescence and Photoluminescence Enhancement of Silicon Nanocrystals by Ultraviolet Irradiation." In Semiconductor Photonics: Nano-Structured Materials and Devices, 74–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shalygina, Olga A., Denis M. Zhigunov, Dmitrii A. Palenov, Victor Yu Timoshenko, Pavel K. Kashkarov, M. Zacharias, and Paul M. Koenraad. "Population Dynamics of Excitons in Silicon Nanocrystals Structures under Strong Optical Excitation." In Semiconductor Photonics: Nano-Structured Materials and Devices, 196–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Semiconductor nanocrystals in environmental sensors." In Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices, 374–426. Elsevier, 2014. http://dx.doi.org/10.1533/9781782422242.374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

BURRUS, C. A., and B. I. MILLER. "SMALL-AREA, DOUBLE-HETEROSTRUCTURE ALUMINUM-GALLIUM ARSENIDE ELECTROLUMINESCENT DIODE SOURCES FOR OPTICAL-FIBER TRANSMISSION LINES." In Semiconductor Devices: Pioneering Papers, 938–40. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814503464_0129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pawade, Vijay B., Sanjay J. Dhoble, and Hendrik C. Swart. "Graphene-based semiconductor nanocrystals for optoelectronics devices." In Nanoscale Compound Semiconductors and their Optoelectronics Applications, 383–406. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-824062-5.00010-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Structural and chemical modification of semiconductor nanocrystals." In Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices, 50–94. Elsevier, 2014. http://dx.doi.org/10.1533/9781782422242.50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electroluminescent Devices -Semiconductor Nanocrystals"

1

Shcheglov, K. V., C. M. Yang, and H. A. Atwater. "Photoluminescence and Electroluminescence of Ge-Implanted Si/SiO2/Si Structures." In Microphysics of Surfaces: Nanoscale Processing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msnp.1995.msab3.

Повний текст джерела
Анотація:
Although it was observation of efficient photoluminescence [PL] from porous silicon that prompted numerous investigations into the optoelectronic properties of group IV semiconductor nanocrystals, there is interest in other related materials which are more robust in various chemical and thermal ambients and which can be easily incorporated into standard silicon VLSI processing. A promising approach that meets the above requisites is synthesis of semiconductor nanocrystals in an SiO2 matrix accomplished by various techniques. In this letter we report on the fabrication of a Ge nanocrystal-based electroluminescent device using ion implantation and precipitation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, Chi-Kuan, Gong-Ru Lin, Chun-Jung Lin, Hao-Chung Kuo, and Chia-Yang Chen. "Silicon defect and nanocrystal related white and red electroluminescence of Si-rich SiO 2 based metal-oxide-semiconductor diode." In Integrated Optoelectronic Devices 2005, edited by Diana L. Huffaker and Pallab K. Bhattacharya. SPIE, 2005. http://dx.doi.org/10.1117/12.587978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Makihara, Katsunori, Mitsuhisa Ikeda, Akio Ohta, and Seiichi Miyazaki. "Formation and Characterization of Si Quantum Dots with Ge Core for Electroluminescent Devices." In 2019 Compound Semiconductor Week (CSW). IEEE, 2019. http://dx.doi.org/10.1109/iciprm.2019.8819323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sethi, R., L. Kumar, P. K. Sharma, P. Mishra, and A. C. Pandey. "Synthesis and characterization of Cd1-xZnxS ternary nanocrystals." In 2007 International Workshop on Physics of Semiconductor Devices. IEEE, 2007. http://dx.doi.org/10.1109/iwpsd.2007.4472553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsu, Chin-Tsar, Yan-Kuin Su, and Meiso Yokoyama. "Electroluminescent devices with different insulator/semiconductor interfaces prepared by rf sputtering." In International Symposium on Optoelectronics in Computers, Communications, and Control, edited by Shu-Hsia Chen and Shin-Tson Wu. SPIE, 1992. http://dx.doi.org/10.1117/12.131327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bramati, Alberto, Maxime Joos, Chengjie Ding, Stefano Pierini, and Quentin Glorieux. "Integrated single photon sources with colloidal semiconductor nanocrystals (Conference Presentation)." In Quantum Nanophotonic Materials, Devices, and Systems 2019, edited by Mario Agio, Cesare Soci, and Matthew T. Sheldon. SPIE, 2019. http://dx.doi.org/10.1117/12.2533008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lipovskii, Andrey A., Elene V. Kolobkova, and Vladimir D. Petrikov. "Optical properties of novel phosphate glasses with embedded semiconductor nanocrystals." In International Conference on Advanced Optical Materials and Devices, edited by Andris Krumins, Donats K. Millers, Andris R. Sternberg, and Janis Spigulis. SPIE, 1997. http://dx.doi.org/10.1117/12.266551.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Chun Liang, and Norio Murase. "Encapsulation of CdTe semiconductor nanocrystals in glass matrix by a sol-gel process." In Integrated Optoelectronic Devices 2004, edited by Diana L. Huffaker and Pallab Bhattacharya. SPIE, 2004. http://dx.doi.org/10.1117/12.530635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Britton, Traylor, Bhaskaran, McClure, and Singh. "Modification and characterization of insulator-semiconductor interface in a.c. thin film electroluminescent display devices." In Proceedings of IEEE International Electron Devices Meeting. IEEE, 1992. http://dx.doi.org/10.1109/iedm.1992.307453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grym, J., O. Prochazkova, J. Zavadil, and K. Zdansky. "Role of rare-earth elements in the design of radiation detectors and electroluminescent sources." In 2008 International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM). IEEE, 2008. http://dx.doi.org/10.1109/asdam.2008.4743292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії