Добірка наукової літератури з теми "Electrodics and Electrocatalysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electrodics and Electrocatalysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electrodics and Electrocatalysis"

1

Zou, Yiming, Ronn Goei, Su-Ann Ong, Amanda Jiamin ONG, Jingfeng Huang, and Alfred Iing Yoong TOK. "Development of Core-Shell Rh@Pt and Rh@Ir Nanoparticle Thin Film Using Atomic Layer Deposition for HER Electrocatalysis Applications." Processes 10, no. 5 (May 18, 2022): 1008. http://dx.doi.org/10.3390/pr10051008.

Повний текст джерела
Анотація:
The efficiency of hydrogen gas generation via electrochemical water splitting has been mostly limited by the availability of electrocatalyst materials that require lower overpotentials during the redox reaction. Noble metals have been used extensively as electrocatalysts due to their high activity and low overpotentials. However, the use of single noble metal electrocatalyst is limited due to atomic aggregation caused by its inherent high surface energy, which results in poor structural stability, and, hence, poor electrocatalytic performance and long-term stability. In addition, using noble metals as electrocatalysts also causes the cost to be unnecessarily high. These limitations in noble metal electrocatalysts could be enhanced by combining two noble metals in a core-shell structure (e.g., Rh@Ir) as a thin film over a base substrate. This could significantly enhance electrocatalytic activity due to the following: (1) the modification of the electronic structure, which increases electrical conductivity; (2) the optimization of the adsorption energy; and (3) the introduction of new active sites in the core-shell noble metal structure. The current state-of-the-art employs physical vapor deposition (PVD) or other deposition techniques to fabricate core-shell noble metals on flat 2D substrates. This method does not allow 3D substrates with high surface areas to be used. In the present work, atomic layer deposition (ALD) was used to fabricate nanoparticle thin films of Rh@Ir and Rh@Pt in a core-shell structure on glassy carbon electrodes. ALD enables the fabrication of nanoparticle thin film on three-dimensional substrates (a 2D functional film on a 3D substrate), resulting in a significantly increased surface area for a catalytic reaction to take place; hence, improving the performance of electrocatalysis. The Rh@Pt (with an overpotential of 139 mV and a Tafel slope of 84.8 mV/dec) and Rh@Ir (with an overpotential of 169 mV and a Tafel slope of 112 mV/dec) core-shell electrocatalyst exhibited a better electrocatalytic performances compared to the single metal Rh electrocatalyst (with an overpotential of 300 mV and a Tafel slope of 190 mV/dec). These represented a 54% and a 44% improvement in performance, respectively, illustrating the advantages of core-shell thin film nanostructures in enhancing the catalytic performance of an electrocatalyst. Both electrocatalysts also exhibited good long-term stability in the harsh acidic electrolyte conditions when subjected to chronopotentiometry studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weng, Yu-Ching, Cheng-Jen Ho, Hui-Hsuan Chiao, and Chen-Hao Wang. "Pt3Ni/C and Pt3Co/C cathodes as electrocatalysts for use in oxygen sensors and proton exchange membrane fuel cells." Zeitschrift für Naturforschung B 75, no. 12 (December 16, 2020): 1029–35. http://dx.doi.org/10.1515/znb-2020-0116.

Повний текст джерела
Анотація:
AbstractThe composites Pt3Ni/C and Pt3Co/C are electrocatalysts for oxygen reduction reactions (ORRs). This study compares the electrocatalytic activity of these electrodes that are used to detect oxygen, and determines their suitability for use in proton exchange membrane fuel cells (PEMFCs). Chemical reduction is used to produce the Pt3Ni/C and Pt3Co/C electrocatalysts. The particle size, elemental composition and crystallinity of the intermetallic electrocatalysts are determined using transmission electron microscopy (TEM) and an energy-dispersive spectrometer (EDX). The ORR activity of the Pt3Ni/C and Pt3Co/C electrocatalysts is determined using cyclic voltammetry (CV), a polarization curve (PC) and a rotating disk electrode (RDE). The Pt3Ni/C electrode registers a greater current for the ORR as compared to the Pt3Co/C electrode. Both electrodes exhibit a linear relationship between response current and oxygen concentration in the detection range from 100 to 1000 ppm. The Pt3Ni/C electrode exhibits a significant sensitivity to oxygen up to 13.4 μA ppm−1 cm−2. A membrane electrode assembly (MEA) that is produced using Pt3Ni/C as a cathodic electrocatalyst in a single PEMFC generates a maximum power density of 1097 mW cm−2.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kudur Jayaprakash, Gururaj, B. E. Kumara Swamy, Roberto Flores-Moreno, and Kayim Pineda-Urbina. "Theoretical and Cyclic Voltammetric Analysis of Asparagine and Glutamine Electrocatalytic Activities for Dopamine Sensing Applications." Catalysts 13, no. 1 (January 3, 2023): 100. http://dx.doi.org/10.3390/catal13010100.

Повний текст джерела
Анотація:
The molecular dynamics and density functional theory (DFT) can be applied to discriminate electrocatalyst’s electron transfer (ET) properties. It will be interesting to discriminate the ET properties of green electrocatalysts such as amino acids. Here, we have used DFT to compare the electrocatalytic abilities of asparagine and glutamine at the carbon paste electrode interface. Cyclic voltammetric results reveal that the electrocatalytic activities of aspargine are higher than glutamine for dopamine sensing. Dopamine requires less energy to bind with asparagine when compared to glutamine. Additionally, asparagine has higher electron-donating and accepting powers. Therefore, asparagine has a higher electrocatalytic activity than glutamine—the ability for the asparagine and glutamine carbon electrodes to detect dopamine in commercial injection, and to obtain satisfactory results. As a part of the work, we have also studied dopamine interaction with the modified carbon surface using molecular dynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Zhiying, Minghui Hao, Xin Liu, Jingjing Ma, Liang Wang, Chunhu Li та Wentai Wang. "Co(OH)2 Nanoflowers Decorated α-NiMoO4 Nanowires as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting". Catalysts 12, № 11 (11 листопада 2022): 1417. http://dx.doi.org/10.3390/catal12111417.

Повний текст джерела
Анотація:
The development of bifunctional electrocatalysts with high catalytic activity and cyclic stability is an effective method for electrocatalytic water splitting. Herein, a promising hydroxide/oxide Co(OH)2/α-NiMoO4 NWs/CC heterostructure with nanoflowers decorating the nanowires was fabricated on a carbon cloth (CC) substrate via hydrothermal and calcination methods. In contrast to one-dimensional nanomaterials, the interfaces of Co(OH)2 nanoflowers and α-NiMoO4 nanowires on CC provide more active sites for electrocatalytic reactions; therefore, they exhibit obviously enhanced electrocatalytic activities in overall water splitting. Specifically, the Co(OH)2/α-NiMoO4 NWs/CC electrodes exhibit an overpotential of 183.01 mV for hydrogen evolution reaction (HER) and of 170.26 mV for oxygen evolution reactions (OER) at the current density of 10 mA cm−2 in 1.0 M KOH. Moreover, the electrocatalytic oxygen evolution reaction (OER) activity of the Co(OH)2/α-NiMoO4 NWs/CC electrocatalyst was enhanced after long-term stability tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tang, Chaoyun, Tewodros Asefa, and Nianqiang Wu. "Metal-Coordinated Hydrogels As Efficient Oxygen Evolution Electrocatalysts." ECS Meeting Abstracts MA2022-02, no. 48 (October 9, 2022): 1798. http://dx.doi.org/10.1149/ma2022-02481798mtgabs.

Повний текст джерела
Анотація:
Conductive polymer hydrogels have large surface area and high conductivity. Their properties can easily be tailored further by functionalizing them with metals and nonmetals. However, the potential of metal-conjugated hydrogels for electrocatalysis has rarely been investigated. In this work, we report the synthesis of transition metals-conjugated polyaniline-phytic acid (PANI-PA) hydrogels that show efficient electrocatalytic properties for the oxygen evolution reaction (OER). Among many transition metals studied, Fe is accommodated by the hydrogel the most because of the favorable affinity of the PA groups in the hydrogel for Fe. Meanwhile, those containing both Fe and Co are found to be the most effective for electrocatalysis of OER. The most optimized such hydrogel, NF@Hgel-Fe0.3Co0.1, which has 3:1 ratio of Fe and Co, needs an overpotential of only 280 mV to catalyze OER with a current density of 10 mV cm-2 in 1 M KOH solution. Furthermore, these metal-doped PANI-PA hydrogels can easily be loaded on nickel foam and carbon cloth via a simple soak-and-dry method to form free-standing electrodes. Overall, the work demonstrates a facile synthesis and fabrication of sustainable OER electrocatalysts and electrodes that are composed of easily processable hydrogels conjugated with various earth-abundant transition metals. Figure R. Schematic illustration of the synthesis of PA-PANI-Metal (Hgel-M x ) hydrogels for electrocatalysis of OER. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Balint, Lorena-Cristina, Iosif Hulka, and Andrea Kellenberger. "Pencil Graphite Electrodes Decorated with Platinum Nanoparticles as Efficient Electrocatalysts for Hydrogen Evolution Reaction." Materials 15, no. 1 (December 23, 2021): 73. http://dx.doi.org/10.3390/ma15010073.

Повний текст джерела
Анотація:
Platinum-based materials are widely known as the most utilized and advanced catalysts for hydrogen evolution reaction. For this reason, several studies have reported alternative methods of incorporating this metal into more economical electrodes with a carbon-based support material. Herein, we report on the performance of pencil graphite electrodes decorated with electrochemically deposited platinum nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. The electrodeposition of platinum was performed via pulsed current electrodeposition and the effect of current density on the electrocatalytic activity was investigated. The obtained electrodes were characterized using cyclic voltammetry, while the electrocatalytic activity was assessed through linear sweep voltammetry. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were utilised to gain an insight into surface morphology and chemical analysis of platinum nanoparticles. The best performing electrocatalyst, at both low and high current densities, was characterized by the highest exchange current density of 1.98 mA cm−2 and an ultralow overpotential of 43 mV at a current density of 10 mA cm−2. The results show that, at low current densities, performances closest to that of platinum can be achieved even with an ultralow loading of 50 µg cm−2 Pt.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, Sang Kyum, Ji Yun Park, Soon Choel Hwang, Do Kyun Lee, Sang Heon Lee, Moon Hee Han, and Young Woo Rhee. "Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell." Journal of Nanomaterials 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/960379.

Повний текст джерела
Анотація:
Nanosized Pt-Sn/VC and Pt-Co/VC electrocatalysts were prepared by a one-step radiation-induced reduction (30 kGy) process using distilled water as the solvent and Vulcan XC72 as the supporting material. While the Pt-Co/VC electrodes were compared with Pt/VC (40 wt%, HiSpec 4000), in terms of their electrocatalytic activity towards the oxidation of H2, the Pt-Co/VC electrodes were evaluated in terms of their activity towards the hydrogen oxidation reaction (HOR) and compared with Pt/VC (40 wt%, HiSpec 4000), Pt-Co/VC, and Pt-Sn/VC in a single cell. Additionally, the prepared electrocatalyst samples (Pt-Co/VC and Pt-Sn/VC) were characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical surface area (ECSA), and fuel cell polarization performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Owhoso, Fiki V., and David G. Kwabi. "Effect of Covalent Modification on Proton-Coupled Electron Transfer at Quinone-Functionalized Carbon Electrodes." ECS Meeting Abstracts MA2022-02, no. 57 (October 9, 2022): 2171. http://dx.doi.org/10.1149/ma2022-02572171mtgabs.

Повний текст джерела
Анотація:
Electrodes functionalized with molecularly well-defined reactive/catalytic species have become attractive for promoting a wide variety of electrochemical energy conversion processes or systems, such as electrocatalytic CO2 and O2 reduction, as well as metal-sulfur and redox-flow batteries.1-3 Critical to the performance of these electrodes is the interaction between the electric field, and the molecular species at the electrical double layer. Nevertheless, elucidating the potential/electric field experienced at the functionalized interface is challenging. We show in this work that the acid-base thermochemical (i.e. Pourbaix) behavior of molecular quinones can vary depending on their mode of covalent attachment to a carbon electrode and ionic strength of the electrolyte, in a manner that sheds light on the experienced interfacial electric field. This work can inform strategies for effective pH modulation at electrified interfaces in ways that can enhance the electrocatalytic processes and systems mentioned above, and enable newer applications such as pH-swing-based electrochemical CO2 capture using appropriately chemically modified electrodes.4 References 1 Ren, G. et al. Porous Core–Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 8, 4118-4125, doi:10.1021/acsami.5b11786 (2016). 2 Zhang, S., Fan, Q., Xia, R. & Meyer, T. J. CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Accounts of Chemical Research 53, 255-264, doi:10.1021/acs.accounts.9b00496 (2020). 3 Zhao, C.-X. et al. Semi-Immobilized Molecular Electrocatalysts for High-Performance Lithium–Sulfur Batteries. Journal of the American Chemical Society 143, 19865-19872, doi:10.1021/jacs.1c09107 (2021). 4 Jin, S., Wu, M., Gordon, R. G., Aziz, M. J. & Kwabi, D. G. pH swing cycle for CO2 capture electrochemically driven through proton-coupled electron transfer. Energy & Environmental Science, doi:10.1039/D0EE01834A (2020).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Díaz-Sainz, Guillermo, Manuel Alvarez-Guerra, and Angel Irabien. "Continuous Electrochemical Reduction of CO2 to Formate: Comparative Study of the Influence of the Electrode Configuration with Sn and Bi-Based Electrocatalysts." Molecules 25, no. 19 (September 28, 2020): 4457. http://dx.doi.org/10.3390/molecules25194457.

Повний текст джерела
Анотація:
Climate change has become one of the most important challenges in the 21st century, and the electroreduction of CO2 to value-added products has gained increasing importance in recent years. In this context, formic acid or formate are interesting products because they could be used as raw materials in several industries as well as promising fuels in fuel cells. Despite the great number of studies published in the field of the electrocatalytic reduction of CO2 to formic acid/formate working with electrocatalysts of different nature and electrode configurations, few of them are focused on the comparison of different electrocatalyst materials and electrode configurations. Therefore, this work aims at presenting a rigorous and comprehensive comparative assessment of different experimental data previously published after many years of research in different working electrode configurations and electrocatalysts in a continuous mode with a single pass of the inputs through the reactor. Thus, the behavior of the CO2 electroreduction to formate is compared operating with Sn and Bi-based materials under Gas Diffusion Electrodes (GDEs) and Catalyst Coated Membrane Electrodes (CCMEs) configurations. Considering the same electrocatalyst, the use of CCMEs improves the performance in terms of formate concentration and energy consumption. Nevertheless, higher formate rates can be achieved with GDEs because they allow operation at higher current densities of up to 300 mA·cm−2. Bi-based-GDEs outperformed Sn-GDEs in all the figures of merit considered. The comparison also highlights that in CCME configuration, the employ of Bi-based-electrodes enhanced the behavior of the process, increasing the formate concentration by 35% and the Faradaic efficiency by 11%.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Garcia-Contreras, M. A., S. M. Fernandez-Valverde, and J. R. Vargas-Garcia. "PtNi and CoNi Film Electrocatalysts Prepared by MOCVD for the Oxygen Reduction Reaction in Alkaline Media." Journal of New Materials for Electrochemical Systems 14, no. 2 (April 5, 2011): 81–85. http://dx.doi.org/10.14447/jnmes.v14i2.114.

Повний текст джерела
Анотація:
CoNi and PtNi film electrocatalysts were prepared by Metal-Organic Chemical Vapour Deposition (MOCVD) and their electrocatalytic activity for the oxygen reduction reaction (ORR) in 0.5 M KOH was investigated by cyclic voltammetry and Rotating Disk Electrode techniques. Experiments included working electrodes of Co, Ni and Pt prepared also by MOCVD for comparison. The film electrocatalysts were characterized by X-ray diffraction, Scanning Electronic Microscopy and Energy dispersive X-ray analysis. Films thickness was about 200-250 nm and nanocrystallites were found in the range of 12 to 30 nm. In the same experimental conditions, the overpotential for the ORR at a current density of 1 mA cm-2 for PtNi film was 120 mV lower than the overpotential of Pt film electrocatalyst, and an enhanced activity was observed on PtNi with respect to Pt. The electrochemical response for the oxygen reduction reaction on CoNi film was higher than those of elemental Ni and Co films obtained by MOCVD. A good stability was obtained in a chronoamperometry test for the PtNi electrode, only affected by oxygen flow variations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electrodics and Electrocatalysis"

1

Cleghorn, Simon John Charles. "Electrocatalytic hydrogenation at palladium electrodes." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Przeworski, J. E. "The development of chemically modified electrodes for electrocatalysis." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Williams, Mario. "Characterization of platinum-group metal nanophase electrocatalysts employed in the direct methanol fuel cell and solid-polymer electrolyte electrolyser." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&amp.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Walker, Rachel Claire. "In-situ spectroscopic studies of electrocatalytic electrodes." Thesis, University of Bath, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Youjiang. "Fundamental Aspects of Electrocatalysis at Metal and Metal Oxide Electrodes." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1284390270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sheppard, Sally-Ann. "Characterisation of dispersed, platinum-coated fuel cell electrodes." Thesis, University of Portsmouth, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Heim, Matthias. "Elaboration, characterisation and applications of porous electrodes." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14373/document.

Повний текст джерела
Анотація:
Dans ce travail des électrodes macro- et mesoporeuses hautement organisées ont été fabriquées grâce à l' électrodéposition dans différents types de template. Des cristaux colloïdaux obtenus par la technique de Langmuir-Blodgett ont été infiltrés par des métaux ou des polymères conducteurs en utilisant l'électrodéposition potentiostatique suivi par la dissolution du template. La taille des pores, ainsi que l'épaisseur du film macroporeux pouvaient être contrôlée respectivement par le diamètre des billes de silice et par des oscillations temporelles du courant. Différentes superstructures colloïdales ont également été produites menant à des électrodes avec des défauts artificiels ou des gradients bien définis en termes de taille des pores. Des couches alternantes de différents métaux ont été déposées avec grande précision dans une monocouche de particules entrainant une modification des propriétés optiques du matériau. La miniaturisation a pu être démontrée par l'élaboration des microcylindres d'or macroporeux qui disposent non seulement d'une plus grande surface active mais aussi d'une plus grande activité catalytique envers la réduction de l'oxygène en comparaison avec leurs homologues non poreux. Dans ce même contexte une cellule électrochimique miniaturisée composé de deux électrodes macroporeuses a été proposée. Par ailleurs du platine mesoporeux a été électrodéposé en présence d`un template de type cristaux liquides lyotropes sur des réseaux de microélectrodes. Grâce à une plus grande surface active par rapport à leurs homologues non poreux des microélectrodes mesoporeuses ont montré une meilleure performance dans l'enregistrement de l' activité neuronale due à un niveau de bruit plus faible
In the present work template-assisted electrodeposition was used to produce highly ordered macro- and mesoporous electrodes. Colloidal crystals obtained by the Langmuir-Blodgett (LB) technique were infiltrated using potentiostatic electrodeposition of metals and conducting polymers followed by removal of the inorganic template. In the resulting macroporous electrodes, the pore diameter was controlled by the size of the silica spheres, while the thickness could be controlled by temporal current oscillations caused by a periodic change of the electroactive area in the template. Various colloidal superstructures were produced in this way leading to electrodes with on purpose integrated planar defects or well-defined gradients in terms of pore size. Furthermore we showed that alternating multilayers of different metals could be deposited with high accuracy into a colloidal monolayer altering the optical properties of the material. Successful miniaturization of the process was demonstrated by elaborating macroporous gold microcylinders showing besides higher active surface areas also increased catalytic activity towards the reduction of oxygen compared to their flat homologues. In this context a miniaturized electrochemical cell composed of two macroporous gold electrodes was also proposed. Finally, mesoporous platinum films were deposited on microelectrode arrays (MEAs) using lyotropic liquid crystals as templates. The increased surface area of mesoporous compared to smooth electrodes led to improved performance in the recording of neuronal activity with MEAs owing to a reduced noise level
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sharma, Vivek Vishal <1987&gt. "Development and Application of Chemically Modified Electrodes for Sensing and Electrocatalysis." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amsdottorato.unibo.it/8147/1/Vivek_Sharma_PhD%20Thesis.pdf.

Повний текст джерела
Анотація:
An electrochemical sensor based on a glassy carbon electrode (GCE) modified by a thin film of hybrid copper cobalt hexacyanoferrate (Cu-CoHCF) was prepared and tested for the determination of three thiols: L-cysteine (CySH), L-glutathione (GSH) and 1,4-butanedithiol (BdSH). Cyclic voltammetry (CV) measurements were carried out with the as prepared and thermally treated chemically modified electrode (CME) in phosphate buffer solution from pH 2 to 7. CV results showed that at pH higher than 5, the Cu-CoHCF layer was unstable and underwent significant fouling. Then, chronoamperometric measurements were carried out to develop an analytical method for the determination of thiols. Cysteine showed the lowest limit of detection (7.5 × 10-7 M), but GSH and BdSH also showed good results. The above sensor was also employed for the indirect determination of Hg2+. It exploits the formation of a redox inactive complex with thiols. CySH and BdSH were used, with the former giving more sensitive results. Interference studies led to Cu2+ being the major interferent. The interference from Cu2+ was avoided by exploiting the faster reaction kinetics between CysH and Hg2+. GCE were also modified by carbon nanomaterials, graphene oxide, GO, and multi-walled carbon nanotubes alone, mixed together (Composite) or in the form of bi-layers. The reduction of GO was carried out by means of a green approach using electroreduction. Catechol and dopamine, which are representative of polyphenols class were investigated to find which of them allows the best electron transfer kinetics. To this aim the fouling effects of the electrode surface were also taken into account. The electrochemically active areas were estimated by using two approaches in order to highlight the different phenomena that could affect the redox processes of the two analytes at the different CME. The Composite configuration displayed the best compromise in terms of sensitivity and resistance to fouling.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barron, Olivia. "Catalyst Coated Membranes (CCMs) for polymerelectrolyte Membrane (PEM) fuel cells." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_4757_1307336145.

Повний текст джерела
Анотація:

The main objective of this work it to produce membrane electrode assemblies (MEAs) that have improved performance over MEAs produced by the conventional manner, by producing highly efficient, electroactive, uniform catalyst layers with lower quantities of platinum electrocatalyst. The catalyst coated membrane (CCM) method was used to prepare the MEAs for the PEM fuel cell as it has been reported that this method of MEA fabrication can improve the performance of PEM fuel cells. The MEAs performances were evaluated using polarisation studies on a single cell. A comparison of polarisation curves between CCM MEAs and MEAs produced in the conventional manner illustrated that CCM MEAs have improved performance at high current densities (>
800 mA/cm2).

Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baez, Baez Victor Antonio. "Metal oxide coated electrodes for oxygen reduction." Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electrodics and Electrocatalysis"

1

Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry (1991 Case Western Reserve University). Proceedings of the Workshop on Structural Effects in Electrocatalysis and Oxygen Electrochemistry, October 29-November 1, 1991, Case Center for Electrochemical Sciences, Case Western Reserve University. Edited by Scherson D, United States. Dept. of Energy. Office of Propulsion Systems., and Electrochemical Society. Pennington, NJ: Electrochemical Society, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xing, Wei, Jiujun Zhang, and Geping Yin. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier Science & Technology Books, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xing, Wei, Jiujun Zhang, and Geping Yin. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oxygen electrode bifunctional electrocatalyst NiCoO spinel. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wieckowski, Andrzej, Paul A. Christensen, and Shi-Gang Sun. In-Situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Elsevier Science & Technology Books, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

-G, Sun S., Christensen P. A. 1960-, and Więckowski Andrzej 1945-, eds. In-situ spectroscopic studies of adsorption at the electrode and electrocatalysis. Amsterdam: Elsevier, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

(Editor), Shi-Gang Sun, Paul A. Christensen (Editor), and Andrzej Wieckowski (Editor), eds. In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Elsevier Science, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Scholz, Fritz, Uwe Schröder, and Rubin Gulaboski. Electrochemistry of Immobilized Particles and Droplets: Experiments with Three-Phase Electrodes. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Scholz, Fritz, Uwe Schröder, Rubin Gulaboski, and Antonio Doménech-Carbó. Electrochemistry of Immobilized Particles and Droplets: Experiments with Three-Phase Electrodes. Springer International Publishing AG, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scholz, Fritz, Uwe Schröder, Rubin Gulaboski, and Antonio Doménech-Carbó. Electrochemistry of Immobilized Particles and Droplets: Experiments with Three-Phase Electrodes. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electrodics and Electrocatalysis"

1

Kita, Hideaki, Hiroshi Nakajima, and Katsuaki Shimazu. "Electrocatalysis on SPE Membrane Electrodes." In Electrochemistry in Transition, 619–28. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-9576-2_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saikrithika, Sairaman, Yesudas K. Yashly, and Annamalai Senthil Kumar. "Quinones and Organic Dyes Based Redox-Active Organic Molecular Compounds Immobilized Surfaces for Electrocatalysis and Bioelectrocatalysis Applications." In Organic Electrodes, 415–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98021-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tucceri, Ricardo. "Applications of Nonconducting Poly(o-aminophenol) Films in Bioelectrochemistry and Electrocatalysis." In Poly(o-aminophenol) Film Electrodes, 137–68. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02114-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hao, Feng, and Hong Lin. "Electrocatalysts for T-Mediated Dye-Sensitized Solar Cells." In Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 367–93. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ye, Meidan, Qun Liu, James Iocozzia, Xiaodan Hong, Xiangyang Liu, and Zhiqun Lin. "Polycomponent Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells." In Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 323–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Theerthagiri, Jayaraman, and Jagannathan Madhavan. "Pt Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells." In Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 27–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kavan, Ladislav. "Graphene Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells." In Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 123–53. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhou, Xiao, Chen Wang, Yangliang Zhang, Wen Fang, Yuzhi Hou, Chen Zhang, Xiaodong Wang, and Sining Yun. "Cell Efficiency Table of DSSCs with Various Counter Electrode Electrocatalysts." In Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 531–617. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.app1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anuratha, K. S., and J. Y. Lin. "Carbon Nanotube Electrocatalysts for I-Mediated Dye-Sensitized Solar Cells." In Counter Electrodes for Dye-sensitized and Perovskite Solar Cells, 93–121. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Battisti, A., L. Nanni, G. Battaglin, and Ch Comninellis. "Oxide Electrocatalysts. The Case of RuO2-Based Film Electrodes." In New Promising Electrochemical Systems for Rechargeable Batteries, 197–211. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1643-2_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electrodics and Electrocatalysis"

1

Haussener, Sophia. "Multi-physical transport in structured (photo)electrodes." In International Conference on Electrocatalysis for Energy Applications and Sustainable Chemicals. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.ecocat.2020.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fan, Hong Jin. "Smart Electrodes for electrocatalytic water splitting." In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ola, Oluwafunmilola, and Yanqiu Zhu. "Two-Dimensional WS2/g-C3N4 Layered Heterostructures With Enhanced Pseudocapacitive and Electrocatalytic Properties." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23137.

Повний текст джерела
Анотація:
Abstract In this work, tungsten-based hybrid nanocomposites were grown on interconnected, macroscopic graphitic carbon nitride scaffold after solvothermal treatment followed by sulfidation to attain multifunctional composite electrocatalysts. The physicochemical properties of the obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The tungsten-based composites were tested as electrodes for pseudocapacitors and as electrocatalysts for hydrogen evolution reaction, to take advantage of their porous graphitic carbon nitride features which would be beneficial for optimal ion transport to tungsten-based nanoparticles. These unique physicochemical features endow these composites with excellent electrochemical performances to reach a current density of 10 mA/cm2 for the hydrogen evolution reaction. In addition to demonstrating excellent specific capacitance, these hybrid nanocomposites also possess good stability after 8 hours of testing.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"A novel Modified Electrodes as Methanol Fuel Cell Nano-Electrocatalysts." In 2nd International Conference on Research in Science, Engineering and Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0314525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jiang, Tao, Yan Wang, Ghislain Montavon, Hanlin Liao, Taikai Liu, Regine Reissner, and Syed Asif Ansar. "Engineered Thermal Sprayed Oxygen Evolution Electrode for Hydrogen Production by Alkaline Water Electrolysis." In ITSC2019, edited by F. Azarmi, K. Balani, H. Koivuluoto, Y. Lau, H. Li, K. Shinoda, F. Toma, J. Veilleux, and C. Widener. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.itsc2019p0388.

Повний текст джерела
Анотація:
Abstract This study shows how HVOF-sprayed NiAl coatings produced using chemical and electrochemical activation processes can serve as oxygen evolution electrodes in alkaline water electrolysis systems. Freestanding hierarchical NiAl structures produced without chemical binders exhibit electrocatalytic performance comparable to state-of-the-art noble catalysts characterized by very low overpotential and high current density without degradation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sun, Gongquan, Guoxiong Wang, Suli Wang, Shiyou Yan, Shaohua Yang, and Qin Xin. "Studies on Electrocatalysts, MEAs and Compact Stacks of Direct Alcohol Fuel Cells." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97244.

Повний текст джерела
Анотація:
A number of carbon supported bi/multi-metallic Pt-based electrocatalysts with a metal particle-size and shape controllable in nanoscale and a narrow size distribution were prepared by the improved polyol method. Among the electrocatalysts prepared in-house, PtSn/C showed a high direct ethanol fuel cell performance and PtPd/C exhibited a favorable methanol-tolerant property and oxygen-reduction activity. Several MEA fabrication methods such as direct-spray, decal and screen-printing were developed, through which the pore structure and hydrophilic/hydrophobic properties in the MEAs could be controlled desirably. With multi-layer structured electrodes, the maximum power density of 300 mW/cm2 and 240 mW/cm2 for the single cells were achieved at 90 °C under 0.2 MPa pressures of oxygen and air, respectively. Several demonstrations of active and passive compact DMFC systems ranging from sub-watts to 200 watt were fabricated. Some of them were demonstrated in PDA, toy cars, mobile phones and laptop computers.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fuchs, Timo, Valentín Briega-Martos, Jakub Drnec, Jan O. Fehrs, Chentian Yuan, David A. Harrington, Federico Calle-Vallejo, Serhiy Cherevko, and Olaf M. Magnussen. "In situ surface X-ray diffraction study of the oxide growth and dissolution of Pt single crystal electrodes." In International Conference on Frontiers in Electrocatalytic Transformations. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.interect.2022.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Ruiter, Jim. "Probing the Dynamics of Low-Overpotential CO2‑to-CO Activation on Copper Electrodes with Time-Resolved Raman Spectroscopy." In International Conference on Frontiers in Electrocatalytic Transformations. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.interect.2022.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kas, Recep, Andrew G. Star, Kailun Yang, Tim Van Cleve, K. C. Neyerlin, and Wilson A. Smith. "The Influence of Along-the-Channel Gradients on Spatioactivitiy and Spatioselectivity of Gas Diffusion Electrodes during Electrochemical CO2 Reduction." In International Conference on Electrocatalysis for Energy Applications and Sustainable Chemicals. València: Fundació Scito, 2020. http://dx.doi.org/10.29363/nanoge.ecocat.2020.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aghasibeig, M., R. Wuthrich, C. Moreau, and A. Dolatabadi. "Electrocatalytic Behavior of Nickel Coatings Formed by APS and SPS Processes." In ITSC 2014, edited by R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, G. Mauer, A. McDonald, and F. L. Toma. DVS Media GmbH, 2014. http://dx.doi.org/10.31399/asm.cp.itsc2014p0739.

Повний текст джерела
Анотація:
Abstract Intrinsically active nickel electrodes with large porous surface areas have shown promise for producing hydrogen by alkaline water electrolysis. In this study, Ni powder and NiO suspensions were sprayed on Inconel 600 substrates with an atmospheric plasma gun, producing single (Ni, NiO) and double layer (Ni-NiO) coatings. Top surface morphologies were examined, revealing both micro and nano scale features. Based on kinetic parameters obtained from steady-state polarization measurements, APS-SPS coated electrodes are the most catalytically active and thus have the most potential for hydrogen evolution. It is believed that the nanoscale structure increases effective surface area while the microporous structure facilitates mass transport and overcomes hydrogen bubble blockage.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electrodics and Electrocatalysis"

1

Yeager, E., and S. Gupta. Electrocatalysts for oxygen electrodes. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/7011191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yeager, E. B. Electrocatalysts for oxygen electrodes. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5850798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yeager, E. Electrocatalysts for oxygen electrodes. Final report. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10181908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yeager, E. B. Electrocatalysts for oxygen electrodes. Final report. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/10129829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yeager, E. Electrocatalysts for oxygen electrodes: Final report. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/6158269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yeager, E. Electrocatalysts for oxygen electrodes: Final report. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/5261534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kim, T.-W. Structure and Electrocatalysis of Sputtered RuPt Thin-film Electrodes. Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/839765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Feng, Jianren. Anodic oxygen-transfer electrocatalysis at iron-doped lead dioxide electrodes. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10190344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hsiao, Yun-Lin. Electrocatalysis of anodic oxygen-transfer reactions at modified lead dioxide electrodes. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6562056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chang, Hsiangpin. Selective electrocatalysis of anodic oxygen-transfer reactions at chemically modified, thin-film lead dioxide electrodes. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6974822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії