Добірка наукової літератури з теми "Electric energy losses"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electric energy losses".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electric energy losses"

1

Mustafa, Sameer, Mohammed Yasen, and Hussein Abdullah. "Evaluation of Electric Energy Losses in Kirkuk Distribution Electric System Area." Iraqi Journal for Electrical and Electronic Engineering 7, no. 2 (December 1, 2011): 144–50. http://dx.doi.org/10.37917/ijeee.7.2.10.

Повний текст джерела
Анотація:
Correct calculations of losses are important for several reasons. There are two basic methods that can be used to calculate technical energy losses, a method based on subtraction of metered energy purchased and metered energy sold to customers and a method based on modeling losses in individual components of the system. For considering the technical loss in distribution system included: transmission line losses, power transformer losses, distribution line losses and low-voltage transformer losses. This work presents an evaluation of the power losses in Kirkuk electric distribution system area and submit proposals and appropriate solutions and suggestions to reduce the losses. A program under Visual Basic was designed to calculate and evaluate electrical energy losses in electrical power systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Papaika, Yu, O. O. Lysenko, M. Rogoza, Yu Stepanenko, L. Tokar, and S. Yakimets. "ENERGY LOSSES WITHIN THE ELECTRIC EQUIPMENT IN TERMS OF POOR VOLTAGE QUALITY." Transactions of Kremenchuk Mykhailo Ostrohradskyi National University 1 (February 27, 2019): 9–13. http://dx.doi.org/10.30929/1995-0519.2019.1.9-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Borodin, Maksim Vladimirovich, Tatyana Anatolievna Kudinova, and Zumeyra Munirovna Shakurova. "Software product to reduce commercial energy losses." E3S Web of Conferences 178 (2020): 01082. http://dx.doi.org/10.1051/e3sconf/202017801082.

Повний текст джерела
Анотація:
The personnel of electric grid companies spend considerable amount of time searching for noncontractual and non-meteredelectricity consumption. The raids carried out by personnel of electric grid companies to detect electricity theft are not always effective, as they are carried out selectively and often do not take into account many factors that could affect the number of detected cases of electricity theft. The article proposes a software product that allows, on the basis ofconsumers’ registration, who have already stolen electricity, have arrears in payment for consumed electricity, made uncontrolled consumption, carry out a process of technological connection or have non-meter accounting, to send personnel conducting a raid to identify electricity theft. It also makes possible to generate the necessary acts, certificates, etc.in real time, which allows staff to reduce the time to fill out paper versions and transfer the necessary documents to the police. The software product allows to increase the efficiency of raids by electric grid companies, by reducing the time of inspections. In turn, the implementation of the proposed software product will allow electric grid companies to significantly reduce energy losses by increasing the territoriality of raids.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Smolentsev, N. I., and L. M. Chetoshnikova. "Electric network topology and method of transmission of electric energy." Power engineering: research, equipment, technology 21, no. 4 (December 9, 2019): 95–103. http://dx.doi.org/10.30724/1998-9903-2019-21-4-95-103.

Повний текст джерела
Анотація:
The purpose of the work is to reduce losses and increase energy saving in electric networks. To achieve this goal, a multilevel topology of the electrical network and an asynchronous method for transferring electrical energy between nodes including a load, energy sources, energy storage devices connected in an appropriate manner are proposed. It is shown by the mathematical method that this network topology allows using energy storage devices controlled appropriately and using tele-information technologies to optimize the balance of electric energy in the network, achieving equality of the generated and consumed electricity. Such a network topology and a method of transmitting electrical energy can be the basis of digital technologies in the energy sector (ENERNET).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

K. Hazaa, Hadi, Hussein H. Abdullah, Mohammed H. Yasen, and Sameer S. Mustafa. "Evaluation of Electric Energy Losses in Kirkuk Distribution Electric System Area." Iraqi Journal for Electrical And Electronic Engineering 7, no. 2 (December 28, 2011): 144–50. http://dx.doi.org/10.33762/eeej.2011.50321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Antsiferov, N. S. "Ways to Reduce Power Losses in Mining Power Supply Lines." Mining science and technology 4, no. 2 (August 25, 2019): 150–56. http://dx.doi.org/10.17073/2500-0632-2019-2-150-156.

Повний текст джерела
Анотація:
Electric energy is the most common and universal form of energy. It can be produced in large quantities near energy sources, transmitted to large distances, easily distributed between consumers and converted into mechanical, thermal, and light energy. Ensuring reliable and economical quality electric energy supply to mining enterprises with the optimal use of energy resources is one of the most important tasks facing the country's energy sector. In the Russian Federation, high degree of concentration of generating capacities at power plants has been achieved. The main capacities are concentrated in power plants with installed capacity of more than 1 million kW. High importance of the electric power industry is determined by the infrastructural nature of the industry and the direct relationship between the country's economic growth and the level of its development effectiveness. One of the most pressing problems of modern electricity supply is the problem of ensuring the quality of electric energy. The main reason for the deterioration in the electricity quality is widespread non-linear loads that create non-sinusoidal currents and voltage unbalance during their operation. The voltage unbalance is most often caused by the presence of an unbalanced load. Unbalanced load currents flowing through the elements of the power supply system cause unbalanced voltage losses in them. This results in appearance of unbalanced voltages on the terminals of electric apparatus. The voltage deviations at electric apparatus overdriven phase may exceed the normally acceptable values, while the voltage deviations at electric apparatus other phases may remain within the normal limits. In addition to the deterioration of the voltage mode at electric apparatus under the unbalanced voltage conditions, the operating conditions of both the electric apparatus and all the network elements are significantly worsened, and the reliability of the electrical equipment and the power supply system as a whole decreased. The paper considers the issues of reducing the voltage losses in power supply networks by improving quality of electric power.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Komolafe, O. M., and K. M. Udofia. "Review of electrical energy losses in Nigeria." Nigerian Journal of Technology 39, no. 1 (April 3, 2020): 246–54. http://dx.doi.org/10.4314/njt.v39i1.28.

Повний текст джерела
Анотація:
The Nigerian electric power sector holds a lot of unfulfilled potentials for the economic development of Africa’s most populous country; the electric energy generated is not up to 30% of the national demand and worse still, over 50% of this paltry sum is recorded as losses—this is not indicative of commercial viability. The visible efforts being made to address the problems, though laudable, do not fully demonstrate complete appreciation of the underlying root causes. In this paper, an examination of the structure of the Nigerian electricity industry is provided followed by a technical review of factors responsible for the excessive losses (technical and non-technical) in the system. The solutions proffered would enable improved response, first to efficiently manage the available energy and also to grow the industry for the good of the nation. Keywords: Nigerian power distribution system, electric energy theft, power losses in Nigeria.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Felea, Ioan, Istvan Csuzi, and Eva Barla. "Modelling and Assessing Energy Performance of an Urban Transport System with Electric Drives." PROMET - Traffic&Transportation 25, no. 5 (October 27, 2013): 495–506. http://dx.doi.org/10.7307/ptt.v25i5.1207.

Повний текст джерела
Анотація:
Energy conservation is one of the key priorities of sustainable development strategy. Transport systems are responsible for about one third of energy consumption. As result, the identification of solutions to reduce energy consumption in these systems is essential for the implementation of the sustainable development strategies. The present work is dedicated to identifying the possibilities for a reduction in the consumption of electric energy in electric urban public transport systems, using the audit of their electricity system. After justifying the importance of these concerns, a mathematical model of the electrical energy balance of the electric urban public transport system and its components is presented. The analysis is applied to determine the losses in the system components and useful energy, based on the evaluation and energy consumption measurements. The measurements to reduce energy losses are identified and characterized under technical and economic aspect, optimal electrical energy balances being done on this basis.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Гуков, P. Gukov, Авдеев, and A. Avdeev. "ENERGY IN RURAL AND ELECTRIC NETWORKS." Voronezh Scientific-Technical Bulletin 4, no. 4 (December 26, 2015): 10–14. http://dx.doi.org/10.12737/17002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Masaev, S. Kh, U. Kh Makaev, and M. V. Debiev. "The basic stages of improving the power grid complex functioning of the Chechen Republic." Power engineering: research, equipment, technology 22, no. 4 (November 15, 2020): 43–53. http://dx.doi.org/10.30724/1998-9903-2020-22-4-43-53.

Повний текст джерела
Анотація:
The article considers the state of the electric power industry functioning of the Chechen Republic. Comparative data on the reception in the network and useful electricity supply of the Chechen Republic in recent years are presented. The total transformer capacity structure of all substations, as well as the power lines total length of Chechenenergo JSC, is considered. The main electric power industry problems of the Chechen power system, which are the lack of own generating capacities, the transformer capacities shortage of substations 110 and 35 kV and the main production assets high level wear of the electric grid economy, are studied. The tasks to reduce the Chechen energy system electric energy losses are considered. The values and causes of the electric energy losses in different district electric networks (RES) of JSC "Chechenenergo" are determined. A comparative analysis of the electrical energy losses in recent years has been performed. Issues related to reactive power in electrical networks are considered. An analysis was carried out to determine the reactive power values in different district electric networks of Chechenenergo JSC. Measures are proposed that contribute to the reactive power normalization and the improvement of technical and economic indicators in electric networks. The networks electrical circuits improvement analysis was carried out to ensure the power supply stability and reliability to consumers in the republic. The production process control system and diagnostics is proposed, which will allow to regulate and coordinate the activities to manage the technical condition, as well as the power system reliability.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electric energy losses"

1

Gantt, Lynn Rupert. "Energy Losses for Propelling and Braking Conditions of an Electric Vehicle." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/32879.

Повний текст джерела
Анотація:
The market segment of hybrid-electric and full function electric vehicles is growing within the automotive transportation sector. While many papers exist concerning fuel economy or fuel consumption and the limitations of conventional powertrains, little published work is available for vehicles which use grid electricity as an energy source for propulsion. Generally, the emphasis is put solely on the average drive cycle efficiency for the vehicle with very little thought given to propelling and braking powertrain losses for individual components. The modeling section of this paper will take basic energy loss equations for vehicle speed and acceleration, along with component efficiency information to predict the grid energy consumption in AC Wh/km for a given drive cycle. This paper explains how to calculate the forces experienced by a vehicle while completing a drive cycle in three different ways: using vehicle characteristics, United States Environmental Protection Agencyâ s (EPA) Dynamometer â targetâ coefficients, and an adaptation of the Sovran parameters. Once the vehicle forces are determined, power and energy demands at the wheels are determined. The vehicle power demands are split into propelling, braking, and idle to aide in the understanding of what it takes to move a vehicle and to identify possible areas for improvement. Then, using component efficiency data for various parameters of interest, the energy consumption of the vehicle as a pure EV is supplied in both DC (at the battery terminals) and AC (from the electric grid) Wh/km. The energy that flows into and out of each component while the vehicle is driving along with the losses at each step along the way of the energy path are detailed and explained. The final goal is to make the results of the model match the vehicle for any driving schedule. Validation work is performed in order to take the model estimates for efficiencies and correlate them against real world data. By using the Virginia Tech Range Extended Crossover (VTREX) and collecting data from testing, the parameters that the model is based on will be correlated with real world test data. The paper presents a propelling, braking, and net energy weighted drive cycle averaged efficiency that can be used to calculate the losses for a given cycle. In understanding the losses at each component, not just the individual efficiency, areas for future vehicle improvement can be identified to reduce petroleum energy use and greenhouse gases. The electric range of the vehicle factors heavily into the Utility Weighted fuel economy of a plug-in hybrid electric vehicle, which will also be addressed.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alley, Robert Jesse. "VTool: A Method for Predicting and Understanding the Energy Flow and Losses in Advanced Vehicle Powertrains." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/33697.

Повний текст джерела
Анотація:
As the global demand for energy increases, the people of the United States are increasingly subject to high and ever-rising oil prices. Additionally, the U.S. transportation sector accounts for 27% of total nationwide Greenhouse Gas (GHG) emissions. In the U.S. transportation sector, light-duty passenger vehicles account for about 58% of energy use. Therefore incremental improvements in light-duty vehicle efficiency and energy use will significantly impact the overall landscape of energy use in America. A crucial step to designing and building more efficient vehicles is modeling powertrain energy consumption. While accurate modeling is indeed key to effective and efficient design, a fundamental understanding of the powertrain and auxiliary systems that contribute to energy consumption for a vehicle is equally as important if not more important. This thesis presents a methodology that has been packaged into a tool, called VTool, that can be used to estimate the energy consumption of a vehicle powertrain. The method is intrinsically designed to foster understanding of the vehicle powertrain as it relates to energy consumption while still providing reasonably accurate results. VTool explicitly calculates the energy required at the wheels of the vehicle to complete a prescribed drive cycle and then explicitly applies component efficiencies to find component losses and the overall energy consumption for the drive cycle. In calculating component efficiencies and losses, VTool offers several tunable parameters that can be used to calibrate the tool for a particular vehicle, compare powertrain architectures, or simply explore the tradeoffs and sensitivities of certain parameters. In this paper, the method is fully and explicitly developed to model Electric Vehicles (EVs), Series Hybrid Electric Vehicles (HEVs) and Parallel HEVs for various different drive cycles. VTool has also been validated for use in UDDS and HwFET cycles using on-road test results from the 2011 EcoCAR competition. By extension, the method could easily be extended for use in other cycles. The end result is a tool that can predict fuel consumption to a reasonable degree of accuracy for a variety of powertrains, calculate J1711 Utility Factor weighted energy consumption for Extended Range Electric Vehicles (EREVs) and determine the Well-to-Wheel impact of a given powertrain or fuel. VTool does all of this while performing all calculations explicitly and calculating all component losses to allow the user maximum access which promotes understanding and comprehension of the fundamental dynamics of automotive fuel economy and the powertrain as a system.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jin, Lebing. "Integrated Compact Drives for Electric and Hybrid Electric Vehicles." Doctoral thesis, KTH, Elkraftteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196732.

Повний текст джерела
Анотація:
To develop more competitive solutions, one of the trends in the development of drive systems for electric and hybrid electric vehicles (EVs/HEVs) is to integrate the power electronic converter and the electric motor. This thesis aims to investigate the performance and the operation of modular converters in integrated motor drive systems for EVs/HEVs. In the first part, the concept of integrated modular motor drive systems for EVs/HEVs is introduced. Three suitable modular converter topologies, namely, the stacked polyphase bridges (SPB) converter, the parallel-connected polyphase bridges (PPB) converter and the modular high frequency (MHF) converter, are evaluated and compared with conventional electric drives in terms of power losses, energy storage requirements, and semiconductor costs. In the second part of the thesis, the harmonic content of the dc-link current of the SPB converter is analyzed. By adopting an interleaving modulation the size of the dc-link capacitor can be reduced without increasing the switching frequency, which is beneficial for achieving a compact integrated system. This method allows for around 80% reduction of the dc-link capacitance for vehicle drives, resulting in a significant size reduction of the power converter and improved integration. Finally, a communication-based distributed control system for the SPB converter is presented. The communication delay arising from the serial communication is inevitable, thus a timing analysis is also presented. It has been found that stability is maintained even when the baud rate of the SPI communication is lower than 1 Mbps, indicating that other communication protocols with lower bandwidths can also be adopted for this topology. The analytical investigations provided in this thesis are validated by experiments on a four-submodule laboratory prototype. Experimental results verify the correctness of the theoretical analysis, as well as the dynamic performance of the distributed control system.

QC 20161121

Стилі APA, Harvard, Vancouver, ISO та ін.
4

VIEIRA, RODRIGO SANTOS. "ASSESSMENT OF ENERGY LOSSES AND CHARACTERIZATION OF THE RESALE AND MAINTENANCE MARKET OF REFURBISHED ELECTRIC MOTORS IN BRAZIL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=37028@1.

Повний текст джерела
Анотація:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTITUIÇÕES COMUNITÁRIAS DE ENSINO PARTICULARES
Os motores elétricos no Brasil são responsáveis pelo consumo de cerca de 25 porcento de toda a energia elétrica no país e, em sua grande parte, estão presentes na indústria. Estes equipamentos são fabricados para uso em bombas hidráulicas, compressores de ar, elevadores etc., podendo ser comercializados se atenderem aos índices de eficiência mínimos definidos pela Portaria INMETRO/MDIC N488 de 2010, garantindo o seu perfeito funcionamento e o consumo energético adequado. Contudo, alguns estabelecimentos estão comercializando produtos usados recondicionados, não atendendo à regulamentação desta Portaria, além de reformarem motores sem condições de uso. O objetivo desta dissertação é dimensionar e caracterizar o mercado de revenda e manutenção de motores elétricos de indução recondicionados no Brasil, estimando a perda de energia decorrente do recondicionamento incorreto. A metodologia do trabalho pode ser dividida em cinco etapas: estudo do estado da arte de recondicionamento de motores; quantificação de empresas e funcionários por meio de consultas às bases de dados governamentais; pesquisa de campo em amostras de empresas que fazem recondicionamento; extrapolação do estudo conduzido nas amostras para a população de empresas pesquisadas durante a pesquisa de campo; comparação dos resultados com estudos anteriores e dimensionamento das perdas elétricas do Brasil. Como resultado foi caracterizado e dimensionado o mercado de motores recondicionados, contendo: 6.503 empresas; 24,4 mil funcionários; 45 porcento das empresas realizando revenda de recondicionados; 6,9 milhões de motores recondicionados por ano, totalizando 7,46 porcento de perda, equivalentes a 2,9 Terawatt-hora. Além disso, dos 20 milhões de motores existentes no Brasil em 2016 há uma perda de 8,4 Terawatt-hora por uso de motores recondicionados e um grande aumento da venda de motores importados de baixa qualidade. Foram, assim, atingidos todos os objetivos propostos nesta pesquisa, sendo identificadas as novas tendências do mercado de motores brasileiro e gerando subsídios para o desenvolvimento de novas políticas de eficiência energética no país.
Electric motors in Brazil are responsible for the consumption of about 25 percent of all electricity in the country and, being mostly presented in the industry. These equipments are manufactured for being used in hydraulic pumps, air compressors, elevators, etc., and can be commercialized in compliance with the energy efficiency levels defined by INMETRO/MDIC Ordinance N488 of 2010, ensuring adequate energy consumption. However, some establishments are commercializing refurbished motors, not complying with the regulation considered by the Ordinance, including reforming motors without a minimum condition of use. The aim of this dissertation is to evaluate the Brazilian market of refurbished motors, including resale market and maintenance market, estimating the energy losses due to incorrect reconditioning. The methodology of the work can be divided in five steps: state of the art of refurbished motors; quantifying companies and employees by querying the database come from the government; survey on samples of companies that are doing the refurbishing service; extrapolation of the study conducted in the surveyed samples of companies to the population of companies; comparison of results with previous studies and estimating of energy losses in Brazil. As a result, the market for refurbished motors was characterized and dimensioned, containing: 6 503 companies; 24.400 employees; 45 percent of companies performing resale of refurbished motors; 6.9 million motors being refurbished per year, totaling 7.46 percent of energy losses, equivalent to 2.9 TW h. In addition, of the 20 million motors remaining in Brazil in 2016, there is a loss of 8.4 TW h per use of refurbished motors, and a large increase of the sale of low quality imported motors. Thus, all the proposed objectives in this dissertation were achieved, having been identified the new trends in the Brazilian electric motor market and generating subsidies for energy efficiency policies in the country.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Han, Xue. "Quantitative Analysis of Distributed Energy Resources in Future Distribution Networks." Thesis, KTH, Industriella informations- och styrsystem, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98484.

Повний текст джерела
Анотація:
There has been a large body of statements claiming that the large scale deployment of Distributed Energy Resources (DERs) will eventually reshape the future distribution grid operation in numerous ways. However, there is a lack of evidence specifying to what extent the power system operation will be alternated. In this project, quantitative results in terms of how the future distribution grid will be changed by the deployment of distributed generation, active demand and electric vehicles, are presented. The quantitative analysis is based on the conditions for both a radial and a meshed distribution network. The input parameters are on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. The simulation results indicate that the deployment of DERs can significantly reduce the power losses and voltage drops by compensating power from the local energy resources, and limiting the power transmitted from the external grid. However, it is notable that the opposite results (e.g., severe voltage uctuations, larger power losses) can be obtained due to the intermittent characteristics of DERs and the irrational management of different types of DERs in the DNs. Subsequently, this will lead to challenges for the Distribution System Operator (DSO).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Penin, Carlos Alexandre de Sousa. "Combate, prevenção e otimização das perdas comerciais de energia elétrica." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-14082008-092248/.

Повний текст джерела
Анотація:
As perdas de energia elétrica devidas a furtos e fraudes, também chamadas de Perdas Não-Técnicas (PNT) ou Perdas Comerciais, têm sido matéria prioritária das empresas concessionárias de distribuição de energia elétrica, bem como dos órgãos reguladores, tanto pelo seu crescimento nos últimos anos quanto pelo seu impacto no sistema elétrico brasileiro. As formas de fraude são as mais variadas possíveis, o que gera enormes dificuldades para as concessionárias. Este trabalho tem como objetivo o estudo do problema das PNT utilizando-se de uma abordagem multidisciplinar, que analisa a experiência tanto de concessionárias no Brasil como no exterior. O trabalho discute as melhores práticas para mitigação das mesmas e propõe melhorias nos processos de combate e de prevenção, e nos procedimentos legais para recuperação de receitas, apoiados sobre uma cuidadosa contextualização regulatória. Chamase a atenção para a diversidade sócio-econômica nacional, compara-se com diversos exemplos internacionais, e propõe-se identificar os aspectos mais relevantes a serem considerados na regulação sobre o tema, discutindo procedimentos e metodologias para o equacionamento do montante de recursos a serem aplicados pelas companhias distribuidoras para a adequada redução dessas perdas de energia. Observa-se que grande parte das PNT tem origem em questões de cunho social. O Estado pode e deve estabelecer políticas para resolver tais questões, possibilitando a universalização do acesso e subsidiando o fornecimento de energia elétrica. Não fez parte dessa pesquisa discutir se estes instrumentos são suficientes ou devem ser aprimorados, mas sim analisar amplamente a questão das PNT com base nos condicionantes regulatórios atuais, que obrigam as concessionárias a reduzir estas perdas visando entre outros a modicidade tarifária dos consumidores regulares.
The electric power losses due to thefts and frauds, also called Non technical Losses (NTL), have been priority matter for concessionary companies of electric power distribution, as well as for government regulatory agencies, not only due to rapid growth over the past years but also due to its impact on Brazilian electrical system. There is a wide range of possible types and methods of frauds, causing enormous difficulties to licensed companies. The objective of this work is to study the problem of NTL using a wide approach, analyze the experience of dealerships in Brazil and abroad, discuss the best practices for mitigation of those losses and propose improvements in the combat and prevention processes, and the legal procedures for recovery of incomes, leaning on a careful regulatory context. This study draws attention to Brazil\'s socioeconomic diversity, comparing it to various international examples, and intends to identify the most relevant aspects that must be considered on the theme, discussing procedures and methodologies for the equation of the amount of resources to be applied by distributing companies to achieve the appropriate reduction of NTL. A large part of the commercial losses has its origin in issues of social stamp. The State owes and can establish policies to solve such issues, making possible the access to electric power supply for all consumers. It was not part of this research to discuss if these instruments are enough, but to analyze the issue of the commercial losses thoroughly based in the regulatory policies that push dealerships to reduce NTL objecting reasonable regular consumers\' tariff.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beckman, Mathias, and Gerald Volden Alex Christy. "Performance Assessment of Electrical Motor for Electric Aircraft Propulsion Applications : Evaluation of the Permanent Magnet Motor and its Limitations in Aircraft Propulsion." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-45157.

Повний текст джерела
Анотація:
This thesis project will evaluate which kind of electrical motor is best suited for aircraft propulsion and which parameters effect the efficiency. An economic analysis was conducted, comparing the fuel price (Jet A1) for a gas turbine and the electricity price for an electric motor of 1MW. The study was conducted by using analytical methods in MATLAB. Excel was used to compile and present the data. The data used in this thesis project were assumed with regards to similar studies or pre-determined values. The main losses for the Permanent Magnet Synchronous Motor (PMSM) were calculated to achieve a deeper understanding of the most important parameters and how these parameters need to improve to allow for future electric propulsion systems. The crucial parameters for the losses were concluded to be the temperature, voltage level, electrical frequency, magnetic flux density, size of the rotor and rotational speed. The three main losses of a PMSM was illustrated through the analytical equations used in MATLAB. The calculations present how the ohmic losses depend on the temperature (0-230°C) at different voltages (700V and 1000V), how the core losses depend on frequency (0-1000Hz) at different magnetic flux densities and how the windage losses depend on rotational speed (7000-10000 rpm). It could be concluded that at 8500 rpm an efficiency of 91,26% could be achieved at 700V, 1.5T and 90.4% at 1000V, 1.65T. The decrease in efficiency is a result of the increase in magnetic flux density. When looking at the economic viability of electrical integration the power to weight ratio and energy price was compared for the gas turbine and electrical motor including an inverter and battery. This resulted in a conclusion that a pure electrical system may not compete with a gas turbine in 30 years of time due to the low energy density of the battery. It was also concluded that the emissions during cruise could be lowered significantly. If the batteries were charged in Sweden the emissions would decrease from ~937 kg CO2 to ~31 kg CO2. If the batteries were charged in the Nordic region the emissions would decrease to ~119kg CO2. However, if the batteries were to be charged in the US the carbon dioxide emission would be ~1084 kg CO2, which is an increase in CO2 emission compared to the gas turbine.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Мандрика, Анатолій Семенович, Анатолий Семенович Мандрыка, Anatolii Semenovych Mandryka та О. М. Молошний. "Потенційні можливості енергозбереження в системах електропостачання". Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/40529.

Повний текст джерела
Анотація:
Значним джерел економії палива є зниження втрат в електричних мережах. В Україні ці втрати обумовлюється великими об’ємами крадіжок електричної енергії, відсутністю дієвої систем обліку, застарілим і зношеним обладнанням електромереж.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Paulino, Clóvis Aparecido. "Estudo de tecnologias aplicáveis à automação da medição de energia elétrica residencial visando à minimização de perdas." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-13122006-151957/.

Повний текст джерела
Анотація:
Atualmente a medição de energia elétrica para residências em centros urbanos é realizada por meio de medidores eletromecânicos lidos de forma manual. Neste processo uma série de problemas foram observados, dos quais se destacam: erros de leitura, dificuldade de acesso ao ponto de medição, bancos de dados sem atualização, dentre outros. A automação do processo de medição e da leitura, com base nos medidores existentes ou com o uso de medidores eletrônicos da energia elétrica, além de resolver os problemas citados, tem potencialmente uma série de vantagens, que incluem: combate a fraudes e furto de energia, implementação de tarifas diferenciadas em função da hora de consumo (tarifa amarela), corte e religamento remoto de energia, implementação de programas de energia pré-paga, levantamento de curvas de carga e eliminação de erros e custos do processo de leitura manual. Por outro lado observa-se que existem no Brasil cerca de 43 milhões de medidores residenciais instalados, sendo relativamente baixos os custos dos medidores eletromecânicos e do sistema de leitura manual. Desta forma, somente será possível implementar sistemas de automação da medição de energia elétrica residencial se os sistemas ora propostos forem ao mesmo tempo de custo reduzido e altamente confiáveis. O sistema de automação em estudo irá considerar inclusive o aproveitamento dos medidores eletromecânicos existentes, com a instalação de sistemas eletrônicos de coleta dos dados de consumo comunicando-se com concentradores locais, que por sua vez são interligados a sistemas computacionais instalados dentro da concessionária. Os resultados do estudo mostram que hoje existe uma concreta possibilidade de se obter sistemas de automação da medição de energia elétrica residencial seguros e de custos reduzidos. O trabalho ora proposto será desenvolver um sistema automatizado para a medição de energia residencial em centros urbanos, constituído por um módulo concentrador para oito residências, com comunicação deste para um centro de operação da concessionária. Será apresentada a metodologia para a implementação do sistema e considerado um estudo de caso.
In these days, the energy measurement system for residences in urban areas is carried out by eletromechanical meters, which are read manually. Several problems have been observed in this process, which we can emphasize: reading errors, difficulty to access the measurement place, outdated databases, etc. The reading and the measurement automation processes, based in the current eletromechanical meters or with the electronic version of these equipment, besides solving the mentioned problems, have several advantages, such as: minimization of fraud and robbery of energy, implementation of differentiated rates depending on the time of the day (ex:yellow rate), remote energy switch-off and switch-on, implementation of a prepaid system, possibility to get the load curve of each consumer and elimination of error and costs embedded in the manually reading process. On the other hand, we can observe that in Brazil there are an estimated 43 millions residential meters already installed, and the costs for the current measurement system, and also of the meters, are very low. In this scenario, the implementation of a automated system for residential energy measurement is that the proposed system has a very low cost at the same time provides a high reliability. The proposed automation system will consider the reutilization of the current mechanical meters, with the installation of an electronic systems for the consumption data collection, communicating with local concentrators, which in their turn are linked to a computing systems in the energy company. The results of the present work show that, nowadays, there is a real possibility to get, a trustable and cheap automated measurement system for energy in residential urban area. The proposed work is the development of an automated system, for residential energy measurement in urban area. It's composed of a concentrator module for eight residences, with communication from this point to the energy company's operation center. It will be presented a methodology to implement such a system and also a case study.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Петровський, Михайло Васильович, Михаил Васильевич Петровский, Mykhailo Vasylovych Petrovskyi, А. В. Титаренко, С. В. Федірка та Р. С. Вольвач. "Визначення втрат на нагрів дефектних з'єднань розподільчих пристроїв на основі даних тепловізійної діагностики обладнання". Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/27710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electric energy losses"

1

Masters, Gilbert M. Renewable and efficient electric power systems. Hoboken, NJ: John Wiley & Sons, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Renewable and efficient electric power systems. Hoboken, NJ: John Wiley & Sons, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Taylor, William R. Evaluation of potential energy loss reduction and savings for U.S. Army electrical distribution systems. [Champaign, Ill.]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brydson, Rik. Electron energy loss spectroscopy. Oxford: Bios in association with the Royal Microscopical Society, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Egerton, R. F. Electron energy-loss spectroscopy in the electron microscope. New York: Plenum Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Egerton, R. F. Electron energy-loss spectroscopy in the electron microscope. 2nd ed. New York: Plenum Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ibach, H. Electron energy loss spectrometers: The technology of high performance. Berlin: Springer-Verlag, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer Science+Business Media, LLC, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lifshit︠s︡, V. G. Spektry KhPĖĖ poverkhnostnykh faz na kremnii. Vladivostok: Dalʹnauka, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Budd, P. M. Light-element analysis in the transmission electron microscope, WEDX and EELS. Oxford: Oxford University Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electric energy losses"

1

Ferhatbegović, Šeila Gruhonjić, Izet Džananović, and Samir Avdaković. "Electric Energy Losses Estimation in Power Distribution System—Tuzla Canton Case Study." In Lecture Notes in Networks and Systems, 3–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71321-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chelaru, Ecaterina, Livia Noroc, Gheorghe Grigoras, and Bogdan-Constantin Neagu. "Energy Losses Estimation in the Electric Distribution Networks Using Clustering-Based Selection of the Representative Feeders." In The 15th International Conference Interdisciplinarity in Engineering, 508–21. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93817-8_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hung, Nguyen Thanh, Nguyen Chi Thien, Thanh Phuong Nguyen, Viet So Le, and Doan Anh Tuan. "Optimization of Electric Energy in Three-Phase Induction Motor by Balancing of Torque and Flux Dependent Losses." In AETA 2013: Recent Advances in Electrical Engineering and Related Sciences, 497–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41968-3_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Burkov, A. F., V. V. Mikhanoshin, and Nguen Van Kha. "Energy Losses in Electrical Networks." In Lecture Notes in Mechanical Engineering, 384–93. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85230-6_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Beilis, Isak. "Electrode Energy Losses. Effective Voltage." In Plasma and Spot Phenomena in Electrical Arcs, 285–305. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44747-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ibach, Harald. "Electron Emission Systems." In Electron Energy Loss Spectrometers, 87–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-47157-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Egerton, R. F. "Energy-Loss Instrumentation." In Electron Energy-Loss Spectroscopy in the Electron Microscope, 29–109. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-9583-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Krishnan, Kannan M. "Electron Energy-Loss Spectroscopy." In ACS Symposium Series, 54–74. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0415.ch003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Williams, David B., and C. Barry Carter. "Electron Energy-Loss Spectrometers." In Transmission Electron Microscopy, 637–51. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-2519-3_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Avery, Neil R. "Electron Energy Loss Spectroscopy." In Vibrational Spectroscopy of Molecules on Surfaces, 223–65. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-8759-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electric energy losses"

1

Cheremisin, Vasiliy T., Mikhail M. Nikiforov, and Sergey Y. Ushakov. "Assessment of Train Traction Electric Energy Losses." In 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE, 2018. http://dx.doi.org/10.1109/fareastcon.2018.8602528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gawlak, Anna, and Miroslaw Kornatka. "Energy losses in low-voltage networks." In 2015 16th International Scientific Conference on Electric Power Engineering (EPE). IEEE, 2015. http://dx.doi.org/10.1109/epe.2015.7161068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lin Yang and Zhizhong Guo. "Reconfiguration of electric distribution networks for energy losses reduction." In 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. IEEE, 2008. http://dx.doi.org/10.1109/drpt.2008.4523488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Harabagium G. "Reduction solution for losses caused by electric energy theft." In 18th International Conference and Exhibition on Electricity Distribution (CIRED 2005). IEE, 2005. http://dx.doi.org/10.1049/cp:20051310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zaidi, Arsalan Hussain. "Optimal electric vehicle load management for minimization of losses." In 2015 Power Generation Systems and Renewable Energy Technologies (PGSRET). IEEE, 2015. http://dx.doi.org/10.1109/pgsret.2015.7312215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Beckers, Camiel J. J., Igo J. M. Besselink, and Henk Nijmeijer. "Modeling of Energy Losses During Cornering for Electric City Buses." In 2019 IEEE Intelligent Transportation Systems Conference - ITSC. IEEE, 2019. http://dx.doi.org/10.1109/itsc.2019.8917232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Szelag, Adam, Mykola Kostin, and Anatolii Nikitenko. "Losses of recovered electric energy in the elements of a DC electric transport system." In 2016 IEEE International Power Electronics and Motion Control Conference (PEMC). IEEE, 2016. http://dx.doi.org/10.1109/epepemc.2016.7752033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lezhniuk, P., S. Bevz, and A. Piskliarova. "Evaluation and forecast of electric energy losses in distribution networks applying fuzzy-logic." In Energy Society General Meeting. IEEE, 2008. http://dx.doi.org/10.1109/pes.2008.4596509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rohmah, Ainur, and Ir Edy Ervianto. "Losses Management of PT. PLN (Persero) ULP Siak by Using Jogja Losses Formula Calculation Method." In 2019 International Conference on Technologies and Policies in Electric Power & Energy. IEEE, 2019. http://dx.doi.org/10.1109/ieeeconf48524.2019.9102492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kacem, Moez Hadj, Souhir Tounsi, and Rafik Neji. "Modeling losses in the power of a brand to buy electric vehicles." In 2015 Sixth International Renewable Energy Congress (IREC). IEEE, 2015. http://dx.doi.org/10.1109/irec.2015.7110913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electric energy losses"

1

Pinkus, O., D. F. Wilcock, and T. M. Levinson. Reduction in tribological energy losses in the transportation and electric utilities sectors. Office of Scientific and Technical Information (OSTI), September 1985. http://dx.doi.org/10.2172/5107636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stewart, John. A method of measuring the electron energy losses in transmission through thin films. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kesmodel, L. L. High resolution electron energy loss studies of surface vibrations. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/5231722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kesmodel, L. L. High resolution electron energy loss studies of surface vibrations. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/6786588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kesmodel, L. High resolution electron energy loss studies of surface vibrations. Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6901277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Speller, Leslie C., and Arthur N. Thorpe. Feasibility of Investigating Smith-Purcell Free-Electron Laser Configurations by Electron Energy Loss Studies. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada169059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kundmann, M. K. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6340092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Erskine, J. L. High Resolution Electron Energy Loss Studies of Chemisorbed Species on Aluminum and Titanium. Fort Belvoir, VA: Defense Technical Information Center, April 1986. http://dx.doi.org/10.21236/ada172055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Riddick, Thomas. Modelling Energy Loss Mechanisms and a Determination of the Electron Energy Scale for the CDF Run II W Mass Measurement. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1128273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kesmodel, L. L. High resolution electron energy loss studies of surface vibrations. Progress report, November 1, 1990--May 1, 1993. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10152737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії