Добірка наукової літератури з теми "Electric field modeling techniques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electric field modeling techniques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Electric field modeling techniques"
Mercadal, Borja, Ricardo Salvador, Maria Chiara Biagi, Fabrice Bartolomei, Fabrice Wendling, and Giulio Ruffini. "Modeling implanted metals in electrical stimulation applications." Journal of Neural Engineering 19, no. 2 (March 8, 2022): 026003. http://dx.doi.org/10.1088/1741-2552/ac55ae.
Повний текст джерелаAkinsanmi, Olaitan, B. A. Adegboye, G. A. Olarinoye, and M. B. Soroyewun. "Neuro-Fuzzy Based Modeling of Electrostatic Fields for Harmattan Season in Zaria." International Journal of Engineering Research in Africa 4 (May 2011): 75–85. http://dx.doi.org/10.4028/www.scientific.net/jera.4.75.
Повний текст джерелаTang, Zi Rong, M. Rizwan Malik, Tie Lin Shi, J. Gong, L. Nie, and Guang Lan Liao. "Modelling and Fabrication of 3-D Carbon-MEMS for Dielectrophoretic Manipulation of Micro/Nanoparticles in Fluids." Materials Science Forum 628-629 (August 2009): 435–40. http://dx.doi.org/10.4028/www.scientific.net/msf.628-629.435.
Повний текст джерелаJörgens, Christoph, and Markus Clemens. "A Review about the Modeling and Simulation of Electro-Quasistatic Fields in HVDC Cable Systems." Energies 13, no. 19 (October 5, 2020): 5189. http://dx.doi.org/10.3390/en13195189.
Повний текст джерелаWijewardena Gamalath, K. A. I. L., and A. M. Samarakoon. "Modeling of Planar Plasma Diode." International Letters of Chemistry, Physics and Astronomy 13 (September 2013): 220–42. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.13.220.
Повний текст джерелаGavin, H. P., R. D. Hanson, and F. E. Filisko. "Electrorheological Dampers, Part II: Testing and Modeling." Journal of Applied Mechanics 63, no. 3 (September 1, 1996): 676–82. http://dx.doi.org/10.1115/1.2823349.
Повний текст джерелаKurbanismailov, Z. M., A. T. Tarlanov, and E. M. Akimov. "The technique of point visualization of the electric field in space and time." Russian Technological Journal 9, no. 3 (June 28, 2021): 58–65. http://dx.doi.org/10.32362/2500-316x-2021-9-3-58-65.
Повний текст джерелаBrown, Thomas S., Tonatiuh Sánchez-Vizuet, and Francisco-Javier Sayas. "Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid." ESAIM: Mathematical Modelling and Numerical Analysis 52, no. 2 (March 2018): 423–55. http://dx.doi.org/10.1051/m2an/2017045.
Повний текст джерелаPoikonen, Ari, and Ilkka Suppala. "On modeling airborne very low‐frequency measurements." GEOPHYSICS 54, no. 12 (December 1989): 1596–606. http://dx.doi.org/10.1190/1.1442627.
Повний текст джерелаShi, Yun Fei, and Jun Liu. "Multi-Physics Modeling and Simulation of Electro-Optical Sensing." Advanced Materials Research 1092-1093 (March 2015): 292–95. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.292.
Повний текст джерелаДисертації з теми "Electric field modeling techniques"
Kumar, Akhilesh. "Leakage Power Modeling and Reduction Techniques for Field Programmable Gate Arrays." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/766.
Повний текст джерелаIn this work an analytical state dependent leakage power model for FPGAs is developed, followed by dual-Vt based designs of the FPGA architecture for reducing leakage power.
The leakage power model computes subthreshold and gate leakage in FPGAs, since these are the two dominant components of total leakage power in the scaled nanometer technologies. The leakage power model takes into account the dependency of gate and subthreshold leakage on the state of the circuit inputs. The leakage power model has two main components, one which computes the probability of a state for a particular FPGA circuit element, and the other which computes the leakage of the FPGA circuit element for a given input using analytical equations. This FPGA power model is particularly important for rapidly analyzing various FPGA architectures across different technology nodes.
Dual-Vt based designs of the FPGA architecture are proposed, developed, and evaluated, for reducing the leakage power using a CAD framework. The logic and the routing resources of the FPGA are considered for dual-Vt assignment. The number of the logic elements that can be assigned high-Vt in the ideal case by using a dual-Vt assignment algorithm in the CAD framework is estimated. Based upon this estimate two kinds of architectures are developed and evaluated, homogeneous and heterogeneous architectures. Results indicate that leakage power savings of up to 50% can be obtained from these architectures. The analytical state dependent leakage power model developed has been used for estimating the leakage power savings from the dual-Vt FPGA architectures. The CAD framework that has been developed can also be used for developing and evaluating different dual-Vt FPGA architectures, other than the ones proposed in this work.
Dastrup, Emily Joy. "Estimating the Discrepancy Between Computer Model Data and Field Data: Modeling Techniques for Deterministic and Stochastic Computer Simulators." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd986.pdf.
Повний текст джерелаБойко, Антон Миколайович. "Діагностика полімерної ізоляції в процесі старіння кабелів під дією сильного електричного поля за трибоелектричним потенціалом". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19647.
Повний текст джерелаThesis for granting Candidate of Technical sciences Degree in specialty 05.09.13 – Technics of Strong Electric and Magnetic Fields. – National Technical University "Kharkiv Polytechnic Institute", 2015. The thesis is devoted to development and diagnostic system for substantiation triboelectric potential to detect changes in surface properties of polymer isolation in aging cables under the strong electric field, high temperature and radiation. The distribution of surface charge density and voltage drop along the length of symmetrical insulated conductors in the presence of the gap between them and the defective thin layer on the surface of the polymer insulation was established based on the analytical solution. Experimentally determined the values of triboelectric potential and its dynamics of change in the process of accelerated termoradiation aging polymer cable insulation depending on the design of applied materials. There is a significant (threefold) increase in the maximum value of the contact potential difference and achieve maximum torque bias towards smaller values for single core power cables with cross-linked polyethylene insulation 6 kV after accelerated aging thermoradiation. This confirms the high sensitivity of triboelectric potential to aging and allows us to make a suggestion to use this parameter as an indicator of the polymeric insulation aging degree. Influence of surface charges and tribocharges on the results of diagnostic tests on the insulation resistance and stability during the measurement capacitance and dielectric loss tangent cables with polymer insulation was observed. Dynamics of changes in contact potential difference in the aging process power cables with different materials remains consistent with the results of diagnostic tests of capacity and dielectric loss tangent.
Бойко, Антон Миколайович. "Діагностика полімерної ізоляції в процесі старіння кабелів під дією сильного електричного поля за трибоелектричним потенціалом". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/19642.
Повний текст джерелаThesis for granting Candidate of Technical sciences Degree in specialty 05.09.13 – Technics of Strong Electric and Magnetic Fields. – National Technical University "Kharkiv Polytechnic Institute", 2015. The thesis is devoted to development and diagnostic system for substantiation triboelectric potential to detect changes in surface properties of polymer isolation in aging cables under the strong electric field, high temperature and radiation. The distribution of surface charge density and voltage drop along the length of symmetrical insulated conductors in the presence of the gap between them and the defective thin layer on the surface of the polymer insulation was established based on the analytical solution. Experimentally determined the values of triboelectric potential and its dynamics of change in the process of accelerated termoradiation aging polymer cable insulation depending on the design of applied materials. There is a significant (threefold) increase in the maximum value of the contact potential difference and achieve maximum torque bias towards smaller values for single core power cables with cross-linked polyethylene insulation 6 kV after accelerated aging thermoradiation. This confirms the high sensitivity of triboelectric potential to aging and allows us to make a suggestion to use this parameter as an indicator of the polymeric insulation aging degree. Influence of surface charges and tribocharges on the results of diagnostic tests on the insulation resistance and stability during the measurement capacitance and dielectric loss tangent cables with polymer insulation was observed. Dynamics of changes in contact potential difference in the aging process power cables with different materials remains consistent with the results of diagnostic tests of capacity and dielectric loss tangent.
Papalexopoulos, Alexis D. "Modeling techniques for power system grounding systems." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/13529.
Повний текст джерелаBabineau, David. "Modeling the electric field and natural environment of weakly electric fish." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27222.
Повний текст джерелаZhang, Minya. "Optoelectronic device modeling using field simulation techniques." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0005/NQ42892.pdf.
Повний текст джерелаAndersson, Helena. "Individualized mathematical modeling of neural activation in electric field." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-313150.
Повний текст джерелаDe, Marco Tommaso <1980>. "Parallel modeling of the electric field distribution in the brain." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3618/.
Повний текст джерелаWeinstein, Randall Kenneth. "Techniques for FPGA neural modeling." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/26685.
Повний текст джерелаCommittee Chair: Lee, Robert; Committee Member: Butera, Robert; Committee Member: DeWeerth, Steve; Committee Member: Madisetti, Vijay; Committee Member: Voit, Eberhard. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Книги з теми "Electric field modeling techniques"
Li, S. Z. Markov random field modeling in image analysis. 3rd ed. London: Springer, 2009.
Знайти повний текст джерелаNajim, Mohamed. Modeling, estimation and optimal filtration in signal processing. Hoboken, NJ: ISTE ; J. Wiley & Sons, 2008.
Знайти повний текст джерелаGildenblat, Gennady Sh. Compact Modeling: Principles, Techniques and Applications. Dordrecht: Springer Science+Business Media B.V., 2010.
Знайти повний текст джерелаRF and microwave modeling and measurement techniques for compound field effect transistors. Raleigh, NC: SciTech Pub., 2009.
Знайти повний текст джерелаBurkov, Aleksey. Technical operation of electric ships. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1048423.
Повний текст джерелаLattman, Eaton E., Thomas D. Grant, and Edward H. Snell. Pushing the Envelope. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199670871.003.0014.
Повний текст джерела1934-, Zobrist George W., ed. VLSI fault modeling and testing techniques. Norwood, NJ: Ablex Pub. Corp., 1993.
Знайти повний текст джерелаNajim, Mohamed. Modeling, Estimation and Optimal Filtration in Signal Processing. Wiley & Sons, Incorporated, John, 2010.
Знайти повний текст джерелаGao, Jianjun. RF and Microwave Modeling and Measurement Techniques for Field Effect Transistors. Institution of Engineering and Technology, 2010. http://dx.doi.org/10.1049/sbew027e.
Повний текст джерелаDuen, Ho Fat, and United States. National Aeronautics and Space Administration., eds. Modeling of metal-ferroelectric-semiconductor field effect transistors. [Washington, D.C: National Aeronautics and Space Administration, 1998.
Знайти повний текст джерелаЧастини книг з теми "Electric field modeling techniques"
Wölken, Thies, Johannes Sailer, Francisco Daniel Maldonado-Parra, Tobias Horneber, and Cornelia Rauh. "Application of Numerical Simulation Techniques for Modeling Pulsed Electric Field Processing." In Handbook of Electroporation, 1–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-26779-1_42-1.
Повний текст джерелаWölken, Thies, Johannes Sailer, Francisco Daniel Maldonado-Parra, Tobias Horneber, and Cornelia Rauh. "Application of Numerical Simulation Techniques for Modeling Pulsed Electric Field Processing." In Handbook of Electroporation, 1237–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32886-7_42.
Повний текст джерелаTakahashi, Norio. "Some Key Techniques in Electromagnetic and Thermal Field Modeling." In Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering, 53–100. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0173-9_3.
Повний текст джерелаCallejón-Leblic, M. A., and Pedro C. Miranda. "A Computational Parcellated Brain Model for Electric Field Analysis in Transcranial Direct Current Stimulation." In Brain and Human Body Modeling 2020, 81–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_5.
Повний текст джерелаFernandes, Sofia Rita, Ricardo Salvador, Mamede de Carvalho, and Pedro Cavaleiro Miranda. "Modelling Studies of Non-invasive Electric and Magnetic Stimulation of the Spinal Cord." In Brain and Human Body Modeling 2020, 139–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_8.
Повний текст джерелаGuo, Tianruo, David Tsai, Siwei Bai, Mohit Shivdasani, Madhuvanthi Muralidharan, Liming Li, Socrates Dokos, and Nigel H. Lovell. "Insights from Computational Modelling: Selective Stimulation of Retinal Ganglion Cells." In Brain and Human Body Modeling 2020, 233–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_13.
Повний текст джерелаGentilal, Nichal, Ricardo Salvador, and Pedro Cavaleiro Miranda. "A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy." In Brain and Human Body Modeling 2020, 37–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_3.
Повний текст джерелаHill, T. W. "Generation of the Magnetospheric Electric Field." In Quantitative Modeling of Magnetospheric Processes, 297–315. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm021p0297.
Повний текст джерелаPeleg, Micha. "Modeling Microbial Inactivation by Pulsed Electric Field." In Handbook of Electroporation, 1–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26779-1_43-1.
Повний текст джерелаPeleg, Micha. "Modeling Microbial Inactivation by Pulsed Electric Field." In Handbook of Electroporation, 1269–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-32886-7_43.
Повний текст джерелаТези доповідей конференцій з теми "Electric field modeling techniques"
Zhang, Chunhua, Bing Li, Ning Gao, Wenbin Zhao, and Song Li. "Analytical Expressions of the Magnetic Field Generated by Horizontal Time-harmonic Electric Dipole in Sea-air Model." In Proceedings of the 2019 International Conference on Modeling, Simulation, Optimization and Numerical Techniques (SMONT 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/smont-19.2019.41.
Повний текст джерелаSmekal, Thomas, Cindy Briscoe, Tony Chan, Yung Chang, Seth Dobrin, Sean Gallagher, Heidi Groninger, et al. "Modeling, Design and Fabrication of a Microdevice for E-Field Cell Lysis." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0273.
Повний текст джерелаDatta, Brajagopal, and Saibal Chatteijee. "Modelling of hybrid electric field for parallel operation of HVDC and HVAC transmission lines using COMSOL multiphysics." In 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). IEEE, 2017. http://dx.doi.org/10.1109/catcon.2017.8280217.
Повний текст джерелаTeimoori, Khashayar, Ali M. Sadegh, and Bhaskar Paneri. "Novel Electro-FSI Model of Trabecular Network in the Brain Sub Arachnoid Space." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10529.
Повний текст джерелаSahoo, Seshadev, and Kevin Chou. "Review on Phase-Field Modeling of Microstructure Evolutions: Application to Electron Beam Additive Manufacturing." In ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/msec2014-3901.
Повний текст джерелаNeal, Robert E., Helen Kavnoudias, Franklin Rosenfeldt, Ruchong Ou, James Marron, Rafael V. Davalos, and Kenneth R. Thomson. "In Vivo Validation of Irreversible Electroporation Electric Field Threshold for Prostate Tissue." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14425.
Повний текст джерелаLapizco-Encinas, Blanca H. "Microscale Electrokinetics: Dielectrophoretic Manipulation of Particles." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63911.
Повний текст джерелаShooshtari, A., S. Chowdhury, and M. Ohadi. "Numerical Modeling of Dissociation-Injection Process for the Electrohydrodynamic Pumping." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81391.
Повний текст джерелаArzpeyma, Alborz, Ali Dolatabadi, and Paula Wood-Adams. "A 3-D Numerical Modeling of Droplet Actuation via Electrowetting in Microchannels." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37581.
Повний текст джерелаDogruoz, M. Baris, and Gokul Shankaran. "Advances in Fan Modeling: Issues and Effects on Thermal Design of Electronics." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89857.
Повний текст джерелаЗвіти організацій з теми "Electric field modeling techniques"
Thorne, Colin R. Field Assessment Techniques for Bank Erosion Modeling. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada250806.
Повний текст джерелаThorne, Colin R. Field Assessment Techniques for Bank Erosion Modeling. Fort Belvoir, VA: Defense Technical Information Center, November 1990. http://dx.doi.org/10.21236/ada230453.
Повний текст джерелаHutchinson, S. A., L. A. Romero, and C. F. Diegert. Advanced computer techniques for inverse modeling of electric current in cardiac tissue. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/367252.
Повний текст джерелаModlo, Yevhenii O., Serhiy O. Semerikov, Stanislav L. Bondarevskyi, Stanislav T. Tolmachev, Oksana M. Markova, and Pavlo P. Nechypurenko. Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3677.
Повний текст джерелаLee, Youn M., and Bruce T. Benwell. Calibration Techniques and Procedures for Ground-Plane-Version Electric and Magnetic Field Sensors. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada210131.
Повний текст джерелаMock, Raymond Cecil. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909913.
Повний текст джерелаWALL, FREDERICK D., MICHAEL A. MARTINEZ, CORBETT C. BATTAILE, and NANCY A. MISSERT. Quantifying Atmospheric Corrosion Processes Using Small Length-Scale Electrochemical Measurements and 3-D Electric Field Modeling. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/789582.
Повний текст джерелаTanny, Josef, Gabriel Katul, Shabtai Cohen, and Meir Teitel. Micrometeorological methods for inferring whole canopy evapotranspiration in large agricultural structures: measurements and modeling. United States Department of Agriculture, October 2015. http://dx.doi.org/10.32747/2015.7594402.bard.
Повний текст джерелаHeitman, Joshua L., Alon Ben-Gal, Thomas J. Sauer, Nurit Agam, and John Havlin. Separating Components of Evapotranspiration to Improve Efficiency in Vineyard Water Management. United States Department of Agriculture, March 2014. http://dx.doi.org/10.32747/2014.7594386.bard.
Повний текст джерелаComputational Biology: Development in the Field of Medicine. Science Repository, April 2021. http://dx.doi.org/10.31487/sr.blog.31.
Повний текст джерела