Добірка наукової літератури з теми "Electroencephalographic (EEG)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electroencephalographic (EEG)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electroencephalographic (EEG)"

1

Al-Sulaiman, Abdulsalam. "Electroencephalographic (EEG) patterns in hydrocephalus." Electroencephalography and Clinical Neurophysiology 87, no. 2 (August 1993): S79. http://dx.doi.org/10.1016/0013-4694(93)91212-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bruhn, Jörgen, Thomas W. Bouillon, Andreas Hoeft, and Steven L. Shafer. "Artifact Robustness, Inter- and Intraindividual Baseline Stability, and Rational EEG Parameter Selection." Anesthesiology 96, no. 1 (January 1, 2002): 54–59. http://dx.doi.org/10.1097/00000542-200201000-00015.

Повний текст джерела
Анотація:
Background Artifact robustness (i.e., size of deviation of an electroencephalographic parameter value from baseline caused by artifacts) and baseline stability (i.e., consistency of median baseline values) of electroencephalographic parameters profoundly influence electroencephalography-based pharmacodynamic parameter estimation and the usefulness of the processed electroencephalogram as measure of the arousal state of the central nervous system (depth of anesthesia). In this study, the authors compared the artifact robustness and the interindividual and intraindividual baseline stability of several univariate descriptors of the electroencephalogram (Shannon entropy, approximate entropy, spectral edge frequency 95, delta ratio, and canonical univariate parameter). Methods Electroencephalographic data of 16 healthy volunteers before and after administration of an intravenous bolus of propofol (2 mg/kg body weight) were analyzed. Each volunteer was studied twice. The baseline electroencephalogram was recorded for a median of 18 min before drug administration. For each electroencephalographic descriptor, the authors calculated the following: (1) baseline variability (= (median baseline - median effect) [i.e., signal]/SD baseline [i.e., noise]) without artifact rejection; (2) baseline variability with artifact rejection; and (3) baseline stability within and between individuals (= (median baseline - median effect) averaged over all volunteers/SD of all median baselines). Results Without artifact rejection, Shannon entropy and canonical univariate parameter displayed the highest signal-to-noise ratio. After artifact rejection, approximate entropy, Shannon entropy, and the canonical univariate parameter displayed the highest signal-to-noise ratio. Baseline stability within and between individuals was highest for approximate entropy. Conclusions With regard to robustness against artifacts, the electroencephalographic entropy parameters and the canonical univariate parameter were superior to spectral edge frequency 95 and delta ratio. Electroencephalographic approximate entropy displayed the best interindividual and intraindividual baseline stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ivanov, A. A. "The structure of modern EEG recorder." Epilepsy and paroxysmal conditions 14, no. 4 (January 18, 2023): 362–78. http://dx.doi.org/10.17749/2077-8333/epi.par.con.2022.138.

Повний текст джерела
Анотація:
The article is aimed at familiarizing medical specialists involved in registration and analysis of electroencephalographic (EEG) examinations with the basic principles of operation and the design of a modern EEG recorder. Understanding the technical fundamentals behind operation of EEG equipment should help medical personnel to correctly use all its capabilities and ultimately improve quality of medical care. The basic diagram of the electroencephalograph operation, the types and features of EEG electrodes, the opportunities and limitations of digitally processed bioelectric signals are discussed. A review on the main technical characteristics of EEG equipment and their influence on the quality of the recorded signal is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Politi, Keren, Sara Kivity, Hadassa Goldberg-Stern, Ayelet Halevi, and Avinoam Shuper. "Selective Mutism and Abnormal Electroencephalography (EEG) Tracings." Journal of Child Neurology 26, no. 11 (May 18, 2011): 1377–82. http://dx.doi.org/10.1177/0883073811406731.

Повний текст джерела
Анотація:
Epileptic discharges are not considered a part of the clinical picture of selective mutism, and electroencephalography is generally not recommended in its work-up. This report describes 6 children with selective mutism who were found to have a history of epilepsy and abnormal interictal or subclinical electroencephalography recordings. Two of them had benign epilepsy of childhood with centro-temporal spikes. The mutism was not related in time to the presence of active seizures. While seizures could be controlled in all children by medications, the mutism resolved only in 1. Although the discharges could be coincidental, they might represent a co-morbidity of selective mutism or even play a role in its pathogenesis. Selective mutism should be listed among the psychiatric disorders that may be associated with electroencephalographic abnormalities. It can probably be regarded as a symptom of a more complicated organic brain disorder.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

D'Souza, Delon, Gosala R. K. Sarma, and Elizabeth V. T. "Teaching Electroencephalography: Persistent Altered Sensorium with Ominous Appearing Electroencephalographic Activity." International Journal of Epilepsy 05, no. 02 (October 2018): 110–11. http://dx.doi.org/10.1055/s-0038-1676560.

Повний текст джерела
Анотація:
AbstractA 51-year-old man presented with persistent altered sensorium following a seizure. His magnetic resonance imaging (MRI) showed features of focal encephalitis involving the left temporal, parietal, and occipital regions. His electroencephalogram (EEG) showed ongoing epileptiform discharges over the left hemisphere. This article discusses dilemmas in the diagnosis of nonconvulsive status epilepticus in such a case scenario.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stankevich, Lev A., Sabina S. Amanbaeva, and Aleksandr V. Samochadin. "User Authentication by Electroencephalographic Signals when Blinkin." Computer tools in education, no. 3 (September 30, 2019): 52–69. http://dx.doi.org/10.32603/2071-2340-2019-3-52-69.

Повний текст джерела
Анотація:
The article presents the results of a study in the field of applying electroencephalography (EEG) for human authentication. An algorithm for EEG authentication based on blinks has been developed and described. Authentication is carried out by one blink, which takes 2-5 seconds. The data is collected using a Muse electroencephalograph. Data preprocessing includes wavelet transform and blink detection. Geometric characteristics of the EEG signals are used as features. Recognition is conducted by the Random Forest classifier. According to the test results, the percentage of correct authentication was 95 %. There is the possibility of background authentication. The implemented system may be used to authenticate students at distant education.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Quesney, L. F. "Preoperative Electroencephalographic Investigation in Frontal Lobe Epilepsy: Electroencephalographic and Electrocorticographic Recordings." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 18, S4 (November 1991): 559–63. http://dx.doi.org/10.1017/s0317167100032698.

Повний текст джерела
Анотація:
ABSTRACT:The first section of this article deals with specific anatomic and pathophysiologic factors which contribute to a poor EEG localization of the interictal epileptic abnormality and to the unreliable seizure onset localization commonly reported in patients with frontal lobe epilepsy. The localizing effectiveness of long term EEG monitoring was reviewed in four different groups of frontal lobe epileptic patients who underwent preoperative EEG investigation with extracranial and intracranial electrodes. The results of this study reveal a continuum distribution of interictal epileptic disturbances, ranging from focal abnormalities to lobar or multi-lobar epileptogenesis. A frontal lobe localization of the seizure generator based on ictal recordings obtained with extracranial electrodes is rather poor and much more reliable results can be obtained by depth-electroencephalography.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

McFarland, Dennis J., William A. Sarnacki, and Jonathan R. Wolpaw. "Electroencephalographic (EEG) control of three-dimensional movement." Journal of Neural Engineering 7, no. 3 (May 11, 2010): 036007. http://dx.doi.org/10.1088/1741-2560/7/3/036007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yeh, Ta-Chuan, Cathy Chia-Yu Huang, Yong-An Chung, Jooyeon Jamie Im, Yen-Yue Lin, Chin-Chao Ma, Nian-Sheng Tzeng, Chuan-Chia Chang, and Hsin-An Chang. "High-Frequency Transcranial Random Noise Stimulation over the Left Prefrontal Cortex Increases Resting-State EEG Frontal Alpha Asymmetry in Patients with Schizophrenia." Journal of Personalized Medicine 12, no. 10 (October 7, 2022): 1667. http://dx.doi.org/10.3390/jpm12101667.

Повний текст джерела
Анотація:
Reduced left-lateralized electroencephalographic (EEG) frontal alpha asymmetry (FAA), a biomarker for the imbalance of interhemispheric frontal activity and motivational disturbances, represents a neuropathological attribute of negative symptoms of schizophrenia. Unidirectional high-frequency transcranial random noise stimulation (hf-tRNS) can increase the excitability of the cortex beneath the stimulating electrode. Yet, it is unclear if hf-tRNS can modulate electroencephalographic FAA in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast hf-tRNS and sham stimulation for treating negative symptoms in 35 schizophrenia patients. We used electroencephalography to investigate if 10 sessions of hf-tRNS delivered twice-a-day for five consecutive weekdays would modulate electroencephalographic FAA in schizophrenia. EEG data were collected and FAA was expressed as the differences between common-log-transformed absolute power values of frontal right and left hemisphere electrodes in the alpha frequency range (8–12.5 Hz). We found that hf-tRNS significantly increased FAA during the first session of stimulation (p = 0.009) and at the 1-week follow-up (p = 0.004) relative to sham stimulation. However, FAA failed to predict and surrogate the improvement in the severity of negative symptoms with hf-tRNS intervention. Together, our findings suggest that modulating electroencephalographic frontal alpha asymmetry by using unidirectional hf-tRNS may play a key role in reducing negative symptoms in patients with schizophrenia.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sheikh, Hesham, Dennis J. McFarland, William A. Sarnacki, and Jonathan R. Wolpaw. "Electroencephalographic(EEG)-based communication: EEG control versus system performance in humans." Neuroscience Letters 345, no. 2 (July 2003): 89–92. http://dx.doi.org/10.1016/s0304-3940(03)00470-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electroencephalographic (EEG)"

1

Gasparini, John M. "An Electroencephalographic (EEG) Study of Hypofrontality during Music Induced Flow Experiences." Thesis, Northcentral University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10830810.

Повний текст джерела
Анотація:

Since Csikszentmihalyi identified the psychological experience of flow over 40 years ago, the experiences have been heralded as the optimum human function and prescriptive to high levels of well-being and quality of life. Csikszentmihalyi theorized that flow represented an autonomous reality that represented an altered state unlike any other human experience. Flow states emerged from intrinsically motivated behavior that represented a fragile balance between the level of enjoyment from novel task stimulation and a sense of self-efficacy required to meet the specific task demands. However, flow is not well understood and research is skewed toward to phenomenological investigations that described the nature of the experience and many of the significant variables of interest across a diverse range of activities. The lack of experimental exploration of flow has created fundamental research gaps. The general problem is that flow is predictive and related to positive psychological outcomes; however, current assessment methodologies and research have not provided the functional neuroanatomy involved. The purpose of this quantitative experimental study was to examine the hypofrontality theory that a flow state occurs concurrently with decreased cognitive activation in the frontal cortex (hypofrontality) during the flow phenomena. Participants consisted of expert piano players that were assessed for changes in alpha activity in the frontal cortex during a flow and non-flow condition. Results from the paired samples paired t-test conducted revealed there were statistically significant differences in alpha power in the experimental conditions (DV) versus the control conditions (IV; M = 93, SD = 105, N = 14), t(13) = 3.29, p = .006. These results supported the main hypothesis that there is increased alpha power in the frontal cortex during flow states. This finding provides the first empirically validated biomarker for a flow. These results will assist future research to understand flow experiences as a conceptually unambiguous variable.

Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lahr, Jacob [Verfasser], and Andreas [Akademischer Betreuer] Schulze-Bonhage. "Electromyographic signals in intracranial electroencephalographic recordings = Elektromyographische Signale in intrakraniellen EEG-Aufnahmen." Freiburg : Universität, 2012. http://d-nb.info/1123473927/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

ATTARD, TREVISAN ADRIAN. "NOVEL COMPUTATIONAL ELECTROENCEPHALOGRAPHIC (EEG) METHODOLOGIES FOR AUTISM MANAGEMENT AND EPILEPTIC SEIZURE PREDICTION." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/333759.

Повний текст джерела
Анотація:
The doctoral thesis deals with a novel methodology of looking and processing electroencephalographic (EEG) data. The first part deals with real-time brain stimulation in the form of a sonified neurofeedback therapy derived from a clinically comparable portable, 4-channel EEG system. The therapy aims to provide an effective management for symptoms of the Autism Spectrum Disorder (ASD). ASD is characterized with a high level of delta electroencephalographic waveform levels, while alpha and beta prove to be present at lower levels especially in the frontal-temporal regions. The treatment aims at lowering delta waves and promoting alpha and beta waveforms. The second part of the thesis focuses on using EEG data in the prediction of epileptic seizures. With the help of custom built algorithms and neural networks, an effective prediction of an epileptic seizure can be achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SAIBENE, AURORA. "A Flexible Pipeline for Electroencephalographic Signal Processing and Management." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/360550.

Повний текст джерела
Анотація:
L'elettroencefalogramma (EEG) fornisce registrazioni non-invasive delle attività e delle funzioni cerebrali sotto forma di serie temporali, a loro volta caratterizzate da una risoluzione temporale e spaziale (dipendente dai sensori), e da bande di frequenza specifiche per alcuni tipi di condizioni cerebrali. Tuttavia, i segnali EEG risultanti sono non-stazionari, cambiano nel tempo e sono eterogenei, essendo prodotti da differenti soggetti e venendo influenzati da specifici paradigmi sperimentali, condizioni ambientali e dispositivi. Inoltre, questi segnali sono facilmente soggetti a rumore e possono venire acquisiti per un tempo limitato, fornendo un numero ristretto di condizioni cerebrali sulle quali poter lavorare. Pertanto, in questa tesi viene proposta una pipeline flessibile per l'elaborazione e la gestione dei segnali EEG, affinchè possano essere più facilmente comprensibili e quindi più facilmente sfruttabili in diversi tipi di applicazioni. Inoltre, la pipeline flessibile proposta è divisa in quattro moduli riguardanti la pre-elaborazione del segnale, la sua normalizzazione, l'estrazione e la gestione di feature e la classificazione dei dati EEG. La pre-elaborazione del segnale EEG sfrutta la multivariate empirical mode decomposition (MEMD) per scomporre il segnale nelle sue modalità oscillatorie, chiamate intrinsic mode function (IMF), ed usa un criterio basato sull'entropia per selezionare le IMF più relevanti. Queste IMF dovrebbero mantenere le naturali dinamiche cerebrali e rimuovere componenti non-informative. Le risultati IMF rilevanti sono in seguito sfruttate per sostituire il segnale o aumentare la numerosità dei dati. Nonostante MEMD sia adatto alla non-stazionarietà del segnale EEG, ulteriori passi computazionali dovrebbero essere svolti per mitigare la caratteristica eterogeneità di questi dati. Pertanto, un passo di normalizzazione viene introdotto per ottenere dati comparabili per uno stesso soggetto o più soggetti e tra differenti condizioni sperimentali, quindi permettendo di estrarre feature nel dominio temporale, frequenziale e tempo-frequenziale per meglio caratterizzare il segnale EEG. Nonostante l'uso di un insieme di feature differenti fornisca la possibilità di trovare nuovi pattern nei dati, può altresì presentare alcune ridondanze ed incrementare il rischio di incorrere nella curse of dimensionality o nell'overfitting durante la classificazione. Pertanto, viene proposta una selezione delle feature basata sugli algoritmi evolutivi con un approccio completamente guidato dai dati. Inoltre, viene proposto l'utilizzo di modelli di apprendimento non o supervisionati e di nuovi criteri di stop per un algoritmo genetico modificato. Oltretutto, l'uso di diversi modelli di apprendimento automatico può influenzare il riconoscimento di differenti condizioni cerebrali. L'introduzione di modelli di deep learning potrebbe fornire una strategia in grado di apprendere informazioni direttamente dai dati disponibili, senza ulteriori elaborazioni. Fornendo una formulazione dell'input appropriata, le informazioni temporali, frequenziali e spaziali caratterizzanti i dati EEG potrebbero essere mantenute, evitando l'introduzione di architetture troppo complesse. Pertato, l'utilizzo di differenti processi ed approcci di elaborazione potrebbe fornire strategie più generiche o più legate a specifici esperimenti per gestire il segnale EEG, mantenendone le sue naturali caratteristiche.
The electroencephalogram (EEG) provides the non-invasive recording of brain activities and functions as time-series, characterized by a temporal and spatial (sensor-dependent) resolution, and by brain condition-bounded frequency bands. Moreover, it presents some cost-effective device solutions. However, the resulting EEG signals are non-stationary, time-varying, and heterogeneous, being recorded from different subjects and being influenced by specific experimental paradigms, environmental conditions, and devices. Moreover, they are easily affected by noise and they can be recorded for a limited time, thus they provide a restricted number of brain conditions to work with. Therefore, in this thesis a flexible pipeline for signal processing and management is proposed to have a better understanding of the EEG signals and exploit them for a variety of applications. Moreover, the proposed flexible pipeline is divided in 4 modules concerning signal pre-processing, normalization, feature computation and management, and EEG data classification. The EEG signal pre-processing exploits the multivariate empirical mode decomposition (MEMD) to decompose the signal in oscillatory modes, called intrinsic mode functions (IMFs), and uses an entropy criterion to select the most relevant IMFs that should maintain the natural brain dynamics, while discarding uninformative components. The resulting relevant IMFs are then exploited for signal substitution and data augmentation. Even though MEMD is adapt to the EEG signal non-stationarity, further processing steps should be undertaken to mitigate these data heterogeneity. Therefore, a normalization step is introduced to obtain comparable data inter- and intra-subject and between different experimental conditions, allowing the extraction of general features in the time, frequency, and time-frequency domain for EEG signal characterization. Even though the use of a variety of feature types may provide new data patterns, they may also present some redundancies and increase the risk of incurring in classification problems like curse of dimensionality and overfitting. Therefore, a feature selection based on evolutionary algorithms is proposed to have a completely data-driven approach, exploiting both supervised and unsupervised learning models, and suggesting new stopping criteria for a modified genetic algorithm implementation. Moreover, the use of different learning models may affect the discrimination of different brain conditions. The introduction of deep learning models may provide a strategy to learn directly from the available data. By suggesting a proper input formulation it could be possible to maintain the EEG data time, frequency, and spatial information, while avoiding too complex architectures. Therefore, using different processing steps and approaches may provide general or experimental specific strategies to manage the EEG signal, while maintaining its natural characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barne, Louise Catheryne. "Electroencephalographic correlates of temporal learning." reponame:Repositório Institucional da UFABC, 2016.

Знайти повний текст джерела
Анотація:
Orientador: Prof. Dr. André Mascioli Cravo
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Neurociência e Cognição, 2016.
We constantly learn and update our predictions about when events we cause will occur. This flexibility is important to program motor actions and to estimate when errors have been made. However, the mechanisms that govern learning and updating in temporal domain are largely unknown. In order to clarify these mechanisms we had three mains objectives: 1. To describe how we learn a new temporal relation between two events and how expectation is updated based on new information; 2. To describe the neural correlates underlying temporal learning and temporal updating; 3. To investigate temporal learning in two different sensory modalities: vision and audition, in order to verify whether such processes occur independently of sensory modality. In order to achieve the objectives, we developed two different experiments with electroencephalography recordings. In the first experiment, we aimed to answer the first two objectives by developing a behavioral task in which participants had to monitor whether a temporal error had been made. Results evidenced a rapid temporal adjustment by the participants to a new temporal relation. Temporal errors evoked electrophysiological markers classically related to error coding as frontal theta oscillations and feedback-related negativity. Delta phase was modulated by behavioral adjustments, suggesting its importance in temporal prediction updating. In conclusion, low frequency oscillations appear to be modulated in error coding and temporal learning. The second experiment investigated temporal learning in two different sensory modalities. Results indicated that time perception is biased differently depending on temporal marker sensory modality. Besides, we found that intertrial phase coherence of theta oscillations was modulated by expectation on both sensory conditions. However, such result occurs on central electrodes analysis, but not on sensory electrodes analysis, indicating a supramodal mechanism of temporal prediction.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lorensen, Tamara Dawn. "Defining anterior posterior dissociation patterns in electroencephalographic comodulation in Chronic Fatigue Syndrome and depression." Queensland University of Technology, 2004. http://eprints.qut.edu.au/16552/.

Повний текст джерела
Анотація:
This is a study of quantitative electroencephalographic (QEEG) comodulation analysis, which is used to assist in identifying regional brain patterns associated with Chronic Fatigue Syndrome (CFS) compared to an EEG normative database. Further, this study investigates EEG patterns in depression which is found to be a highly comorbid condition to CFS. The QEEG comodulation analysis examines spatial-temporal cross-correlation of spectral estimates in the individual resting dominant frequency band. A pattern shown by Sterman and Kaiser (2001) and referred to as the Anterior Posterior Dissociation (APD) discloses a significant reduction in shared functional modulation between frontal and centro-parietal areas of the cortex. Conversely, depressed patients have not shown this pattern of activity but have disclosed a pattern of frontal Hypercomodulation localized to bilateral pre-frontal and frontal cortex. This research investigates these comodulation patterns to determine whether they exist reliably in these populations of interest and whether a clear distinction between two highly comorbid conditions can be made using this metric. Sixteen CFS sufferers and 16 depressed participants, diagnosed by physicians and a psychiatrist respectively were involved in QEEG data collection procedures. Nineteen-channel cap recordings were collected in five conditions: eyes-closed, eyes open, reading task-one, math computations task-two, and a second eyes-closed baseline. Five of the 16 CFS patients showed a clear Anterior Posterior Dissociation pattern for the eyes-closed resting dominant frequency. However, 11 participants did not show this pattern of dysregulation. Examination of the mean 8-12 Hz band spectral magnitudes across three cortical regions (frontal, central and parietal) indicated a trend of higher overall alpha levels in the parietal region in CFS patients who showed the APD pattern compared to those who did not show this pattern. All participants who showed the APD pattern were free of medication, while the majority of those absent of this pattern were using antidepressant medications. For the depressed group, all of which were medication free, 100 % of the depressed group showed a frontal Hypercomodulation pattern. Furthermore, examination of the mean 8-12 Hz band spectral magnitudes across three cortical regions disclosed a trend of high frontal alpha and a left/right asymmetry of greater voltages in the left frontal cortex. Although these samples are small, it is suggested that this method of evaluating the disorder of CFS holds promise. The fact that this pattern is not consistently represented in the CFS sample could be explained by the possibility of subtypes of CFS, or perhaps comorbid conditions. Further, the use of antidepressant medications may mask the pattern by altering the temporal characteristics of the EEG. This study, however, was able to demonstrate that the QEEG was able to parse out the regional cerebral brain differences between CFS and depressed group.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hajipour, Sardouie Sepideh. "Signal subspace identification for epileptic source localization from electroencephalographic data." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S185/document.

Повний текст джерела
Анотація:
Lorsque l'on enregistre l'activité cérébrale en électroencéphalographie (EEG) de surface, le signal d'intérêt est fréquemment bruité par des activités différentes provenant de différentes sources de bruit telles que l'activité musculaire. Le débruitage de l'EEG est donc une étape de pré-traitement important dans certaines applications, telles que la localisation de source. Dans cette thèse, nous proposons six méthodes permettant la suppression du bruit de signaux EEG dans le cas particulier des activités enregistrées chez les patients épileptiques soit en période intercritique (pointes) soit en période critique (décharges). Les deux premières méthodes, qui sont fondées sur la décomposition généralisée en valeurs propres (GEVD) et sur le débruitage par séparation de sources (DSS), sont utilisées pour débruiter des signaux EEG épileptiques intercritiques. Pour extraire l'information a priori requise par GEVD et DSS, nous proposons une série d'étapes de prétraitement, comprenant la détection de pointes, l'extraction du support des pointes et le regroupement des pointes impliquées dans chaque source d'intérêt. Deux autres méthodes, appelées Temps Fréquence (TF) -GEVD et TF-DSS, sont également proposées afin de débruiter les signaux EEG critiques. Dans ce cas on extrait la signature temps-fréquence de la décharge critique par la méthode d'analyse de corrélation canonique. Nous proposons également une méthode d'Analyse en Composantes Indépendantes (ICA), appelé JDICA, basée sur une stratégie d'optimisation de type Jacobi. De plus, nous proposons un nouvel algorithme direct de décomposition canonique polyadique (CP), appelé SSD-CP, pour calculer la décomposition CP de tableaux à valeurs complexes. L'algorithme proposé est basé sur la décomposition de Schur simultanée (SSD) de matrices particulières dérivées du tableau à traiter. Nous proposons également un nouvel algorithme pour calculer la SSD de plusieurs matrices à valeurs complexes. Les deux derniers algorithmes sont utilisés pour débruiter des données intercritiques et critiques. Nous évaluons la performance des méthodes proposées pour débruiter les signaux EEG (simulés ou réels) présentant des activités intercritiques et critiques épileptiques bruitées par des artéfacts musculaires. Dans le cas des données simulées, l'efficacité de chacune de ces méthodes est évaluée d'une part en calculant l'erreur quadratique moyenne normalisée entre les signaux originaux et débruités, et d'autre part en comparant les résultats de localisation de sources, obtenus à partir des signaux non bruités, bruités, et débruités. Pour les données intercritiques et critiques, nous présentons également quelques exemples sur données réelles enregistrées chez des patients souffrant d'épilepsie partielle
In the process of recording electrical activity of the brain, the signal of interest is usually contaminated with different activities arising from various sources of noise and artifact such as muscle activity. This renders denoising as an important preprocessing stage in some ElectroEncephaloGraphy (EEG) applications such as source localization. In this thesis, we propose six methods for noise cancelation of epileptic signals. The first two methods, which are based on Generalized EigenValue Decomposition (GEVD) and Denoising Source Separation (DSS) frameworks, are used to denoise interictal data. To extract a priori information required by GEVD and DSS, we propose a series of preprocessing stages including spike peak detection, extraction of exact time support of spikes and clustering of spikes involved in each source of interest. Two other methods, called Time Frequency (TF)-GEVD and TF-DSS, are also proposed in order to denoise ictal EEG signals for which the time-frequency signature is extracted using the Canonical Correlation Analysis method. We also propose a deflationary Independent Component Analysis (ICA) method, called JDICA, that is based on Jacobi-like iterations. Moreover, we propose a new direct algorithm, called SSD-CP, to compute the Canonical Polyadic (CP) decomposition of complex-valued multi-way arrays. The proposed algorithm is based on the Simultaneous Schur Decomposition (SSD) of particular matrices derived from the array to process. We also propose a new Jacobi-like algorithm to calculate the SSD of several complex-valued matrices. The last two algorithms are used to denoise both interictal and ictal data. We evaluate the performance of the proposed methods to denoise both simulated and real epileptic EEG data with interictal or ictal activity contaminated with muscular activity. In the case of simulated data, the effectiveness of the proposed algorithms is evaluated in terms of Relative Root Mean Square Error between the original noise-free signals and the denoised ones, number of required ops and the location of the original and denoised epileptic sources. For both interictal and ictal data, we present some examples on real data recorded in patients with a drug-resistant partial epilepsy
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mosse, Leah Kathryn. "Electroencephalographic (EEG) biofeedback treatment for children with attention deficit disorders in a school setting." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc3005/.

Повний текст джерела
Анотація:
The purpose of this study was to explore the use of EEG biofeedback in a school setting to assist students who had attentional challenges. The equipment for implementing biofeedback was relatively inexpensive and was easily integrated into the school setting. Twenty students ranging in age from 7 to 17 were recruited for this study. Data was used from 14 subjects, 12 males (2 Hispanic, 1 African American, and 10 Caucasian) and 2 females (1 Hispanic, 1 Caucasian.) The subject pool was reduced due to non-compliance or the students. moving from the school district. Significant effect size was obtained in the treatment group in areas pertaining to visual perception and motor coordination. However, significant effect sizes in other areas were obtained when the control group scores worsened. The inclusion of student subjects who, perhaps, did not meet stringent criterion of attention deficit may have skewed the results. The small number of students in the study may have hindered accurate measures of statistical significance. Conversely, the information obtained from this study may offer insight to school districts in providing their students an alternate/adjunct to psychopharmacological medication and a non- invasive method of helping students with psycho-social challenges.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Girão, Leonor Lopes Ribeiro da Silva. "Neural correlations during brain activation in arithmetical tasks – an approach using electroencephalographic data." Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/4257.

Повний текст джерела
Анотація:
Dissertação apresentada na Faculdade de Ciências e Tecnologiea da Universidade Nova de Lisboa, para obtenção do Grau de Mestre em Engenharia Biomédica
The present study aims at examining the correlation among different brain areas while the subjects performed an arithmetical task, and how these differ from the mental relations in the same subjects during a resting state. In order to this, both linear and nonlinear methods were used, i.e., both algorithms capable of detecting linear relations and algorithms capable of detecting correlations without assuming any type of parametric relationship between the signals were implemented. The first algorithm that was implemented was the cross-correlation function, which gives an estimate of how much two signals are linearly correlated, and estimates the delay between them, thus permitting to make inferences on causality. Furthermore, this algorithm was validated using the statistic method called surrogation, in order to test for the applicability of the algorithm on the signals that were to be processed. The next part of the study consisted on implementing two analogous algorithms, the coefficient of determination and the nonlinear regression coefficient. These coefficients both measure the fraction of reduction of variance that can be obtained by estimating the relationship between two signals according to a fitted line, the difference being that the former assumes a linear relation between both sets of samples and the latter doesn‟t previously assume any type of relationship between the signals. The main differences in correlation that were observed between the state of mental rest and between the arithmetic task performance were that in the former more brain sites were correlated, whereas during the task this synchrony was mainly verified between frontal and parietal areas, showing a decrease in the other locations. Furthermore, the estimates provided by the linear and nonlinear algorithms were very similar, suggesting that in this case the relationships among different neural networks were mainly linear, and thus validating the application of linear methods in this type of analysis in particular cases. Regarding the estimation of delays between signals and inferences on causality, no conclusive results were attained.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Martínez, Cristina G. B. "Nonlinear signal analysis of micro and macro electroencephalographic recordings from epilepsy patients." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/670397.

Повний текст джерела
Анотація:
The use of nonlinear signal analysis measures to characterize electroencephalographic (EEG) recordings can be key for a better understanding of the underlying brain dynamics. In neurological disorders such as epilepsy, these dynamics are altered as result of a disturbed coordination between neuronal populations. The aim of this thesis is to characterize the seizure-free interval of EEG recordings from epilepsy patients by means of nonlinear signal analysis techniques to investigate whether this type of analysis can contribute to the localization of the seizure onset zone, the brain region from which initial seizure discharges can be recorded. For this purpose, we used a surrogate-corrected nonlinear predictability score and a surrogatecorrected nonlinear interdependence measure to analyze all-night EEG recordings from epilepsy patients implanted with hybrid depth electrodes equipped with macro contacts and micro wires. Our results show that the combined analysis of macro and micro EEG recordings may help to further increase the degree to which quantitative EEG analysis can contribute to the diagnostics in epilepsy patients.
El uso de medidas de análisis no lineales de señales para caracterizar registros electroencefalográficos (EEG) puede ser clave para una mejor comprensión de las dinámicas cerebrales subyacentes. En trastornos neurológicos como la epilepsia, estas dinámicas están alteradas a consecuencia de una coordinación perturbada entrepoblaciones neuronales. El objetivo de esta tesis es caracterizarel intervalo de registros de EEG libre de crisis epilépticas de pacientes con epilepsia mediante técnicas de análisis no lineales de señales para investigar si este tipo de análisis puede contribuir ala localización del SOZ (en inglés, Seizure onset zone), la región del cerebro donde se pueden registrar las descargas iniciales de las crisis epilépticas. Con este propósito, utilizamos una puntuación de predictibilidad no lineal corregida por sustitutos y una medida de interdependencia no lineal corregida por sustitutos para analizar registros EEG de pacientes con epilepsia grabados durante noches completas implantados con electrodos híbridos equipados con macro- y microcontactos. Nuestros resultados demuestran que el análisis combinado de macro- y micro-registros de EEG puede ayudar a aumentar el grado en el que el análisis cuantitativo de EEG puede contribuir al diagnóstico de pacientes con epilepsia.
L’ús de mesures d’anàlisi de senyals no lineals per la caracterització de registres encefalogràfics (EEG) pot ser clau per una millor comprensió de les dinàmiques cerebrals subjacents. En trastorns neurològics com l’epilèpsia, aquestes dinàmiques estan alterades a conseqüència d’una coordinació pertorbada entre poblacions neuronals. L’objectiu d’aquesta tesi doctoral és caracteritzar l’interval de registres EEG lliures de crisis epilèptiques en pacients amb epilèpsia mitjançant tècniques d’anàlisi de senyals no lineals, per tal d’investigar si aquest tipus d’anàlisi pot contribuir a la localització de la SOZ (en anglès, Seizure onset zone), la regió del cervell on es poden registrar les primeres descàrregues de la crisi. Amb aquesta finalitat, utilitzem una puntuació de previsibilitat no lineal corregida mitjançant substituts i una mesura d’interdependència no lineal corregida per substituts per analitzar registres EEG de pacients amb epilèpsia. Aquests han sigut enregistrats durant nits completes amb elèctrodes híbrids equipats amb macro- i microcontactes. Els resultats obtinguts demostren que l’anàlisi combinat de macro- i microregistres en l’EEG pot ajudar a augmentar el grau de contribució de l’anàlisi quantitatiu de l’EEG dins el diagnòstic de pacients amb epilèpsia.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electroencephalographic (EEG)"

1

Erlichman, Martin. Electroencephalographic (EEG) video monitoring. Rockville, MD: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Freeman, Walter J. Imaging Brain Function With EEG: Advanced Temporal and Spatial Analysis of Electroencephalographic Signals. New York, NY: Springer New York, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1931-, Spehlmann Rainer, ed. Spehlmann's EEG primer. 2nd ed. Amsterdam: Elsevier, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

R, Hughes John. EEG in clinical practice. 2nd ed. Boston: Butterworth-Heinemann, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fisch, Bruce J. Fisch and Spehlmann's EEG primer: Basic principles of digital and analog EEG. 3rd ed. Amsterdam: Elsevier, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

S, Ebersole John, ed. Ambulatory EEG monitoring. New York: Raven Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1933-, Zschocke S., and Speckmann Erwin-Josef, eds. Basic mechanisms of the EEG. Boston: Birkhäuser, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

H, Chiappa Keith, ed. The EEG of drowsiness. New York: DEMOS Publications, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rajna, P. The EEG atlas of adulthood epilepsy. [Budapest]: Innomark, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eugene, Tolunsky, ed. A primer of EEG: With a mini-atlas. Philadelphia, PA: Butterworth-Heinemann, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electroencephalographic (EEG)"

1

Michalopoulos, K., M. Zervakis, and N. Bourbakis. "Current Trends in ERP Analysis Using EEG and EEG/fMRI Synergistic Methods." In Modern Electroencephalographic Assessment Techniques, 323–50. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/7657_2013_67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fingelkurts, Andrew A., and Alexander A. Fingelkurts. "Operational Architectonics Methodology for EEG Analysis: Theory and Results." In Modern Electroencephalographic Assessment Techniques, 1–59. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/7657_2013_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tripoliti, Evanthia E., Michalis Zervakis, and Dimitrios I. Fotiadis. "Computer-Based Assessment of Alzheimer’s Disease Employing fMRI and/or EEG: A Comprehensive Review." In Modern Electroencephalographic Assessment Techniques, 351–83. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/7657_2014_70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Varotto, Giulia, Laura Tassi, Fabio Rotondi, Roberto Spreafico, Silvana Franceschetti, and Ferruccio Panzica. "Effective Brain Connectivity from Intracranial EEG Recordings: Identification of Epileptogenic Zone in Human Focal Epilepsies." In Modern Electroencephalographic Assessment Techniques, 87–101. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/7657_2013_61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Klonowski, Wlodzimierz. "Fractal Analysis of Electroencephalographic Time Series (EEG Signals)." In Springer Series in Computational Neuroscience, 413–29. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3995-4_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Harsha, Shivangi Madhavi, and Jayashri Vajpai. "Fuzzy Inference System for Classification of Electroencephalographic (EEG) Data." In Intelligent Human Computer Interaction, 35–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44689-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fan, Miaolin, Vladimir Miskovic, Chun-An Chou, Sina Khanmohammadi, Hiroki Sayama, and Brandon E. Gibb. "Classification Analysis of Chronological Age Using Brief Resting Electroencephalographic (EEG) Recordings." In Brain Informatics and Health, 96–104. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23344-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kemperman, C. J. F., S. L. H. Notermans, and R. Wevers. "Relationship Between Electroencephalographic (EEG) Synchronization and Plasma Dopamine-beta-hydroxylase (DBH) Activity in Patients." In Verhandlungen der Deutschen Gesellschaft für Neurologie, 712–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83201-7_221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brienza, Marianna, Chiara Davassi, and Oriano Mecarelli. "Ambulatory EEG." In Clinical Electroencephalography, 297–304. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04573-9_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tassi, Laura. "Invasive EEG." In Clinical Electroencephalography, 319–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04573-9_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electroencephalographic (EEG)"

1

Fuad, N., R. Jailani, W. R. W. Omar, A. H. Jahidin, and M. N. Taib. "Three dimension 3D signal for electroencephalographic (EEG)." In 2012 IEEE Control and System Graduate Research Colloquium (ICSGRC). IEEE, 2012. http://dx.doi.org/10.1109/icsgrc.2012.6287173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Regueiro, Matthew, Bhagyashree Shirke, Mandy Chiu, Nicholas Capobianco, and Kiran George. "Electroencephalographic (EEG) Analysis of Individuals Experiencing Acute Mental Stress." In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE, 2019. http://dx.doi.org/10.1109/uemcon47517.2019.8993062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Agashe, Harshavardhan A., and Jose L. Contreras-Vidal. "Decoding the evolving grasping gesture from electroencephalographic (EEG) activity." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marquez L., Alejandro P., and Roberto Munoz G. "Analysis and classification of electroencephalographic signals (EEG) to identify arm movements." In 2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2013. http://dx.doi.org/10.1109/iceee.2013.6676033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Performance Evaluation of Methods for Correcting Ocular Artifacts in Electroencephalographic (EEG) Recordings." In International Conference on Bio-inspired Systems and Signal Processing. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004199101260132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yanar, Hilmi, and Yuriy Mishchenko. "A hidden Markov model of electroencephalographic brain activity for advanced EEG-based brain computer interfaces." In 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, 2016. http://dx.doi.org/10.1109/siu.2016.7495747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Korb, Sebastian, Didier Grandjean, and Klaus Scherer. "Investigating the production of emotional facial expressions: a combined electroencephalographic (EEG) and electromyographic (EMG) approach." In Gesture Recognition (FG). IEEE, 2008. http://dx.doi.org/10.1109/afgr.2008.4813388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zilidou, Vasiliki I., Christos A. Frantzidis, Ana B. Vivas, Maria Karagianni, and Panagiotis D. Bamidis. "Towards Multi-parametric Hub Scoring of Functional Cortical Brain Networks: An Electroencephalographic (EEG) Study Across Lifespan." In 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2017. http://dx.doi.org/10.1109/cbms.2017.149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ting Li, Jun Hong, and Jinhua Zhang. "Electroencephalographic (EEG) control of cursor movement in three-dimensional scene based on Small-World neural network." In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icicisys.2010.5658416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kongara, Kavitha, Lorna Johnson, Nikki J Kells, Craig B Johnson, Venkata SR Dukkipati, and Sheryl L Mitchinson. "Alteration of Electroencephalographic Responses to Castration in Cats by Administration of Opioids EEG responses to castration in cats." In Annual International Conference on Advances in Veterinary Science Research. Global Science & Technology Forum (GSTF), 2013. http://dx.doi.org/10.5176/2382-5685_vetsci13.58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electroencephalographic (EEG)"

1

Engheta, Nader, Edward N. Pugh, and Jr. Selected Electromagnetic Problems in Electroencephalography (EEG) Fields in Complex Media and Small Radiating Elements in Dissipative Media. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Whitaker, Keith W., and W. D. Hairston. Assessing the Minimum Number of Synchronization Triggers Necessary for Temporal Variance Compensation in Commercial Electroencephalography (EEG) Systems. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada568650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rawal, Sandhya. Weighted Phase Lag Index (WPLI) as a Method for Identifying Task-Related Functional Networks in Electroencephalography (EEG) Recordings during a Shooting Task. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada558399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamlin, Alexandra, Erik Kobylarz, James Lever, Susan Taylor, and Laura Ray. Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42562.

Повний текст джерела
Анотація:
This paper investigates the feasibility of using non-cerebral, time-series data to detect epileptic seizures. Data were recorded from fifteen patients (7 male, 5 female, 3 not noted, mean age 36.17 yrs), five of whom had a total of seven seizures. Patients were monitored in an inpatient setting using standard video electroencephalography (vEEG), while also wearing sensors monitoring electrocardiography, electrodermal activity, electromyography, accelerometry, and audio signals (vocalizations). A systematic and detailed study was conducted to identify the sensors and the features derived from the non-cerebral sensors that contribute most significantly to separability of data acquired during seizures from non-seizure data. Post-processing of the data using linear discriminant analysis (LDA) shows that seizure data are strongly separable from non-seizure data based on features derived from the signals recorded. The mean area under the receiver operator characteristic (ROC) curve for each individual patient that experienced a seizure during data collection, calculated using LDA, was 0.9682. The features that contribute most significantly to seizure detection differ for each patient. The results show that a multimodal approach to seizure detection using the specified sensor suite is promising in detecting seizures with both sensitivity and specificity. Moreover, the study provides a means to quantify the contribution of each sensor and feature to separability. Development of a non-electroencephalography (EEG) based seizure detection device would give doctors a more accurate seizure count outside of the clinical setting, improving treatment and the quality of life of epilepsy patients.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

EEG data might help identify children at risk for social anxiety. ACAMH, March 2021. http://dx.doi.org/10.13056/acamh.15048.

Повний текст джерела
Анотація:
Electroencephalography (EEG) is a non-invasive method to monitor the electrical activity of the brain. There are five main broad frequency bands in the EEG power spectrum: alpha, beta, gamma, delta and theta. Data suggest that EEG-derived delta–beta coupling — indicating related activity in the delta and beta frequency bands — might serve as a marker of emotion regulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії