Добірка наукової літератури з теми "Electric double layer capacitors"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electric double layer capacitors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Electric double layer capacitors"

1

Han, Fangming, Ou Qian, Guowen Meng, Dou Lin, Gan Chen, Shiping Zhang, Qijun Pan, Xiang Zhang, Xiaoguang Zhu, and Bingqing Wei. "Structurally integrated 3D carbon tube grid–based high-performance filter capacitor." Science 377, no. 6609 (August 26, 2022): 1004–7. http://dx.doi.org/10.1126/science.abh4380.

Повний текст джерела
Анотація:
Filter capacitors play a critical role in ensuring the quality and reliability of electrical and electronic equipment. Aluminum electrolytic capacitors are the most commonly used but are the largest filtering components, limiting device miniaturization. The high areal and volumetric capacitance of electric double-layer capacitors should make them ideal miniaturized filter capacitors, but they are hindered by their slow frequency responses. We report the development of interconnected and structurally integrated carbon tube grid–based electric double-layer capacitors with high areal capacitance and rapid frequency response. These capacitors exhibit excellent line filtering of 120-hertz voltage signal and volumetric advantages under low-voltage operations for digital circuits, portable electronics, and electrical appliances. These findings provide a sound technological basis for developing electric double-layer capacitors for miniaturizing filter and power devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ISHIKAWA, Masashi, and Yoshiharu MATSUDA. "Development of Electric Double-Layer Capacitors." Journal of the Surface Finishing Society of Japan 47, no. 6 (1996): 498–502. http://dx.doi.org/10.4139/sfj.47.498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Yunqiu, Yu-Xi Song, Wen-Yi Tong, Yuanyuan Zhang, Ruijuan Qi, Ping-Hua Xiang, Rong Huang, et al. "Electric field control of magnetism in nickel with coaxial cylinder structure at room temperature by electric double layer gating." J. Mater. Chem. C 5, no. 40 (2017): 10609–14. http://dx.doi.org/10.1039/c7tc03617e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mori, Kazuya, Shingo Takahashi, Akio Hasebe, Sumiko Seki, and Takahiko Itoh. "Voltage Balancer for Electric Double Layer Capacitors." IEEJ Transactions on Industry Applications 123, no. 12 (2003): 1406–13. http://dx.doi.org/10.1541/ieejias.123.1406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

NARUSE, SHINJI. "Structural Members for Electric Double Layer Capacitors." FIBER 65, no. 6 (2009): P.196—P.199. http://dx.doi.org/10.2115/fiber.65.p_196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ISHIKAWA, Masashi, and Yasutaka NAGAO. "Polymer Technology for Electric Double Layer Capacitors." Kobunshi 54, no. 12 (2005): 874–77. http://dx.doi.org/10.1295/kobunshi.54.874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

ZHANG, L., H. LIU, M. WANG, and W. LIU. "Carbon aerogels for electric double-layer capacitors." Rare Metals 25, no. 6 (October 2006): 51–57. http://dx.doi.org/10.1016/s1001-0521(07)60044-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

KUDOH, Yasuo, and Atsushi NISHINO. "Recent Development in Electrolytic Capacitors and Electric Double Layer Capacitors." Electrochemistry 69, no. 6 (June 5, 2001): 397–406. http://dx.doi.org/10.5796/electrochemistry.69.397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Sheng Li, Yan Hua Song, Xiao Gang Li, and Wei Li. "Study on the Capacitance Performance of Activated Carbon Material for Supercapacitor." Advanced Materials Research 239-242 (May 2011): 797–800. http://dx.doi.org/10.4028/www.scientific.net/amr.239-242.797.

Повний текст джерела
Анотація:
Activated carbon for electric double-layer capacitors was prepared from bamboos by activation with KOH solution through heating by microwave radiation. The influence of the mass ratio of KOH to bamboo, power and radiation time of microwave was studied. The behavior of charge/discharge, cyclic voltammetry and AC impedence of bamboo-based activated carbon electric double-layer capacitor was investigated. The results indicated that the specific capacitance of bamboo-based activated carbon supercapacitors can reach 277.46F/g while KOH to bamboo is 6:1 and the power and radiation time of microwave are 720W and 12 minutes respectively. Moreover, the electric double-layer capacitor using the activated carbon as electrode materials has good charge/discharge properties and cycling performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

MATSUDA, Yoshiharu, Ryohei TSUDA, and Masahiko MORI. "Electric Double Layer Capacitors with Aqueous HCI Solutions." Electrochemistry 69, no. 6 (June 5, 2001): 473–76. http://dx.doi.org/10.5796/electrochemistry.69.473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Electric double layer capacitors"

1

Cagle, Clint William. "Charging kinetics of electric double layer capacitors." Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1263402254/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Premathilake, Dilshan V. "Vertically Oriented Graphene Electric Double Layer Capacitors." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639673.

Повний текст джерела
Анотація:
Vertically oriented graphene nanosheets (VOGN) synthesized by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) have been fabricated as electrical double layer capacitors (EDLCs). The relatively open morphology of the films provided good frequency response, but had limited capacitance compared to present day activated carbon EDLCs. The objective of this research was to improve the capacitance of these films to a commercially viable level while maintaining sufficient frequency response for AC filtering. The growth of VOGN on Ni and Al substrates has been studied in this work. The native oxide on Ni was thinned at temperatures above ~600ºC with the oxygen from the surface oxide dissolving into the bulk, thus creating a low resistance ohmic contact that reduced the overall equivalent series resistance (ESR). Aluminum was studied because it is the primary substrate material used in electrolytic capacitors. However, it was much more difficult to work with because of its tenacious surface oxide. The maximum capacitance for a 10-minute VOGN/Ni growth observed was ~260µF/cm2, at temperature 850ºC, at 120 Hz, but the morphology was not very ordered. The best combination of capacitance (~160 µF/cm2) and frequency response (phase angle near -85º up to ~3000 Hz) was grown at 750ºC. The capacitance of VOGN/NI was further improved by using coatings of carbon black by an aerosol spray method. A capacitance of 2.3 mF/cm2 and frequency response phase angle near -90º at 120 Hz was achieved. It is the highest specific capacitance for an EDLC, reported in the literature, to date, suitable for AC filtering. Employing Al as a substrate required a novel method of plasma sputter cleaning of the oxide near the Al melting point (660ºC) and superimposing VOGN growth to prevent further oxidation. Initial results were ~80 µF/cm2 at a temperature of 620ºC with frequency response phase angle near -90º. Modeling of a uniform coating of carbon black (100 nm thick) on this underlying VOGN/Al architecture suggests that a capacitance of near 50 mF/cm2 can be achieved thus making this a potentially viable replacement for electrolytic capacitors. Another approach to commercialization of VOGN/Ni EDLCs has been studied by using a single substrate sheet interdigitated pattern design to create a low volume capacitor. A YAG laser was used to ablate resistance lines in the film resulting in a sinuous, square pattern on a VOGN/Ni coated alumina substrate and utilizing a gel electrolyte to create the EDLC.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fellman, Batya A. (Batya Ayala). "Carbon-based electric double layer capacitors for water desalination." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61603.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 68-72).
In capacitive deionization (CDI), salt water is passed through two polarized electrodes, whereby salt is adsorbed onto the electrode surface and removed from the water stream. This approach has received renewed interest for water desalination due to the development of new high-surface area, carbon-based nanomaterials. However, there is limited understanding as to how electrode geometry, surface properties, and capacitance affect ion capture. In this work, we experimentally investigated various standard carbon-based electrode materials, including activated carbon and carbon cloths, as well as microfabricated silicon structures for CDI. Electrochemical characterization through cyclic voltammetry was used to determine the electrochemical properties of each material. The capacitance values of the carbon materials tested were 40 F/g for 2000 m2 /g carbon cloth, 32 F/g for 1000 m2 /g carbon cloth, and 25 F/g for activated carbon. In addition, we constructed two iterations of flow test channels to perform parametric studies on ion capture. The first flow cell utilized a commercial conductivity probe to measure salt concentration after charging the electrodes without flow. We showed that the ion capture on both the carbon cloth and activated carbon electrodes were proportional to the applied voltage, however two orders of magnitude smaller than what is expected from the electrode charge. We addressed a significant experimental limitation in the second flow cell by integrating conductivity sensors into the flow channel to measure effluent salt concentration during electrode charging. We found that the salt adsorption increased from 33.1 pmol/g in the first flow cell to 63.5 pmol/g in the redesigned flow for an applied potential of 1.2 V. Future directions will focus on controlling electrode geometry and chemistry to help elucidate transport mechanisms and provide insight into the design of optimal materials for capacitive deionization.
by Batya A. Fellman.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Silva, Ricardo Manuel Fonseca Lopes. "Metal oxide/carbon nanotubes heterostructures for electric double layer capacitors." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22962.

Повний текст джерела
Анотація:
Doutoramento em Ciência e Engenharia de Materiais
O presente estudo teve como objetivo principal a elaboração e caracterização de hétero-estruturas hibridas tridimensionais (3D) de nanotubos de carbono alinhados verticalmente e revestidos com óxido de manganês para aplicações em condensadores eletroquímicos como elétrodos livres de aditivos. Numa primeira fase, foram desenvolvidas metodologias para o crescimento de nanotubos de carbono puro e para nanotubos de carbono dopados com azoto, em substratos isoladores e metálicos, por deposição química em fase de vapor. Foi dada especial atenção ao crescimento direto de nanotubos de carbono alinhados verticalmente no substrato metálico (Inconel®600) e sua aplicação em elétrodos livres de aditivos à base de carbono. Posteriormente, foi desenvolvido um processo inovador para a deposição de óxido de manganês (Mn3O4) por deposição por camada atómica para o revestimento de nanoestruturas, como os nanotubos de carbono, para a elaboração de heteroestruturas. Estas foram devidamente caracterizadas como materiais para aplicações em eléctrodos. A eficiência electroquímica dos eléctrodos atinge um máximo para o nanocompósito de nanotubos de carbono puro/óxido de manganês revestidos com 600 ciclos por deposição por camada atómica e apresenta uma capacitância de 78.68 mF cm-2 a 5 mV s-1. Este resultado pode ser atribuído ao efeito cooperativo entre os componentes do nanocompósito e uma utilização eficaz dos materiais ativos. Provou-se que um material nanocompósito que englobe a capacitância da dupla camada elétrica, bem como a estrutura condutora dos nanotubos de carbono e a pseudocapacitância dos óxidos metálicos é de grande interesse devido ao seu mecanismo duplo de armazenamento de carga e as vantagens de cada mecanismo são exploradas nestes novos dipositivos híbridos. Este trabalho foi realizado na Universidade de Aveiro e na Universidade de Humboldt (Berlim), beneficiando das infraestruturas adequadas à execução do trabalho experimental de ambas as instituições e das competências complementares das equipas de investigação associadas. Devido à natureza multidisciplinar da área de investigação onde este doutoramento se insere, a colaboração com outras instituições internacionais valorizaram a discussão dos resultados obtidos e fundamentaram os novos materiais desenvolvidos
The purpose of this work was the elaboration and characterization of hybrid three-dimensional (3D) arrays of vertically aligned carbon nanotubes coated with manganese oxide heterostructures for application as binder-free electrodes in electrochemical capacitors. In the first stage, methodologies to grow pure and nitrogen doped vertically aligned carbon nanotubes arrays on nonmetallic and metallic substrates by thermal chemical vapor deposition have been developed. Particular attention was devoted to obtain vertically aligned carbon nanotubes arrays grown directly on metallic conductive substrates (Inconel®600) and their application in binderfree carbon-based electrodes. Subsequently, as one of the main points of this work, a novel manganese oxide (Mn3O4) atomic layer deposition process has been developed for coating nanostructures, such as carbon nanotubes, for the elaboration of heterostructures which were further used and characterized as electrodes materials. The electrochemical performance of the electrodes reaches a maximum for the pure carbon nanotubes/manganese oxide nanocomposite coated with 600 ALD cycles exhibiting a specific capacitance of 78.68 mF cm-2 at 5 mV s-1. This result could be attributed to the synergetic effect between the components in the nanocomposite and an effective utilization of the active materials. Therefore it was demonstrated that a nanocomposite material comprising electric double layer capacitance together with the conductive framework of the carbon nanotubes and pseudocapacitive metal oxides is of great interest due to its dual charge storage mechanism and the advantages of each mechanism are exploited in these new hybrid devices. This work was carried out at University of Aveiro and at Humboldt-Universität zu Berlin due to complementary avaivable expertises and equipments, and also benefits of several international collaborations due to the multidisciplinar nature of the research field.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andres, Britta. "Low-Cost, Environmentally Friendly Electric Double-Layer Capacitors : Conept, Materials and Production." Doctoral thesis, Mittuniversitetet, Avdelningen för naturvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-31539.

Повний текст джерела
Анотація:
Today’s society is currently performing an exit from fossilfuel energy sources. The change to sustainable alternativesrequires inexpensive and environmentally friendly energy storagedevices. However, most current devices contain expensive,rare or toxic materials. These materials must be replaced bylow-cost, abundant, nontoxic components.In this thesis, I suggest the production of paper-based electricdouble-layer capacitors (EDLCs) to meet the demand oflow-cost energy storage devices that provide high power density.To fulfill the requirements of sustainable and environmentallyfriendly devices, production of EDLCs that consist of paper,graphite and saltwater is proposed. Paper can be used as aseparator between the electrodes and as a substrate for theelectrodes. Graphite is suited for use as an active material in theelectrodes, and saltwater can be employed as an electrolyte.Westudied and developed different methods for the productionof nanographite and graphene from graphite. Composites containingthese materials and similar advanced carbon materialshave been tested as electrode materials in EDLCs. I suggest theuse of cellulose nanofibers (CNFs) or microfibrillated cellulose(MFC) as a binder in the electrodes. In addition to improvedmechanical stability, the nanocellulose improved the stabilityof graphite dispersions and the electrical performance of theelectrodes. The influence of the cellulose quality on the electricalproperties of the electrodes and EDLCs was investigated.The results showed that the finest nanocellulose quality is notthe best choice for EDLC electrodes; MFC is recommended forthis application instead. The results also demonstrated thatthe capacitance of EDLCs can be increased if the electrodemasses are adjusted according to the size of the electrolyte ions.Moreover, we investigated the issue of high contact resistancesat the interface between porous carbon electrodes and metalcurrent collectors. To reduce the contact resistance, graphitefoil can be used as a current collector instead of metal foils.Using the suggested low-cost materials, production methodsand conceptual improvements, it is possible to reduce the material costs by more than 90% in comparison with commercialunits. This confirms that paper-based EDLCs are apromising alternative to conventional EDLCs. Our findings andadditional research can be expected to substantially supportthe design and commercialization of sustainable EDLCs andother green energy technologies.
I dagens samhälle pågår en omställning från användning avfossila energikällor till förnybara alternativ. Denna förändringkräver miljövänliga och kostnadseffektiva elektriska energilagringsenheterför att möjliggöra en kontinuerlig energileverans.Dagens energilagringsenheter innehåller ofta dyra, sällsyntaeller giftiga material som behöver bytas ut för att nå hållbaralösningar.I denna avhandling föreslås att tillverka pappersbaseradesuperkondensatorer som möter kraven för kostnadseffektivaelektriska energilagrare med hög effekttäthet. För att nå kravenpå miljömässigt hållbara enheter föreslås användning avendast papper, grafit och saltvatten. Papper kan användas somseparator mellan elektroder likväl som substrat vid elektrodbestrykning.Grafit kan användas som aktivt elektrodmaterialoch saltvatten fungerar som elektrolyt. Olika metoder har härutvecklats för att producera nanografit och grafen från grafit.Dessa material har tillsammans med liknande, kommersiellt tillgängliga,avancerade kolmaterial testats i elektrodkompositerför superkondensatorer. Som bindemedel i dessa kompositerföreslås nanofibrillerad eller mikrofibrillerad cellulosa. Jaghar demonstrerat att nanocellulosa ökar dispersionsstabilitetensamt förbättrar den mekaniska stabiliteten och dom elektriskaegenskaperna i elektroderna. Hur cellulosans kvalitet påverkarelektroderna har undersökts och visar att den finaste kvaliteteninte är det bästa valet för superkondensatorer, istället rekommenderasmikrofibrillerad cellulosa. Utöver detta demonstrerasmöjligheten att öka superkondensatorernas kapacitans genomatt balansera elektrodernas massa med hänsyn till jonernasstorlek i elektrolyten. I avhandlingen diskuteras även svårigheternamed hög kontaktresistans i gränssnittet mellan porösakolstrukturer och metallfolie och hur detta kan undvikas omgrafitfolie används som kontakt.Genom att använda de material, produktionstekniker ochkonceptförbättringar som föreslås i avhandlingen är det möjligtatt reducera materialkostnaderna med mer än 90% i jämförelsemed kommersiella superkondensatorer. Detta bekräftar att pappersbaserade superkondensatorer är ett lovande alternativoch våra resultat tillsammans med vidare utveckling harstor potential att stödja övergången till miljömässigt hållbarasuperkondensatorer och annan grön energiteknik.

Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 6 inskickat.

At the time of the doctoral defence the following papers were unpublished: paper 6 submitted.

Стилі APA, Harvard, Vancouver, ISO та ін.
6

New, David Allen 1976. "Double layer capacitors : automotive applications and modeling." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28337.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
Includes bibliographical references (p. 223-227).
This thesis documents the work on the modeling of double layer capacitors (DLCs) and the validation of the modeling procedure. Several experiments were conducted to subject the device under test to a variety of charging/discharging profile and temperatures in an effort to simulate the various conditions such a device might encounter in an automotive type application. High and low current charging profiles were performed for both charge/discharge and charge/hold/discharge type experiments. Low temperature ([approx.] -25 ⁰C), room temperature ([approx.] 21 ⁰C), and high temperature experiments ([approx.] 50 ⁰C) were performed for the investigation of temperature effects on these devices. The derived DLC model was used in PSpice® and Matlab® simulations to determine how accurately the model could predict the performance of the device. The nonlinear characteristics of the device were also investigated and the nonlinear modeling information presented as an addition to the basic DLC model. Device variation was explored for a small sample of these devices in an effort to gain insight on the range of tolerances for modern devices. This work also presents an extensive look into the variety of electrochemical capacitor devices under investigation and in use today. An explanation of these devices and their distributed resistances and capacitance is included. This thesis gives a detailed look into the experimental setups and testing procedures used to test the devices, the simulations for the comparison, and presents the results of the comparison. Finally, this thesis documents the conclusion that this simple model procedure adequately predicts the performance of the device under these various performance profiles.
by David Allen New.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wade, Timothy Lawrence. "High power carbon based supercapacitors /." Connect to thesis, 2006. http://repository.unimelb.edu.au/10187/439.

Повний текст джерела
Анотація:
Energy storage devices are generally evaluated on two main requirements; power and energy. In supercapacitors these two performance criteria are altered by the capacitance, resistance and voltage. (For complete abstract open document)
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Breitsprecher, Konrad [Verfasser], and Christian [Akademischer Betreuer] Holm. "Simulation studies on electrodes and electrolytes for electric double layer capacitors / Konrad Breitsprecher ; Betreuer: Christian Holm." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2018. http://d-nb.info/1176521616/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Teuber, Moritz [Verfasser], Dirk Uwe [Akademischer Betreuer] Sauer, and Sandra [Akademischer Betreuer] Korte-Kerzel. "Lifetime assessment and degradation mechanisms in electric double-layer capacitors / Moritz Teuber ; Dirk Uwe Sauer, Sandra Korte-Kerzel." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/121155791X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Teuber, Moritz Verfasser], Dirk Uwe [Akademischer Betreuer] [Sauer, and Sandra [Akademischer Betreuer] Korte-Kerzel. "Lifetime assessment and degradation mechanisms in electric double-layer capacitors / Moritz Teuber ; Dirk Uwe Sauer, Sandra Korte-Kerzel." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/121155791X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Electric double layer capacitors"

1

Conway, B. E. Electrochemical supercapacitors: Scientific fundamentals and technological applications. New York: Plenum Press, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bernal, Luis Eduardo Zubieta. Characterization of double-layer capacitors for power electronics applications. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wan, Changjin. Electric-Double-Layer Coupled Oxide-Based Neuromorphic Transistors Studies. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3314-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

C, Korzeniewski, Conway B. E, Electrochemical Society. Physical Electrochemistry Division., and Electrochemical Society Meeting, eds. Proceedings of the Symposium on the Electrochemical Double Layer. Pennington, NJ: Electrochemical Society, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shing, Kuai, and Meng Ji, eds. Electrolysis: Theory, types, and applications. Hauppauge, N.Y: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vinay, Gupta, Conway B. E, and Transworld Research Network (Trivandrum, India), eds. Recent advances in supercapacitors, 2006. Kerala, India: Transworld Research Network, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1944-, Ohshima Hiroyuki, and Furusawa Kunio 1937-, eds. Electrical phenomena at interfaces: Fundamentals, measurements, and applications. 2nd ed. New York: M. Dekker, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Eliezer, Gileadi, and Urbakh M. 1951-, eds. Thermodynamics and electrified interfaces. Weinheim: Wiley-VCH, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ülikool, Tartu Riiklik, and Vsesoi͡u︡znyĭ simpozium "Dvoĭnoĭ sloĭ i adsorbt͡s︡ii͡a︡ na tverdykh ėlektrodakh" (9th : 1991 : Tartu, Estonia), eds. Double layer and adsorption at solid electrodes: 9th symposium, Tartu, June 6-9, 1991 : extended abstracts. Tartu: Tartu University, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Masliyah, Jacob H. Electrokinetic and colloid transport phenomena. Hoboken, NJ: J. Wiley, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Electric double layer capacitors"

1

Ashok, Shyamli, Deepu Joseph, Jasmine Thomas, Nygil Thomas, and Anjali Paravannoor. "Electric Double-Layer Capacitors." In Supercapacitors and Their Applications, 17–32. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003258384-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Auffan, Mélanie, Catherine Santaella, Alain Thiéry, Christine Paillès, Jérôme Rose, Wafa Achouak, Antoine Thill, et al. "Electric Double Layer Capacitor." In Encyclopedia of Nanotechnology, 652. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chiku, Masanobu. "Electrical Double-Layer Capacitors (EDLC)." In Encyclopedia of Applied Electrochemistry, 384–86. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wen Liew, Chiam. "Nanocomposite Polymer Electrolytes for Electric Double Layer Capacitors (EDLCs) Application." In Nanomaterials in Energy Devices, 110–49. Boca Raton, FL : CRC Press, [2017]| Includes bibliographical references and index.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153445-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Simon, Patrice, Pierre-Louis Taberna, and François Béguin. "Electrical Double-Layer Capacitors and Carbons for EDLCs." In Supercapacitors, 131–65. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527646661.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hasegawa, George. "Monolithic Electrode for Electric Double-Layer Capacitors Based on Macro/Meso/Microporous S-Containing Activated Carbon with High Surface Area." In Springer Theses, 79–89. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54198-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ue, Makoto. "Double-Layer Capacitors." In Electrochemical Aspects of Ionic Liquids, 243–69. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003350.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vargheese, Stella, R. T. Rajendra Kumar, and Yuvaraj Haldorai. "Electrochemical Double Layer Capacitors." In Nanostructured Materials for Supercapacitors, 27–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99302-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gores, Heiner Jakob, and Hans-Georg Schweiger. "Electrolytes for Electrochemical Double Layer Capacitors." In Encyclopedia of Applied Electrochemistry, 752–57. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ue, Makoto. "Application of Ionic Liquids to Double-Layer Capacitors." In Electrochemical Aspects of Ionic Liquids, 205–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471762512.ch17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Electric double layer capacitors"

1

Guillemet, Ph, C. Pascot, and Y. Scudeller. "Compact thermal modeling of Electric Double-Layer-Capacitors." In 2008 14th International Workshop on Thermal Inveatigation of ICs and Systems (THERMINIC). IEEE, 2008. http://dx.doi.org/10.1109/therminic.2008.4669891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guillemet, Ph, C. Pascot, and Y. Scudeller. "Electro-thermal analysis of Electric Double-Layer-Capacitors." In 2008 14th International Workshop on Thermal Inveatigation of ICs and Systems (THERMINIC). IEEE, 2008. http://dx.doi.org/10.1109/therminic.2008.4669913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zaitsu, Hiroshi, Hidetaka Nara, Hiroyuki Watanabe, Minoru Oobe, Shigeyuki Sugimoto, Ryousuke Hatano, and Nobuyuki Yamamoto. "Uninterruptible Power Supply System Utilizing Electric Double-Layer Capacitors." In 2007 Power Conversion Conference - Nagoya. IEEE, 2007. http://dx.doi.org/10.1109/pccon.2007.372972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fellman, Batya A., Muataz Atieh, and Evelyn N. Wang. "Carbon-Based Electric Double Layer Capacitors for Water Desalination." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30696.

Повний текст джерела
Анотація:
In capacitive deionization (CDI), salt water is passed through two polarized electrodes, whereby the salt is adsorbed onto the electrode surface and removed from the water stream. This approach has received renewed interest for water desalination due to the development of new high-surface area carbon-based nanomaterials. However, there is currently limited understanding as to how electrode geometry, surface properties, and capacitance affect ion capture. In this work, we experimentally investigate various standard carbon-based electrode materials, including activated carbon and carbon cloths, as well as microfabricated silicon structures for CDI. Electrochemical characterization through cyclic voltammetry was used to determine the electrochemical properties of each material. In addition, a mini-channel test cell was fabricated to perform parametric studies on ion capture. By controlling electrode geometry and chemistry in these studies, the work helps elucidate transport mechanisms and provide insight into the design of optimal materials for capacitive deionization.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Real, Carla Giselle Martins, Rafael Vicentini, Willian Gonçalves Nunes, Otávio Vilas Boas, Thayane Almeida Alves, Davi Marcelo Soares, and Hudson Zanin. "Polyacrylonitrile and activated carbon composite for electric double layer capacitors." In 2018 SAE Brasil Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-36-0310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pantazica, Mihaela, Andrei Drumea, and Cristina Marghescu. "Analysis of self discharge characteristics of electric double layer capacitors." In 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2017. http://dx.doi.org/10.1109/siitme.2017.8259864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tashima, D., K. Kurosawatsu, Y. Sung, M. Otsubo, and C. Honda. "Effect of Nitrogen Atom Doping for Electric Double Layer Capacitors Application." In 2006 IEEE 8th International Conference on Properties and applications of Dielectric Materials. IEEE, 2006. http://dx.doi.org/10.1109/icpadm.2006.284324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Walden, Ginger, Jeremiah Stepan, and Celina Mikolajczak. "Safety considerations when designing portable electronics with Electric Double-Layer Capacitors (Supercapacitors)." In 2011 IEEE Symposium on Product Compliance Engineering (ISPCE). IEEE, 2011. http://dx.doi.org/10.1109/pses.2011.6088259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Faranda, R., M. Gallina, and D. T. Son. "A new simplified model of Double-Layer Capacitors." In 2007 International Conference on Clean Electrical Power. IEEE, 2007. http://dx.doi.org/10.1109/iccep.2007.384288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Real, Carla Giselle Martins, Rafael Vicentini, Willian Gonçalves Nunes, Otávio Vilas Boas, Lenon Henrique Costa, Davi Marcelo Soares, and Hudson Zanin. "Electric double layer capacitors prepared with polyvinyl alcohol and multi-walled carbon nanotubes." In 2018 SAE Brasil Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-36-0313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Electric double layer capacitors"

1

Dae Young Jung,. Development and Pilot Manufacture of Pseudo-Electric Double Layer Capacitors. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1003872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eisenmann, E. T. Discharge rates of porous carbon double layer capacitors. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/120881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Blum, L. Structure of the Electric Double Layer. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada222761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Leung, Kevin, and Ray Shan. Modeling Electric Double Layer Effects on Charge Transfer at Flow Battery Electrode/Electrolyte Interfaces. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1562830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhuiyan, L. B., and C. W. Outhwaite. Modified Poisson-Boltzmann Equation in the Electric Double Layer Theory for an Electrolyte with Size Asymmetric Ions. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada201410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії