Добірка наукової літератури з теми "Electrode interface"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electrode interface".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electrode interface":

1

Polachan, Kurian, Baibhab Chatterjee, Scott Weigand, and Shreyas Sen. "Human Body–Electrode Interfaces for Wide-Frequency Sensing and Communication: A Review." Nanomaterials 11, no. 8 (August 23, 2021): 2152. http://dx.doi.org/10.3390/nano11082152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Several on-body sensing and communication applications use electrodes in contact with the human body. Body–electrode interfaces in these cases act as a transducer, converting ionic current in the body to electronic current in the sensing and communication circuits and vice versa. An ideal body–electrode interface should have the characteristics of an electrical short, i.e., the transfer of ionic currents and electronic currents across the interface should happen without any hindrance. However, practical body–electrode interfaces often have definite impedances and potentials that hinder the free flow of currents, affecting the application’s performance. Minimizing the impact of body–electrode interfaces on the application’s performance requires one to understand the physics of such interfaces, how it distorts the signals passing through it, and how the interface-induced signal degradations affect the applications. Our work deals with reviewing these elements in the context of biopotential sensing and human body communication.
2

Aharon, Hannah, Omer Shavit, Matan Galanty, and Adi Salomon. "Second Harmonic Generation for Moisture Monitoring in Dimethoxyethane at a Gold-Solvent Interface Using Plasmonic Structures." Nanomaterials 9, no. 12 (December 16, 2019): 1788. http://dx.doi.org/10.3390/nano9121788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Second harmonic generation (SHG) is forbidden from most bulk metals because metals are characterized by centrosymmetric symmetry. Adsorption or desorption of molecules at the metal interface can break the symmetry and lead to SHG responses. Yet, the response is relatively low, and minute changes occurring at the interface, especially at solid/liquid interfaces, like in battery electrodes are difficult to assess. Herein, we use a plasmonic structure milled in a gold electrode to increase the overall SHG signal from the interface and gain information about small changes occurring at the interface. Using a specific homebuilt cell, we monitor changes at the liquid/electrode interface. Specifically, traces of water in dimethoxyethane (DME) have been detected following changes in the SHG responses from the plasmonic structures. We propose that by plasmonic structures this technique can be used for assessing minute changes occurring at solid/liquid interfaces such as battery electrodes.
3

Keogh, Conor. "Optimizing the neuron-electrode interface for chronic bioelectronic interfacing." Neurosurgical Focus 49, no. 1 (July 2020): E7. http://dx.doi.org/10.3171/2020.4.focus20178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Engineering approaches have vast potential to improve the treatment of disease. Brain-machine interfaces have become a well-established means of treating some otherwise medically refractory neurological diseases, and they have shown promise in many more areas. More widespread use of implanted stimulating and recording electrodes for long-term intervention is, however, limited by the difficulty in maintaining a stable interface between implanted electrodes and the local tissue for reliable recording and stimulation.This loss of performance at the neuron-electrode interface is due to a combination of inflammation and glial scar formation in response to the implanted material, as well as electrical factors contributing to a reduction in function over time. An increasing understanding of the factors at play at the neural interface has led to greater focus on the optimization of this neuron-electrode interface in order to maintain long-term implant viability.A wide variety of approaches to improving device interfacing have emerged, targeting the mechanical, electrical, and biological interactions between implanted electrodes and the neural tissue. These approaches are aimed at reducing the initial trauma and long-term tissue reaction through device coatings, optimization of mechanical characteristics for maximal biocompatibility, and implantation techniques. Improved electrode features, optimized stimulation parameters, and novel electrode materials further aim to stabilize the electrical interface, while the integration of biological interventions to reduce inflammation and improve tissue integration has also shown promise.Optimization of the neuron-electrode interface allows the use of long-term, high-resolution stimulation and recording, opening the door to responsive closed-loop systems with highly selective modulation. These new approaches and technologies offer a broad range of options for neural interfacing, representing the possibility of developing specific implant technologies tailor-made to a given task, allowing truly personalized, optimized implant technology for chronic neural interfacing.
4

Leskes, Michal. "(Invited) Elucidating the Structure and Function of the Electrode-Electrolyte Interface By New Solid State NMR Approaches." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 369. http://dx.doi.org/10.1149/ma2022-012369mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of high-energy, long-lasting energy storage systems based on rechargeable batteries relies on our ability to control charge storage and degradation processes in the bulk of the electrode materials and at the electrode-electrolyte interface. NMR spectroscopy is exceptionally suited to follow the electrochemical and chemical processes in the bulk of the electrodes and electrolyte, providing atomic scale structural insight into the charge storage mechanisms and ion transport properties. However, interfacial properties, such as the processes governing charge transport between the electrode and the electrolyte, are much harder to study. These processes typically involve thin, heterogeneous and disordered layers that are formed chemically/electrochemically in the battery cell or artificially through coating the electrode material. While NMR is in principle an excellent approach for probing disordered phases, its low sensitivity presents an enormous challenge in the detection of interfacial processes. In this talk I will describe recent approaches to overcome the sensitivity limitation by the use of Dynamic Nuclear Polarization (DNP). In DNP, the large electron spin polarization is used to boost the sensitivity of NMR spectroscopy by orders of magnitude. I will show how we can use this approach to detect the solid-electrolyte interphase (SEI), electrode coatings as well as the electrode’s bulk, with unprecedented sensitivity. Furthermore, I will present new approaches to probe ion transport properties of various interfaces. These allow us to get insight into the functional role of interfaces, which along with the chemical and structural insight, can provide design rules for beneficial interfaces, an essential aspect for developing long-lasting energy storage systems.
5

Wei, Weichen, and Xuejiao Wang. "Graphene-Based Electrode Materials for Neural Activity Detection." Materials 14, no. 20 (October 18, 2021): 6170. http://dx.doi.org/10.3390/ma14206170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The neural electrode technique is a powerful tool for monitoring and regulating neural activity, which has a wide range of applications in basic neuroscience and the treatment of neurological diseases. Constructing a high-performance electrode–nerve interface is required for the long-term stable detection of neural signals by electrodes. However, conventional neural electrodes are mainly fabricated from rigid materials that do not match the mechanical properties of soft neural tissues, thus limiting the high-quality recording of neuroelectric signals. Meanwhile, graphene-based nanomaterials can form stable electrode–nerve interfaces due to their high conductivity, excellent flexibility, and biocompatibility. In this literature review, we describe various graphene-based electrodes and their potential application in neural activity detection. We also discuss the biological safety of graphene neural electrodes, related challenges, and their prospects.
6

Ostrovsky, S., S. Hahnewald, R. Kiran, P. Mistrik, R. Hessler, A. Tscherter, P. Senn, et al. "Conductive hybrid carbon nanotube (CNT)–polythiophene coatings for innovative auditory neuron-multi-electrode array interfacing." RSC Advances 6, no. 48 (2016): 41714–23. http://dx.doi.org/10.1039/c5ra27642j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ly, Suw Young, Hyeon Jeong Park, Celina Jae Won Jang, Katlynn Ryu, Woo Seok Kim, Sung Joo Jang, and Kyung Lee. "Implanted Bioelectric Neuro Assay with Sensing Interface Circuit." Sensor Letters 18, no. 9 (September 1, 2020): 686–93. http://dx.doi.org/10.1166/sl.2020.4274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Neuromolecular glucose and dopamine assays were searched using a DNA immobilized onto a carbon nanotube paste electrode (PE). The analytical molecular detection limits of 0.13 ugL–1(6.855 × 10–10 M) Dopamine and 1.9 ugL–1 (1.06 × 10–8 M) glucose were attained using square wave stripping voltammetry. A handmade three-electrode system was implanted in the nerve network of a fish backbone, and two working electrodes were implanted in left and right pinna muscles. These were interfaced with a neuron electrochemical workstation and a nerve machine sensing circuit. This interface could be obtained for the psychological function and other body functions. The interfaced circuit could be controlled with a machine system. The results are useful in machine brain intercontrol systems.
8

Imanishi, Akihito. "(Invited, Digital Presentation) Influence of Hemisphere-Shaped Nanodimples of Gold Electrode on Capacitance in Ionic Liquid." ECS Meeting Abstracts MA2022-01, no. 13 (July 7, 2022): 883. http://dx.doi.org/10.1149/ma2022-0113883mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ionic liquids (ILs) have attracted much attention as promising electrolytes for electrochemical devices due to their wide electrochemical window (stability) and negligible vaporization. For such applications, nanostructured electrodes have advantage on their large surface area leading to accumulation of large density energy at the interface. However, recent reports on IL/electrode interfaces revealed that quite unique structures can be formed, and it is not clear how the interface forms and how it changes by forming an electric double layer (EDL). In this study, we investigated the interfacial capacitance of nanostructured Au electrodes using electrochemical impedance spectroscopy (EIS) and IR measurements. Polystyrene beads were self-assembled in a close packed form on a gold substrate by dipping in polystyrene beads solution and rapid drying. Au electrodeposition on thus prepared surface followed by removal of the beads resulted in the fabrication of a nanostructured Au electrode with periodic dimples. Electrochemical behavior of a ferrocene dissolved ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) amide (BMI-TFSA)) at the nanostructured and flat Au electrodes were investigated by EIS. We found that the capacitance of the nanostructured electrode was smaller than that of the flat electrode in the whole potential range. This result suggests that the thickness of the electric double layer formed in the nano-sized dimple is thicker than that formed on the flat surface. In the case of nanostructured Au electrode having 160 nm diameter dimples, the large capacitance was observed comparing with other electrodes having the dimples of different sizes. In addition, on the negative-going scan, the capacitance takes maximum at 0.1 V vs. Fc/Fc+, whereas no peak was found on the reverse positive-going scan. This result indicates that the exchange of cation/anion layers smoothly proceeded on the negative-going scan, whereas such a smooth exchange was prevented due to strongly surface-adsorbed BMIM+ on the positive-going scan. We also found that the hysteresis behavior was relatively suppressed in the case of the electrodes having 70 nm and 120 nm diameter dimples. We carried out the In-situ ATR-IR measurement to investigate the structure of ionic liquid molecules at the ionic liquid/electrode interface. The details of the relationships between the arrangement of ionic liquid at the interface and the capacitance of the electrode will be discussed.
9

Misra, Veena, Gerry Lucovsky, and Gregory Parsons. "Issues in High-ĸ Gate Stack Interfaces." MRS Bulletin 27, no. 3 (March 2002): 212–16. http://dx.doi.org/10.1557/mrs2002.73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractWe address current challenges in the fundamental understanding of physical and chemical processes that occur in the fabrication of the transistor gate stack structure. Critical areas include (1) the interface between bulk silicon and high-dielectric-constant (high-ĸ) insulators, (2) the interface between high-ĸ insulators and advanced gate electrodes, and (3) the internal interfaces that form within dielectric stacks with nonuniform material and structure compositions. We approach this topic from a fundamental understanding of bonding and electronic structure at the interfaces, and of film-growth kinetics in comparison with thermodynamics predictions. Implications for the dielectric/electrode interface with metallic gates and issues with integration will also be presented.
10

Lenser, Christian, Alexander Schwiers, Denise Ramler, and Norbert H. Menzler. "Investigation of the Electrode-Electrolyte Interfaces in Solid Oxide Cells." ECS Meeting Abstracts MA2023-01, no. 54 (August 28, 2023): 262. http://dx.doi.org/10.1149/ma2023-0154262mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The interfaces between electrodes and electrolyte are critical locations in a solid oxide cell (SOC). These interfaces originate from the chemical interaction of two different materials during processing, and are therefore very sensitive to the chemical nature of the materials, as well as the thermal history of the cell. On the air side, perovskite air electrodes tend to form insulating zirconates when sintered on stabilized zirconia, the most common electrolyte material. On the fuel side, using an ionic conductor with a different chemical composition as zirconia can lead to pronounced interdiffusion and the formation of new phases. Interlayers of doped ceria are frequently used in order to suppress these undesired chemical reactions between electrodes and stabilized zirconia electrolytes. Prior investigations have focused extensively on the chemical composition of the interface and its consequences for cell performance. The focus of this contribution is the microstructure of the interface, as well as the microstructural development during processing. On the fuel side, the interdiffusion of ceria and zirconia is known to lead to an intermixed phase with decreased conductivity. However, the reduced cell performance of anode-supported cells with Ni-GDC electrodes cannot be explained by an increase in the electrolyte resistance alone. We show that the formation of porosity due to a difference in the diffusion coefficients of ceria and zirconia leads to an increase in the fuel electrode polarization, and investigate possible countermeasures. It is shown that specifically the presence of NiO leads to the formation of porosity at the interface. On the air side, we investigate the role of a dense interdiffusion layer between ceria and zirconia on the air electrode polarization. We confirm that only a dense interdiffusion layer is necessary by using Pr-doped ceria as a barrier layer, which delaminates after sintering and leaves behind a submicron barrier layer. Finally, we investigate the hypothesis that the densification of the barrier layer during air electrode sintering is essential for electrode adhesion and performance.

Дисертації з теми "Electrode interface":

1

Gonzalez, Sara. "Operando Chemistry and Electronic Structure of Electrode/Ferroelectric Interfaces." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS501/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Au cours des dix dernières années, les hétérostructures à base de matériaux oxyde ont été grandement étudiées comme potentiel systèmes d’application pour le nanoélectronique. Parmi eux, les ferroélectriques (FE) sont particulièrement intéressants comme support pour ces applications technologies. En effet, leur polarisation électrique spontanée, aisément réversible par application d’un champ électrique en fait de bons candidats pour le stockage de données non-volatile. Renverser la polarisation nécessite un contact avec une électrode, ainsi les hétérostructures de films mince de FE avec électrodes métalliques ont été grandement étudiées. A l’interface entre les deux matériaux, les charges libres de l’électrode permettent d’écranter les charges de surfaces, détrimentales au maintien de la polarisation au sein du film FE. Avec des électrodes d’oxyde métalliques, un déplacement ionique à l’interface électrode/FE va d’avantage favoriser cet écrantage, plaçant l’interface au cœur du processus d’écrantage. Cependant, malgré d’importantes découvertes théoriques, les données expérimentales sont rares et le comportement exact de l’interface électrode/FE est seulement partiellement maitrisée. Une plus grande compréhension est indispensable pour une intégration correcte des films FE dans des dispositifs nanométriques. Dans cette thèse, des techniques basées sur la spectroscopie de photoémission sont utilisées pour sonder l’interface enfouie d’une hétérostructure électrode/BaTiO₃/électrode, dans le cas de deux électrodes différentes : l’oxyde métallique SrRuO₃ et le métal cobalt. Nous avons acquis des informations sur le comportement de l’interface et sa réponse au renversement de la polarisation. Ce travail est un nouveau pas vers une plus grande maitrise des phénomènes physiques gouvernant le comportement de l’interface entre électrodes le ferroélectrique BaTiO₃, en termes de propriété électronique, de cinétique et de fatigue. Les expériences présentées couplent des techniques d’analyses de pointes, où l’utilisation de rayons X durs et l’application de champs électriques in situ ont rendus possible la difficile tâche de sonder des interfaces enfouies en condition de fonctionnement
In the past decade, oxide-based heterostructures have been studied extensively as potentially attractive systems for applications in nanoelectronics. Among them, ferroelectric materials raised interest as potential support for those technological applications. Indeed, their spontaneous electric polarization easily switched by applying an electric field makes them a good basis for non-volatile data storage. Switching the polarization requires a metallic contact with an electrode, thus heterostructures of ferroelectric thin films with metallic electrodes have been widely studied. At the interface between those two materials, free charges of the electrode help screening the polarization induced surface charges detrimental to maintaining proper polarization in the ferroelectric thin film. With metallic oxide electrodes, an ionic displacement at the electrode/ferroelectric interface will help the screening. However, despite important theoretical discoveries, direct experimental data is scarce and further understanding of the interface behavior is crucial for a proper integration of ferroelectric films in functioning nanometer sized devices. In this thesis, photoemission spectroscopy based techniques are used to probe the buried interface of an electrode/BaTiO₃/electrode heterostructure, for two different electrodes: the metallic oxide SrRuO₃ and the Co metal. We acquired information on the behavior of the interface and its response to polarization switching. This work is a new step towards a complete understanding on the behavior of the interface between electrodes and the BaTiO₃ ferroelectric, in device-like heterostructures, in terms of electronic properties, kinetic, and fatigue. The experiments presented combined state of the art characterization techniques, where the use of hard X-rays and in situ bias application made it possible to resolve the difficult task of probing buried interfaces in working conditions
2

Viana, Casals Damià. "EGNITE: Engineered Graphene for Neural Interface." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La tecnologia d’implants neuronals en medicina té com a objectiu restaurar la funcionalitat del sistema nerviós en casos de degeneració o dany greu registrant o estimulant l’activitat elèctrica del teixit nerviós. Els implants neuronals disponibles actualment ofereixen una eficàcia clínica modesta, en part a causa de les limitacions que tenen els metalls utilitzats en la interfície elèctrica amb el teixit. Aquests materials comprometen la resolució de la interfície i, per tant, la restauració funcional amb el rendiment i l’estabilitat. En aquest treball presento uns implants neuronals flexibles basats en una pel·lícula prima de grafè porós nanoestructurat i biocompatible que proporciona una interfície neural bidireccional estable i d’alt rendiment. En comparació amb els dispositius de microelectrodos de platí estàndard, elèctrodes de 25 μm de diàmetre basats en grafè ofereixen una impedància significativament menor i poden injectar de manera segura 200 vegades més càrrega durant més de 100 milions de polsos. N’evaluo les seves capacitats in vivo registrant activitat epicortical amb alta fidelitat i alta resolució, estimulant subconjunts d’axons dins del nervi ciàtic amb llindars de corrent baixos i alta selectivitat i modulant l’activitat de la retina amb alta precisió. La tecnologia de pel·lícula fina de grafè aquí descrita té el potencial de convertir-se en el nou punt de referència per la pròxima generació de tecnologia d’implants neuronals.
La tecnología de implantes neuronales en medicina tiene como objetivo restaurar la funcionalidad del sistema nervioso en casos de degeneración o daño grave registrando o estimulando la actividad eléctrica del tejido nervioso. Los implantes neurales disponibles actualmente ofrecen una eficacia clínica modesta, en parte debido a las limitaciones que plantean los metales utilizados en la interfaz eléctrica con el tejido. Dichos materiales comprometen la resolución de la interfaz y, por lo tanto, la restauración funcional con el rendimiento y la estabilidad. En este trabajo presento unos implantes neuronales flexibles basados en una película delgada de grafeno poroso nanoestructurado y biocompatible que proporciona una interfaz neural bidireccional estable y de alto rendimiento. En comparación con los dispositivos de microelectrodos de platino estándar, electrodos de 25 μm de diámetro basados en grafeno ofrecen una impedancia significativamente menor y pueden inyectar de forma segura 200 veces más carga durante más de 100 millones de pulsos. Aquí evaluo sus capacidades in vivo registrando actividad epicortical con alta fidelidad y alta resolución, estimulando subconjuntos de axones dentro del nervio ciático con umbrales de corriente bajos y alta selectividad y modulando la actividad de la retina con alta precisión. La tecnología de película fina de grafeno aquí descrita tiene el potencial de convertirse en el nuevo punto de referencia para la próxima generación de tecnología de implantes neuronales.
Neural implants technology in medicine aims to restore nervous system functionality in cases of severe degeneration or damage by recording or stimulating the electrical activity of the nervous tissue. Currently available neural implants offer a modest clinical efficacy partly due to the limitations posed by the metals used at the electrical interface with the tissue. Such materials compromise interfacing resolution, and therefore functional restoration, with performance and stability. In this work, I present flexible neural implants based on a biocompatible nanostructured porous graphene thin film that provides a stable and high performance bidirectional neural interface. Compared to standard platinum microelectrode devices, the graphene-based electrodes of 25 μm diameter offer significantly lower impedance and can safely inject 200 times more charge for more than 100 million pulses. I assessed their performance in vivo by recording high fidelity and high resolution epicortical activity, by stimulating subsets of axons within the sciatic nerve with low thresholds and high selectivity and by modulating the retinal activity with high precision. The graphene thin film technology I describe here has the potential to become the new performance benchmark for the next generation of neural implant technology.
Universitat Autònoma de Barcelona. Programa de Doctorat en Enginyeria Electrònica i de Telecomunicació
3

Irvine, June Karin. "Modelling of the electrode-electrolyte interface impedance." Thesis, University of Ulster, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jeschull, Fabian. "Polymers at the Electrode-Electrolyte Interface : Negative Electrode Binders for Lithium-Ion Batteries." Doctoral thesis, Uppsala universitet, Strukturkemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We are today experiencing an increasing demand for high energy density storage devices like the lithium-ion battery for applications in portable electronic devices, electric vehicles (EV) and as interim storage for renewable energy. High capacity retention and long cycle life are prerequisites, particularly for the EV market. The key for a long cycle life is the formation of a stable solid-electrolyte interphase (SEI) layer on the surface of the negative electrode, which typically forms on the first cycles due to decomposition reactions at the electrode-electrolyte interface. More control over the surface layer can be gained when the layer is generated prior to the battery operation. Such a layer can be tailored more easily and can reduce the loss of lithium inventory considerably. In this context, water-soluble electrode binders, e.g. sodium carboxymethyl cellulose (CMC-Na) and poly(acrylic acid) (PAA), have proven themselves exceptionally useful. Since the binder is a standard component in composite electrodes anyway, its integration into the electrode fabrication process is easily accomplished. This thesis work investigates the parameters that govern binder distribution in elec-trode coatings, control the stability and electrochemical performance of the elec-trode and that determine the composition of the surface layer. Several commonly used electrode materials (graphite, silicon and lithium titanate) have been applied in order to study the impact of the binder on the electrode morphology and the differ-ent electrode-electrolyte interfaces. The results are correlated with the electrochemi-cal performance and with the SEI composition obtained by in-house and synchro-tron-based photoelectron spectroscopy (PES). The results demonstrate that the poor swellability of these water-soluble binders leads to a protection of the active material, given that the surface coverage is high and the binder evenly distributed. Although on the laboratory scale electrode formu-lations with a high binder content are common, they have little practical use in commercial devices due to the high content of inactive material. As the binder con-tent is decreased, complete surface coverage is more difficult to achieve and the binder distribution is more strongly coupled to the particle-binder interactions during the preparation process. Moreover, it is demonstrated in this thesis how these inter-actions are related to the surface area of the electrode components applied, the surface composition and the electrochemistry of the electrode. As a result of the smaller binder contents the benefits provided by CMC-Na and PAA at the electrode surface are compromised and the performance differs less distinctly from electrodes fabricated with the conventional binder, i.e. poly(vinylidene difluoride) (PVdF). Composites of alloying and conversion materials, on the other hand, typically em-ploy binders in larger amounts. Despite the frequently noted resiliency to volume expansion, which is also a positive side effect of the poor swellability of the binder in the electrolyte, the protection of the surface and the formation of a more stable interface are the major cause for the improved electrochemical behaviour, com-pared to electrodes employing PVdF binders.
5

Hanekom, Tania. "Modelling of the electrode-auditory nerve fibre interface in cochlear prostheses." Diss., University of Pretoria, 2001. http://hdl.handle.net/2263/27742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective of this thesis is to provide additional insight into the electrode array-nerve fibre interface that exists in the implanted cochlea and to facilitate investigation of new electrode arrays in interaction with the cochlea and auditory nerve fibres. The focus is on potential distributions and excitation profiles generated by different electrode array types and factors that could have an influence on these distributions and profiles. Research contributions made by the thesis are the creation of a detailed 3-D model of the implanted cochlea that accurately predicts measurable effects in cochlear implant wearers and facilitates effortless simulation of existing and new electrode array variations; the establishment of the important anatomical structures required in a 3-D representation of the implanted cochlea; establishment of evidence that array location is the primary parameter that controls spread of excitation; definition of the critical focussing intensity of intracochlear electrode pairs; confirmation thatmonopolar stimulation could deliver focussed stimulation to approximately the same degree than that delivered by widely spaced electrode configurations and that the use of monopolar configurations over bipolar configurations are therefore advantageous under certain conditions; explanation of the effect that encapsulation tissue around cochlear implant electrodes could have on neural excitation profiles; extension of the information available on the focussing ability of multipolar intracochlear electrode configurations; and establishment of evidence that a higher lateral electrode density could facilitate better focussing of excitation, continuous shaping of excitation profiles and postoperative customization of electrode arrays for individual implant wearers.
Dissertation (PhD(Electronic Engineering))--University of Pretoria, 2001.
Electrical, Electronic and Computer Engineering
Unrestricted
6

Young, Samantha. "Designing the Nanoparticle/Electrode Interface for Improved Electrocatalysis." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanoparticle-functionalized electrodes have attracted attention in areas such as energy production and storage, sensing, and electrosynthesis. The electrochemical properties of these electrodes depend upon the nanoparticle properties, e.g., core size, core morphology, surface chemistry, as well as the structure of the nanoparticle/electrode interface, including the coverage on the electrode surface, choice of electrode support, and the interface between the nanoparticle and the electrode support. Traditionally used methods of producing nanoparticle-functionalized electrodes lack sufficient control over many of these variables, particularly the nanoparticle/electrode interface. Tethering nanoparticles to electrodes with molecular linkers is a strategy to fabricate nanoparticle-functionalized electrodes that provides enhanced control over the nanoparticle/electrode structure. However, many existing tethering methods are done on catalytically active electrode supports, which makes isolating the electrochemical activity of the nanoparticle challenging. Furthermore, previous work has focused on larger nanoparticles, yet smaller nanoparticles with core diameters less than 2.5 nm are of interest due to their unique structural and electronic properties. This dissertation addresses both of these gaps, exploring small nanoparticle electrocatalysts that are molecularly tethered to catalytically inert electrodes. This dissertation first reviews and compares the methods of fabricating nanoparticle-functionalized electrodes with a defined molecular interface in the context of relevant attributes for electrochemical applications. Next, a new platform approach to bind small gold nanoparticles to catalytically inert boron doped diamond electrodes through a defined molecular interface is described, and the influence of the nanoparticle/electrode interface on the electron transfer properties of these materials is evaluated. The next two studies build upon this platform to evaluate molecularly tethered nanoparticles as oxygen electroreduction catalysts. The first of these two describes the systematic study of atomically precise small gold clusters, highlighting the influence of atomic level differences in the core size and the electrode support material on the catalytic properties. The second study extends the platform approach to study small bimetallic silver-gold nanoparticles produced on the electrode surface and highlights the influence of the structural arrangement of the metals on the catalytic activity. Finally, future opportunities for the field of molecularly tethered nanoparticle-functionalized electrodes are discussed. This dissertation includes previously published and unpublished co-authored material.
2019-01-27
7

Han, Qi. "Electrocatalysis at the Electrode-Adsorbate-Solution Interface: Fundamental Studies." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1574855036013662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rykaczewski, Konrad. "Electron beam induced deposition (EBID) of carbon interface between carbon nanotube interconnect and metal electrode." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31773.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Dr. Andrei G. Fedorov; Committee Member: Dr. Azad Naeemi; Committee Member: Dr. Suresh Sitaraman; Committee Member: Dr. Vladimir V. Tsukruk; Committee Member: Dr. Yogendra Joshi. Part of the SMARTech Electronic Thesis and Dissertation Collection.
9

Yamada, Izumi. "Studies on Litihum Ion Transfer at Positive-electrode/Electrolyte Interface." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/77798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, H. "Infra red spectroscopic investigation of adsorption at the electrode/electrolyte interface." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electrode interface":

1

Láng, Gyözö G. Laser Techniques for the Study of Electrode Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jacek, Lipkowski, and Ross P. N, eds. Structure of electrified interfaces. New York, N.Y: VCH Publishers, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

NATO, Advanced Study Institute on the Study of Surfaces and Interfaces by Electron Optical Techniques (1987 Erice Italy). Surface and interface characterization by electron optical methods. New York: Plenum Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Howie, A., and U. Valdrè, eds. Surface and Interface Characterization by Electron Optical Methods. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-9537-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Howie, A. Surface and Interface Characterization by Electron Optical Methods. Boston, MA: Springer US, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Clausen, Charlotte. Electron microscopical characterisation of interfaces in SOFC materials. Roskilde: Risø National Laboratory, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Forwood, C. T. Electron microscopy of interfaces in metals and alloys. Bristol, England: A. Hilger, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ghosh, Dhriti Sundar. Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry. Heidelberg: Springer International Publishing, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Heinz, Bartsch, ed. Elektronenmikroskopische Querschnittsabbildung von Interfaces und Heterostrukturen in Halbleitern. Berlin: Akademie-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kiejna, A. Metal surface electron physics. Kidlington, Oxford: Elsevier Science Ltd., 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electrode interface":

1

Helander, Michael G., Zhibin Wang, and Zheng-Hong Lu. "Electrode–Organic Interface Physics." In Encyclopedia of Nanotechnology, 1015–24. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Auffan, Mélanie, Catherine Santaella, Alain Thiéry, Christine Paillès, Jérôme Rose, Wafa Achouak, Antoine Thill, et al. "Electrode–Organic Interface Physics." In Encyclopedia of Nanotechnology, 702–10. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guido, Katrina, Ana Clavijo, Keren Zhu, Xinqian Ding, and Kaimin Ma. "Strategies to Improve Neural Electrode Performance." In Neural Interface Engineering, 173–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41854-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fisher, Lee E. "Peripheral Nerve Interface, Epineural Electrode." In Encyclopedia of Computational Neuroscience, 2291–97. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Frankel, Mitch. "Peripheral Nerve Interface, Intraneural Electrode." In Encyclopedia of Computational Neuroscience, 2297–99. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wittkampf, Fred H. M. "The Electrical Electrode-Myocard Interface." In Developments in Cardiovascular Medicine, 13–31. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0347-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fisher, Lee E. "Peripheral Nerve Interface, Epineural Electrode." In Encyclopedia of Computational Neuroscience, 1–8. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_210-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Frankel, Mitch. "Peripheral Nerve Interface, Intraneural Electrode." In Encyclopedia of Computational Neuroscience, 1–3. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_211-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tripathi, Alok M., and Helmer Fjellvåg. "Electrode-Electrolyte Interface for Energy Storage." In Materials for Energy Storage, 30–44. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003046400-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tosi, M. P., P. Ballone, and G. Pastore. "Structural Models of the Electrode-Electrolyte Interface." In The Physics and Chemistry of Aqueous Ionic Solutions, 245–53. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3911-0_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electrode interface":

1

Gao, Feng, Jianmin Qu, and Matthew Yao. "Conducting Properties of a Contact Between Open-End Carbon Nanotube and Various Electrodes." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The carbon nanotube (CNT) is becoming a promising candidate as electrical interconnects in nanoscale electronics. This paper reports the electronic structure and the electrical conducting properties at the interface between an open-end single wall CNT (SWCNT) and various metal electrodes, such as Al, Au, Cu, and Pd. A simulation cell consisting of an SWCNT with each end connected to the metal electrode was constructed. A voltage bias is prescribed between the left- and right-electrodes to compute the electronic conductance. Due to the electronic structure, the electron density and local density of states (LDOS) are calculated to reveal the interaction behavior at the interfaces. The first-principle quantum mechanical density functional and non-equilibrium Green’s function (NEGF) approaches are adopted to compute the transport coefficient. After that, the voltage-current relation is calculated using the Landauer-Buttiker formalism. The results show that electrons are conducted through the electrode/CNT/electrode two-probe system. The contact electronic resistance is calculated by averaging the values in the low voltage bias regime (0.0–0.1 V), in which the voltage–current relationship is found to be linear. And the electrical contact conductance of electrode/CNT/electrode system show the electrode-type dependent, however, the amplitude for different electrodes is of the same order.
2

Nasrollaholhosseini, Seyed Hadi, Preston Steele, and Walter G. Besio. "Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste." In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7591135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Troy, John B., Donald R. Cantrell, Allen Taflove, and Rodney S. Ruoff. "Modeling the electrode-electrolyte interface for recording and stimulating electrodes." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Troy, John B., Donald R. Cantrell, Allen Taflove, and Rodney S. Ruoff. "Modeling the electrode-electrolyte interface for recording and stimulating electrodes." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kala, C. Peferencial, D. John Thiruvadigal, and P. Aruna Priya. "Terminal group effect of electrode-molecule interface on electron transport." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Goundar, Jowesh Avisheik, Qiao Xiangyu, Ken Suzuki, and Hideo Miura. "Improvement in Photosensitivity of Dumbbell-Shaped Graphene Nanoribbon Structures by Using Asymmetric Metallization Technique." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The existence of Schottky barrier between the semiconductive graphene nanoribbon (GNR) and the metallic electrodes at its both ends causes a major hurdle in the development of GNR based devices. Here, a dumbbell-shape GNR structure was proposed to solve the problem. This structure consisted of a semiconductive GNR and wide metallic GNR at both ends. The ohmic contact between the wide metallic GNR and metallic electrode was easily achieved. Furthermore, an effective mechanism to enhance electronic band properties of the dumbbell-shape GNR structure by using asymmetric metallization technique is employed. To achieve this, two different metallic electrodes were introduced, Platinum (Pt) and Titanium (Ti), at each end of the GNR channel to break the symmetry in the Schottky barrier at both ends. The asymmetric difference in the Schottky barrier at the electrode/GNR interface at each ends allows for an efficient directional flow of electrons, effectively separating the photo-generated carriers. The individual contributions at each electrode/GNR interface were summed up resulting in a larger absolute photo-induced current. The electron transfer characteristics of the DS-GNR-FET was studied under an irradiation of a light source with a wavelength of 632.8-nm at room temperature. The developed 70-nm DSGNR-FET showed a significantly larger and enhanced photosensitivity of about 1.6 × 107 A/W.m2 as compared to the device fabricated with identical metallic electrodes as the source and drain electrodes.
7

Sprague, Isaac B., and Prashanta Dutta. "The Electrode-Electrolyte Interface in Acidic and Alkaline Fuel Cells." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This numerical study presents the role of diffuse region of the electric double layer in both acidic and alkaline fuel cells. The numerical model is based on the Poisson-Nernst-Planck (PNP) and generalized-Frumkin-Butler-Volmer (gFBV) equations. The Laminar Flow Fuel Cell (LFFC) is used as the model fuel cell architecture to allow for the appropriate and equivalent comparison of acidic and alkaline cells. In particular, we focus on how each device behaves to changing reactant supply at the electrodes, including the overall cell performance and individual electrode polarizations. It is found that the working ion concentration at the reaction plane contributes to differing performance behaviors in acidic and alkaline fuel cells, including activation losses and reactant transport overpotentials. This is due to the working ion, and the electrode where it’s consumed, being opposite for acidic and alkaline fuel cells.
8

Riistama, J., and J. Lekkala. "Electrode-electrolyte Interface Properties in Implantation Conditions." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

P. Tarakeshwar, Juan Jose Palacios, and Dae M. Kim. "Electrode-molecule interface effects on molecular conductance." In 2006 IEEE Nanotechnology Materials and Devices Conference. IEEE, 2006. http://dx.doi.org/10.1109/nmdc.2006.4388726.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Riistama, J., and J. Lekkala. "Electrode-electrolyte Interface Properties in Implantation Conditions." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4398830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electrode interface":

1

Halley, J. W. Theoretical study of reactions at the electrode-electrolyte interface. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6900291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Teeters, Dale. Self-Assembled Monolayers at the Lithium Electrode/Polymer Electrolyte Interface. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada404757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, Gaoqiang. Structured Membrane-electrode Interface for Highly Efficient PEM Fuel Cell. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1772382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Halley, J. W. Theoretical study of reactions at the electrode-electrolyte interface. Progress report, February 1, 1993--March 31, 1994. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10140980.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mason, T. O., R. P. H. Chang, A. J. Freeman, T. J. Marks, and K. R. Poeppelmeier. Interface and Electrode Engineering for Next-Generation Organic Photovoltaic Cells: Final Technical Report, March 2005 - August 2008. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/942085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Halley, J. W. Theoretical study of reactions at the electrode-electrolyte interface. Progress report, August 1, 1991--January 31, 1993. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10116464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bendikov, Michael, and Thomas C. Harmon. Development of Agricultural Sensors Based on Conductive Polymers. United States Department of Agriculture, August 2006. http://dx.doi.org/10.32747/2006.7591738.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this 1-year feasibility study, we tried polymerization of several different monomers, commercial as well as novel, specially designed and synthesized for this project in the presence of the nitrate ion to produce imprinted conductive polymers. Polymers 1 and 2 (shown below) produced a response to nitrate, but one inferior to that produced by a polypyrrole (Ppy)-based sensor (which we demonstrated prior to this study). Thus, we elected to proceed with improving the stability of the Ppy-based sensor. In order to improve stability of the Ppy-based sensor, we created a two-layer design which includes nitrate-doped Ppy as an inner layer, and nitrate-doped PEDOT as the outer layer. PEDOT is known for its high environmental stability and conductivity. This design has demonstrated promise, but is still undergoing optimization and stability testing. Previously we had failed to create nitrate-doped PEDOT in the absence of a Ppy layer. Nitrate-doped PEDOT should be very promising for sensor applications due to its high stability and exceptional sensing properties as we showed previously for sensing of perchlorate ions (by perchlorate-doped PEDOT). During this year, we have succeeded in preparing nitrate-doped PEDOT (4 below) by designing a new starting monomer (compound 3 below) for polymerization. We are currently testing this design for nitrate sensing. In parallel with the fabrication design studies, we fabricated and tested nitrate-doped Ppy sensors in a series of flow studies under laboratory and field conditions. Nitrate-doped Ppy sensors are less stable than is desirable but provide excellent nitrate sensing characteristics for the short-term experiments focusing on packaging and deployment strategies. The fabricated sensors were successfully interfaced with a commercial battery-powered self-logging (Onset Computer Hobo Datalogger) and a wireless data acquisition and transmission system (Crossbow Technologies MDA300 sensor interface and Mica2 wireless mote). In a series of flow-through experiments with water, the nitrate-doped Ppy sensors were exposed to pulses of dissolved nitrate and compared favorably with an expensive commercial sensor. In 24-hour field tests in both Merced and in Palmdale, CA agricultural soils, the sensors responded to introduced nitrate pulses, but with different dynamics relative to the larger commercial sensors. These experiments are on-going but suggest a form factor (size, shape) effect of the sensor when deployed in a porous medium such as soil. To fill the need for a miniature reference electrode, we identified and tested one commercial version (Cypress Systems, ESA Mini-reference electrode) which works well but is expensive ($190). To create an inexpensive miniature reference electrode, we are exploring the use of AgCl-coated silver wire. This electrode is not a “true” reference electrode; however, it can calibrated once versus a commercial reference electrode at the time of deployment in soil. Thus, only one commercial reference electrode would suffice to support a multiple sensor deployment.
8

Halley, J. W. Final Report for Department of Energy grant DE-FG02-91ER45455, "Theoretical Study of Reactions at the Electrode-Electrolyte Interface". Office of Scientific and Technical Information (OSTI), May 2009. http://dx.doi.org/10.2172/952604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yahnke, Mark S. The application of solid-state NMR spectroscopy to electrochemical systems: CO adsorption on Pt electrocatalysts at the aqueous-electrode interface. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/451231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Garofalini, Stephen. Solid Electrolyte/Electrode Interfaces: Atomistic Behavior Analyzed Via UHV-AFM, Surface Spectroscopies, and Computer Simulations Computational and Experimental Studies of the Cathode/Electrolyte Interface in Oxide Thin Film Batteries. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1036745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії