Добірка наукової літератури з теми "Elasticity and Thermal Conductivity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Elasticity and Thermal Conductivity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Elasticity and Thermal Conductivity":

1

Wang, Xiao Hua, and Ming Nie. "Properties of PANI-PVA Composite Film." Advanced Materials Research 284-286 (July 2011): 253–56. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The polyaniline(PANI)-poly(vinyl alcoho1)(PVA) composite film doped with HC1 was prepared with PVA as matrix. Effects of PVA content, film drying temperature on properties of PANI-PVA composite film were studied. Tensile strength, elasticity, conductivity and thermal stability of PVA, HC1-PANI or PANI-PVA were compared. Tensile strength and elasticity of PVA film were the largest, its conductivity was the least. The conductivity of PANI-PVA was the largest, tensile strength and elasticity of PANI-PVA are bigger than those of HC1-PANI. The order of their thermal stability is PVA> HC1-PANI > PANI-PVA before 260°C, the order of their thermal stability is HC1-PANI>PANI-PVA> PVA after 260°C.
2

Chifor, Victoria, Radu Liviu Orban, Zafer Tekiner, and Mehmet Turker. "Mechanical, Thermal and Electrical Properties of Acrilonitril Butadiene Styrene (ABS) Composites Filled with Bronze Powder." Materials Science Forum 672 (January 2011): 179–82. http://dx.doi.org/10.4028/www.scientific.net/msf.672.179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article reports on an experimental study of the mechanical, thermal and electrical properties of bronze-ABS composites containing 5, 10, 20, 30 vol.% of bronze powder. The mechanical properties such as ultimate tensile strength, elongation at fracture, modulus of elasticity, melt flow rate (MFR), hardness, thermal conductivity, electrical conductivity of bronze powder filler embedded in a ABS matrix were experimentally investigated. Thermal and electrical conductivity measurements were performed up to a filler concentration of 30 vol.%. The tensile strength, elongation, MFR values continuously decreased with increasing the bronze powder content. However, modulus of elasticity and hardness increased with increasing the bronze content. Thermal and electrical conductivity of the composites was found to be higher for ABS-20 vol.% bronze composites than that of the other composites.
3

Chifor, Victoria, Radu Liviu Orban, Zafer Tekiner, and Mehmet Turker. "Thermal, Mechanical and Electrical Properties of High Density Polyethylene Composites Reinforced with Copper Powder." Materials Science Forum 672 (January 2011): 191–94. http://dx.doi.org/10.4028/www.scientific.net/msf.672.191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thermal conductivity, electrical conductivity and mechanical properties such as tensile strength, elongation, modulus of elasticity, were experimentally investigated. Thermal and electrical conductivity measurements were performed up to filler concentration of 30 vol.%. The mechanical properties of high density polyethylene filled with up to 30 vol.% Cu particles were investigated. The tensile strength, elongation and toughness decreased with increasing Cu powder content. This was attributed to the introduction of discontinuities in the polymer structure in which modulus of elasticity increased with increasing the copper content.
4

Li, Gong Fa, Si Qiang Xu, Guo Zhang Jiang, Ze Hao Wu, Jian Yi Kong, and Liang Xi Xie. "Influence of Working Lining Parameters on Stress Field of Ladle Composite Construction Body." Applied Mechanics and Materials 121-126 (October 2011): 800–804. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The ladle is an important equipment of the metallurgical industry. Distribution of thermomechanical stress in linings has an essential influence on its life, and the size of its life-span influences the economic benefits of the iron and steel enterprise directly. Two-dimensional model of ladle based on law of finite element method is built, and the influence of thermal conductivity, thermal expansion coefficient, elasticity coefficient and thickness of work lining on ladle stress field are discussed. The calculation results indicate that stress increases with the increase of thermal conductivity, thermal expansion coefficient and elasticity coefficient and decrease of thickness.
5

Oginni, Felix A., and Samuel N. John. "Some Engineering Properties of Foamed Concrete for Sustainable Technological Development." European Journal of Engineering and Technology Research 6, no. 3 (March 31, 2021): 53–57. http://dx.doi.org/10.24018/ejers.2021.6.3.2396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A study of the technology of foamed concrete production is carried out. The engineering properties and applications of this type of concrete are presented for varying densities so as to effectively tap the advantages of its use for specific purposes. The properties considered are the 7-day compressive strength, thermal conductivity, modulus of elasticity and drying shrinkage. A study of the behaviours of foamed concrete at varying dry densities for the different characteristics was undertaken. Results indicate that as the dry density increases, the engineering properties increase though at different rates for the 7-day Compressive strength, Thermal conductivity, and Modulus of elasticity. The drying shrinkage decreases as the dry density increases. A comparative study of the 7-day Compressive strength and Modulus of elasticity show that they both follow the same trend over the varying dry density except at a dry density of 1200 kg/m3. A comparative study of the thermal conductivity and the percent drying shrinkage indicate that the thermal conductivity is inversely proportional to the percent drying shrinkage. Economics and other considerations together with its multipurpose applications of foamed concrete can open up business opportunities in Africa and sustainability. This can also help in providing needed funds for infrastructural development.
6

Oginni, Felix A., and Samuel N. John. "Some Engineering Properties of Foamed Concrete for Sustainable Technological Development." European Journal of Engineering and Technology Research 6, no. 3 (March 31, 2021): 58–62. http://dx.doi.org/10.24018/ejeng.2021.6.3.2396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A study of the technology of foamed concrete production is carried out. The engineering properties and applications of this type of concrete are presented for varying densities so as to effectively tap the advantages of its use for specific purposes. The properties considered are the 7-day compressive strength, thermal conductivity, modulus of elasticity and drying shrinkage. A study of the behaviours of foamed concrete at varying dry densities for the different characteristics was undertaken. Results indicate that as the dry density increases, the engineering properties increase though at different rates for the 7-day Compressive strength, Thermal conductivity, and Modulus of elasticity. The drying shrinkage decreases as the dry density increases. A comparative study of the 7-day Compressive strength and Modulus of elasticity show that they both follow the same trend over the varying dry density except at a dry density of 1200 kg/m3. A comparative study of the thermal conductivity and the percent drying shrinkage indicate that the thermal conductivity is inversely proportional to the percent drying shrinkage. Economics and other considerations together with its multipurpose applications of foamed concrete can open up business opportunities in Africa and sustainability. This can also help in providing needed funds for infrastructural development.
7

Belova, Irina V., Graeme E. Murch, Thomas Fiedler, and Andreas Öchsner. "Lattice-Based Walks and the Monte Carlo Method for Addressing Mass, Thermal and Elasticity Problems." Defect and Diffusion Forum 283-286 (March 2009): 13–23. http://dx.doi.org/10.4028/www.scientific.net/ddf.283-286.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we review the recent developed method based around lattice-based random walks and the Monte Carlo method. This method, which is now called the Lattice Monte Carlo method, permits complex phenomenological problems in diffusion, thermal conductivity and elasticity to be addressed. It is shown how the effective mass diffusivity, thermal diffusivity/thermal conductivity and the bulk modulus in composites can be calculated and also how concentration profiles and temperature profiles can be determined in situations where the diffusivity depends on position and concentration and the thermal conductivity depends on position and temperature respectively.
8

Li, Guan-Nan, Zhi-Qian Chen, Yu-Ming Lu, Meng Hu, Li-Na Jiao, and Hao-Ting Zhao. "Elasticity, slowness, thermal conductivity and the anisotropies in the Mn3Cu1−xGexN compounds." International Journal of Modern Physics B 32, no. 07 (March 5, 2018): 1850071. http://dx.doi.org/10.1142/s0217979218500716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We perform the first-principles to systematically investigate the elastic properties, minimum thermal conductivity and anisotropy of the negative thermal expansion compounds Mn3Cu[Formula: see text]Ge[Formula: see text]N. The elastic constant, bulk modulus, shear modulus, Young’s modulus and Poisson ratio are calculated for all the compounds. The results of the elastic constant indicate that all the compounds are mechanically stable and the doped Ge can adjust the ductile character of the compounds. According to the values of the percent ratio of the elastic anisotropy A[Formula: see text], A[Formula: see text] and A[Formula: see text], shear anisotropic factors A1, A2 and A3, all the Mn3Cu[Formula: see text]Ge[Formula: see text]N compounds are elastic anisotropy. The three-dimensional diagrams of elastic moduli in space also show that all the compounds are elastic anisotropy. In addition, the acoustic wave speed, slowness, minimum thermal conductivity and Debye temperature are also calculated. When the ratio of content for Cu and Ge arrived to 1:1, the compound has the lowest thermal conductivity and the highest Debye temperature.
9

Mohan Krishna, S. A., K. B. Vinay, B. C. Ashok, G. V. Naveen Prakash, and B. S. Nithyananda. "Experimental and numerical investigations on thermal expansion and thermal conductivity properties of Al 6061-SIC-GR hybrid metal matrix composites." International Journal of Computational Materials Science and Engineering 10, no. 01 (March 2021): 2150002. http://dx.doi.org/10.1142/s2047684121500020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this research paper, the determination of thermal expansivity and thermal conductivity has been accomplished for Al 6061, Silicon Carbide and Graphite hybrid metal matrix composites from room temperature to [Formula: see text]C. Aluminium-based composites reinforced with Silicon Carbide and Graphite particles have been prepared by stir casting technique. The thermal expansion and thermal conductivity properties of hybrid composites with different percentage compositions of reinforcements have been investigated. The results have indicated that the thermal expansivity and thermal conductivity of the different compositions of hybrid MMCs decrease by the addition of Graphite with Silicon Carbide and Al 6061. Few empirical models have been validated for the evaluation of thermal expansivity and thermal conductivity of hybrid composites. Using the experimental values, namely modulus of elasticity, Poisson ratio and thermal expansivity, computational investigation has been carried out to evaluate the thermal parameters, namely thermal displacement, thermal strain and thermal stress. Similarly, using the experimental values, namely density, thermal conductivity, specific heat capacity and enthalpy at varying temperature ranges, computational investigation has been carried out to evaluate thermal gradient and thermal flux.
10

Piat, Romana, and Yuriy Sinchuk. "Thermal Conductivity Design for Locally Orthotropic Materials." Key Engineering Materials 577-578 (September 2013): 437–40. http://dx.doi.org/10.4028/www.scientific.net/kem.577-578.437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper the development of a computational model for the thermal conductivity design for locally orthotropic materials is presented. The material orientation of a two-dimensional locally orthotropic solid subjected to thermal loads is designed for minimization of the local temperature. Two optimization problems are considered: the minimization of the highest (hot-spot) temperature and the minimization of the temperature according to the weights distribution. For both problems rules for calculation of the optimal material orientation are derived analytically. The analysis is based on the idea of the principal stresses method for optimization of material orientation in linear elasticity problems. The results of the analysis are implemented and the developed computational model is tested on an example of the lamella orientation optimization in a metal-ceramic composite.

Дисертації з теми "Elasticity and Thermal Conductivity":

1

Abidi, Sonia. "Matériaux composites à haute tenue thermique : influence de la micro-nanostructure sur les transferts moléculaires, électroniques et thermiques." Thesis, Toulon, 2014. http://www.theses.fr/2014TOUL0019/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les matériaux de protection incendie sont largement utilisés pour assurer la sécurité des usagers des infrastructures. Les normes de protection incendie évoluant régulièrement, les matériaux doivent être de plus en plus performants. Ceux-ci sont généralement des mortiers constitués d’oxydes réfractaires et isolants. L’objectif de ce travail est de mettre au point un composite coupe-feu 4 h applicable par projection mais également de déterminer ses propriétés thermiques et mécaniques.Dans une première partie, cette étude reprend les différentes étapes de l’élaboration d’un matériau de protection incendie, après la présentation de la démarche qui a guidé l’élaboration de nos matériaux, nous nous sommes intéressés plus particulièrement à la composition chimique de la matrice ainsi que celle du ciment. Leurs propriétés thermiques et mécaniques ont été passées en revue.Les matières premières nécessaires à l’élaboration d’un mortier ont ensuite été sélectionnées. L’évolution, respectivement de la conductivité thermique, de la diffusivité, de la porosité, de la chaleur spécifique et des propriétés mécaniques des mortiers choisis en fonction de la nature et de la quantité de charges incorporées à la matrice a été étudiée. Une description des divers modèles analytiques et numériques permettant la représentation de la conductivité thermique et du module d’Young des matériaux a permis de développer un modèle capable de prédire le comportement thermique et mécanique des composites en fonction de la nature et de quantité de charges ajoutées.Dans une seconde partie, la cinétique de la réaction d’hydratation du plâtre afin de maîtriser les temps de prise et pour faciliter la production des projetés dans la chaîne industrielle a été étudiée. L’influence sur la cinétique d’hydratation, de la composition chimique du plâtre, de sa granulométrie et de l’ajout d’adjuvants couramment utilisés dans l’industrie plâtrière, a également été traitée.10A l’issue de cette étude, deux formulations de composites projetables ont été mises au point
Fire protection materials are widely used to ensure the safety of users of the infrastructure. Standards of fire protection regularly operating, the materials must be more efficient. These are generally composed of refractory mortar and insulating oxides. The objective of this work is to develop a firewall composite 4 h applied by projecting but also to determine the thermal and mechanical properties.In the first part, this study describes the various stages of the development of a fire protection material, after the presentation of the approach that has guided the development of our materials, we are interested especially in the chemical composition of the matrix and that of the cement. Their thermal and mechanical properties have been reviewed.The raw materials for the preparation of mortar were selected. The evolution respectively of thermal conductivity, diffusivity, porosity, specific heat and the mechanical properties of mortars chosen according to the nature and amount of the fillers incorporated in the matrix has been studied. A description of the various analytical and numerical models for the representation of the thermal conductivity and Young's modulus of the materials led to the development of a model able to predict the thermal and mechanical behavior of composites based on the nature and amount of charges added.In a second part, the kinetics of the hydration reaction of gypsum to control setting time and to facilitate the production of the composite in the industrial chain was studied. The influence on the kinetics of hydration, of the chemical composition of the gypsum, particle size distribution and the addition of adjuvant commonly used in the plaster industry, has also been treated.At the end of this study, two formulations of composites applied by projection were developed
2

Chen, Fengjuan. "Modélisation micromécanique de milieux poreux hétérogènes et applications aux roches oolithiques." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0134/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La problématique suivie dans ce travail est la détermination des propriétés effectives, élastiques et conductivité, de matériaux poreux hétérogènes tels que des roches, les roches oolithiques en particulier, en relation avec leur microstructure. Le cadre théorique adopté est celui de l’homogénéisation des milieux hétérogènes aléatoires et on suit les approches par tenseurs d’Eshelby. Ces approches sont basées sur la résolution des problèmes d’Eshelby : le problème de l’inclusion (premier problème) et le problème de l’inhomogénéité (second problème) isolées dans un milieu infini. La solution de ces problèmes de référence est analytique, en élasticité linéaire isotrope et en diffusion linéaire stationnaire, dans le cas d’inhomogénéités 2D ou 3D de type ellipsoïde. Elle conduit à la définition de tenseurs caractérisant les interactions entre l’inclusion/inhomogénéité et le milieu environnant. On utilise dans ce travail les tenseurs de contribution relatifs à une inhomogénéité isolée, définis par Kachanov et Sevostianov 2013, contributions à la souplesse (élasticité) et à la résistivité (conductivité). Ces tenseurs au cœur des méthodes d’homogénéisation de type EMA (Effective Medium Approximation), et en particulier les schémas NIA (Non Interaction Approximation), Mori Tanaka et Maxwell. Ce travail est centré sur la caractérisation des paramètres géométriques microstructuraux dont l’influence sur les propriétés effectives est majeure. On étudie en particulier les effets de forme des inhomogénéités, la nouveauté est l’aspect 3D. Les observations microstructurales de roches oolithiques, dont le calcaire de référence de Lavoux, mettent en évidence des hétérogénéités de forme 3D et concave. En particulier les matériaux de remplissage inter-oolithes, pores ou calcite syntaxiale. Ces formes peuvent être observées sur d’autres matériaux hétérogènes et ont été peu étudiées dans le cadre micromécanique. Cela nécessite de considérer des formes non ellipsoïdales et de résoudre numériquement les problèmes d’Eshelby. Le cœur de ce travail est consacré à la détermination des tenseurs de contribution d’inhomogénéités 3D convexes ou concaves de type supersphère (à symétrie cubique) ou supersphéroïde (à symétrie de révolution). Le premier problème d’Eshelby a été résolu, dans le cas de la supersphère, par intégration numérique de la fonction de Green exacte (solution de Kelvin dans le cas isotrope) sur la surface de l’inclusion. Des modélisations 3D aux éléments finis ont permis de résoudre le second problème d’Eshelby et d’obtenir les tenseurs de contribution à la souplesse et à la résistivité pour les superphère et supersphéroïde. Sur la base des résultats numériques, des relations analytiques simplifiées ont été proposées pour les tenseurs de contribution sous forme de fonctions des paramètres élastiques des constituants et du paramètre adimensionnel p caractérisant la concavité. Un résultat important, dans le cas de la superphère et dans le domaine concave, est l’identification d’un même paramètre géométrique pour les tenseurs de contribution à la souplesse et à la résistivité. Les résultats numériques et théoriques obtenus sont appliqués à deux problèmes : l’estimation de la conductivité thermique effective de roches calcaires oolithiques d’une part et l’étude de l’extension des relations dites de substitution définies par Kachanov et Sevostianov 2007 au cas non ellipsoïdal d’autre part. Pour le premier problème, un modèle micromécanique de type Maxwell, à deux échelles a permis de retrouver les résultats expérimentaux disponibles dans la littérature, en en particulier l’influence de la porosité sur la conductivité thermique effective dans les cas sec et humide. Dans le cas du second problème, les résultats obtenus ont permis de montrer que la validité de relations de substitution est restreinte, dans le cas non ellipsoïdal et en considérant une forme d’inhomogénéité de type supersphère, au domaine convexe seulement
Focusing on the effect of shape factor on the overall effective properties of heterogeneous materials, the 1st and the 2nd Eshelby problem related to 3-D non-ellipsoidal inhomogeneities with a specific application to oolitic rocks have been discussed in the current work. Particular attention is focused on concaves shapes such as supersphere and superspheroid. For rocks, they may represent pores or solid mineral materials embbeded in the surrounding rock matrix. In the 1st Eshelby problem, Eshelby tensor interrelates the resulting strain about inclusion and eigenstrain that would have been experienced inside the inclusion without any external contraire. Calculations of this tensor for superspherical pores– both concave and convex shapes – are performed numerically. Results are given by an integration of derivation of Green’s tensor over volume of the inclusion. Comparisons with the results of Onaka (2001) for convex superspheres show that the performed calculations have an accuracy better than 1%. The current calculations have been done to complete his results. In the 2nd Eshelby problem, property contribution tensors that characterizes the contribution of an individual inhomogeneity on the overall physical properties have been numerically calculated by using Finite Element Method (FEM). Property contribution tensors of 3D non ellipsoidal inhomogeneities, such as supersphere and superspheroid, have been obtained. Simplified analytical relations have been derived for both compliance contribution tensor and resistivity contribution tensor. Property contribution tensors have been used to estimate effective elastic properties and effective conductivity of random heterogeneous materials, in the framework of Non-Interaction Approximation, Mori-Tanaka scheme and Maxwell scheme. Two applications in the field of geomechanics and geophysics have been done. The first application concerns the evaluation of the effective thermal conductivity of oolitic rocks is performed to complete the work of Sevostianov and Giraud (2013) for effective elastic properties. A two step homogenization model has been developed by considering two distinct classes of pores: microporosity (intra oolitic porosity) and meso porosity (inter oolitic porosity). Maxwell homogenization scheme formulated in terms of resistivity contribution tensor has been used for the transition from meso to macroscale. Concave inter oolitic pores of superspherical shape have been taken into account by using resistivity contribution tensor obtained thanks to FEM modelling. Two limiting cases have been considered: ‘dry case’ (air saturated pores) and ‘wet case’ (water liquid saturated pores). Comparisons with experimental data show that variations of effective thermal conductivity with porosity in the most sensitive case of air saturated porosity are correctly reproduced. Applicability of the replacement relations, initially derived by Sevostianov and Kachanov (2007) for ellipsoidal inhomogeneities, to non-ellipsoidal ones has been investigated. It it the second application of newly obtained results on property contribution tensors. We have considered 3D inhomogeneities of superspherical shape. From the results, it has been seen that these relations are valid only in the convex domain, with an accuracy better than 10%. Replacement relations can not be used in the concave domain for such particular 3D shape
3

Du, Kou. "Modélisation micromécanique de géomatériaux en prenant en compte des anisotropies microstructurale et matricielle." Electronic Thesis or Diss., Université de Lorraine, 2021. http://docnum.univ-lorraine.fr/public/DDOC_T_2021_0254_DU.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les propriétés mécaniques des géomatériaux hétérogènes sont évaluées en prenant simultanément en compte l'anisotropie microstructurale ainsi que celle du matériau matriciel. A cet effet, l'anisotropie de la microstructure est représentée par la complexité de forme poreuse et/ou d'inclusion qui est considérée dans le présent travail comme concave ou convexe en portant nos attentions particulières aux pores supersphériques et supersphéroïdaux axisymétriques. Les tenseurs de concentration et de contribution sont calculés numériquement à l'aide de la méthode des élément finis (FEM), qui est ensuite utilisés au niveau de la modélisation semi-analytique pour l'objectif d'évaluer des propriétés effectives associées, telles que des réponses effectives élastiques et celles de conductivité. Plus précisément, afin de résoudre le 2ème problème d'Eshelby (Eshelby (1961)) dans le cas d'inhomogénéités 3D et non ellipsoïdales, nous utilisons conditions aux limites adaptées récemment développées par Adessina et al. (2017) basé sur une solution en champ lointain (Sevostianov and Kachanov (2011)) pour intégrer l'anisotropie matricielle et la correction du biais induit par le caractère borné du domaine du maillage, ce qui permet d'accélérer la convergence du calcul sans sacrifier sa précision. En adoptant la technique d'homogénéisation numérique, les tenseurs de contribution compliance/résistivité sont calculés pour différentes formes de pores (attention particulière des pores supersphéroïdaux et supersphériques) noyés dans une matrice isotrope transverse. La méthode numérique proposée s'avère efficace et précise après un grand nombre d'estimations et leurs validations. Dans certains cas particuliers, ces validations s'effectuent avec des comparaisons entre les résultats analytiques et numériques disponibles dans littérature. En prenant en compte les résultats numériques obtenus pour des microstructures tridimensionnelles (3D) considérées, les tenseurs de contribution dans les deux cas d'inclusions/pores concaves indiqués ci-dessus, supersphère et supersphéroïde axisymétrique, sont développées dans les contextes des problèmes élastiques et thermiques. Notons ici que la forme d'inclusion/pore sphérique (i.e. paramètre de concavité p=1) ainsi que celle de fissure circulaire (i.e. rapport d'aspect γ → 0), qui peuvent être considérés comme deux cas particuliers, sont également étudiés. Cela permet d'évaluer et de valider la méthode proposée dans le présent travail. De plus, dans le cadre de l'homogénéisation, une application aux géomatériaux poreux à matrice isotrope transverse, tels que les roches argileuses, est présentée pour illustrer l'impact du paramètre de concavité et celui de l'anisotropie de la matrice sur les propriétés globales à travers plusieurs schémas d'homogénéisation micromécanique, tels que l'approche basée sur l'approximation de non-interaction (i.e. NIA: Non-Interaction Approximation), schéma de Mori-Tanaka-Benveniste et celui de Maxwell. Les propriétés effectives des composites à pores réguliers sont également estimées à l'aide de l'approche dite champ complet par simulations numériques, puis comparées à la modélisation micromécanique. L'effet de microstructure complexes est étudié en considérant des Volumes Elémentaires Représentatifs (VERs) périodiques contenant des arrangements aléatoires des pores noyés dans des matrices isotropes transverses
The mechanical properties of heterogeneous geomaterials are evaluated by simultaneously taking into account the microstructural anisotropy as well as the one of matrix. To this end, the microstructural anisotropy is represented by the complexity of porous shape which is considered in the present work as concave or convex by particular attention to the superspherical and the axisymmetrical superspheroidal pores. The concentration and contribution tensors are numerically computed using Finite Element Method (FEM), which are next approximated by analytical expressions for the case of the concavity parameter being p<1, to evaluate the associated effective properties, such as effective elastic and thermal responses. Specifically, to solve the 2nd Eshelby problem (Eshelby (1961)) in the case of 3D non-ellipsoidal inhomogeneities, we make use of a recently developed adapted boundary condition (Adessina et al. (2017)) based on far-field solution (Sevostianov and Kachanov (2011)) to incorporate the matrix anisotropy and to correct the bias induced by the bounded character of the mesh domain, which allows to accelerate the computation convergence without sacrificing its accuracy. Simultaneously by complying with the numerical homogenization technique, the compliance/resistivity contribution tensors are computed for different forms of pores (particular attention of superspheroidal and superspherical ones) embedded in a transversely isotropic matrix. The proposed numerical method is shown to be efficient and accurate after several appropriate assessments and validation by comparing its predictions, in some particular cases, with analytical results and some available numerical ones. On the basis of these "3D" Finite Element Modeling, approximate relations of the property contribution tensors in the two aforementioned reference concave cases, supersphere and axisymmetric superspheroid, are developed for both elastic and thermal problems. Note here that the spherical pore (i.e. concavity parameter p=1) and circular crack (i.e. aspect ratio γ → 0), which can be considered as two particular cases, are also numerically studied. This allows to assess and validate the proposed method in the present work. Moreover, in the frame of homogenization, application to the typical porous geomaterials with transversely isotropic matrix such as clay rocks is presented to illustrate the impact of the concavity parameter and the matrix anisotropy on overall properties through several micromechanical homogenization schemes such as non-interaction approximation, Mori-Tanaka-Benveniste scheme and Maxwell scheme. The methodology of evaluation of the elastic and thermal properties of heterogeneous material aforementioned is proposed based on micromechanical homogenization via multiscale modeling. The overall properties of composites with regular pores are also predicted using direct finite element approaches and then compared against micromechanical modeling. The effect of microstructure is analyzed by considering periodic RVEs containing random arrangements of pores formed by transversely isotropic phases
4

He, Tianlong. "A new approach based on finite element method for numerical computation of effective properties for composite materials : Phantom Domain Finite Element Method." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pour contourner la difficulté de maillage des méthodes numériques existantes de l’homogénéisation des composites, une méthode originale, nommée la méthode des éléments finis du domaine fantôme (PFEM), est proposée dans cette thèse. Le PFEM s'appuie sur les calculs d'intégrales avec des maillages distincts basés sur un principe de domaine fictif. En d'autres termes, un maillage structuré est utilisé pour l'ensemble du domaine et les autres maillages indépendants sont utilisés pour les inclusions. Les maillages des inclusions seront liés au maillage du domaine via une matrice de substitution. Le PFEM est non seulement capable de calculer les propriétés effectives avec KUBC, SUBC et les conditions périodiques, mais aussi peut être utilisé dans tous les problèmes qui peuvent être résolus par le FEM classique, comme les problèmes aux limites de Dirichlet ou de Neumann. Des expériences numériques dans les cas 2D et 3D, avec des inclusions de géométrie élémentaire telles que disque, carré, sphère, cube et ellipsoïde, ont été réalisées pour valider le PFEM. Les convergences linéaires d'erreurs relatives par rapport aux solutions de référence telles que le modèle de Mori-Tanaka et la méthode de transformation de Fourier rapide sont présentées pour les propriétés effectives en thermique et en élastique. Nous avons illustrés quelques caractéristiques intéressantes du PFEM, par exemple la flexibilité au niveau du maillage d'inclusion, en montrant un exemple avec une pellicule sphérique très mince
To circumvent the meshing difficulty of the existing numerical methods for composites homogenization, an original finite element method,named Phantom domain Finite Element Method (PFEM), is proposed in this thesis. The PFEM relies on computations of integrals with independent meshes based on a fictitious domain principle. In other words, one structured mesh is used for the entire domain, and independent meshes are used for the inclusions. The inclusion meshes will be related to the structured mesh through a substitution matrix. The PFEM is not only capable of calculating effective properties in homogenization technique with KUBC, SUBC and periodic condition, but also can be used in all the problems which can be solved by the FEM, such as the Dirichlet or Neumann boundary value problems. Numerical experiments in two or three dimensional cases, with inclusions of elementary geometry such as disk, square, sphere,cube and ellipsoid, have been performed to validate the PFEM method. Linear convergences of relative errors with respect to reference solutions such as the Mori-Tanaka model and the Fast Fourier Transform method are shown for thermal and elastic effective properties. We have illustrated some interesting features of the PFEM, such as the total flexibility concerning the inclusions meshes, by showing an example with a very thin pellicle sphere
5

Tardieu, Giliane. "Thermal conductivity prediction." Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/10014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Martin, Ana Isabel. "Hydrate Bearing Sediments-Thermal Conductivity." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6844.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thermal properties of hydrate bearing sediments remain poorly studied, in part due to measurement difficulties inside the hydrate stability envelope. In particular, there is a dearth of experimental data on hydrate-bearing sediments, and most available measurements and models correspond to bulk gas hydrates. However, hydrates in nature largely occur in porous media, e.g. sand, silt and clay. The purpose of this research is to determine the thermal properties of hydrate-bearing sediments under laboratory conditions, for a wide range of soils from coarse-grained sand to fine-grained silica flour and kaolinite. The thermal conductivity is measured before and after hydrate formation, at effective confining stress in the range from 0.03 MPa to 1 MPa. Results show the complex interplay between soil grain size, effective confinement and the amount of the pore space filled with hydrate on the thermal conductivity of hydrate-bearing sediments.
7

Mensah-Brown, Henry. "Thermal conductivity of liquid mixtures." Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Peralta, Martinez Maria Vita. "Thermal conductivity of molten metals." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jawad, Shadwan Hamid. "Thermal conductivity of polyatomic gases." Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Valter, Mikael. "Thermal Conductivity of Uranium Mononitride." Thesis, Linköpings universitet, Tunnfilmsfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thermal conductivity is a crucial parameter for nuclear fuel, as it sets an upper limit on reactor operating temperature to have safety margins. Uranium mononitride (UN) is a prospective fuel for fast reactors, for which limited experimental studies have been conducted, compared to the currently dominating light-water reactor fuel, uranium dioxide. The aim of this thesis is to determine the thermal conductivity in UN and to determine its porosity dependence. This was done by manufacturing dense and porous high-purity samples of UN and examining them with laser flash analysis, which with data on specific heat and thermal expansion gives the thermal conductivity. To analyse the result, a theoretical study of the phenomenology of thermal conductivity as well as a review and comparison with previous investigations were carried out. The porosity range was 0.1–31% of theoretical density. Thermal diffusivity data from laser flash analysis, thermal expansion data and specific heat data was collected for 25–1400 C. The laser flash data had high discrepancy at higher temperatures due to thermal instability in the device and deviations due to graphite deposition on the samples, but the low temperature data should be reliable. As the specific heat data was also of poor quality, literature data was used instead. As for the thermal diffusivity data, the calculated thermal conductivity for lower temperatures are more accurate. A modified version of the porosity model by Ondracek and Schulz was used to analyse the porosity dependence of the thermal conductivity, taking into account the different impacts of open and closed porosity.
Värmeledningsförmåga är en avgörande egenskap för kärnbränslen, eftersom det begränsar den maximala drifttemperaturen i reaktorn för att ha säkerhetsmarginaler. Uranmononitrid (UN) är ett framtida bränsle för snabba reaktorer. Jämfört med det dominerande bränslet i lättvattenreaktorer, urandioxid, har endast begränsade experimentella studier gjorts av UN. Målet med detta arbete är att bestämma värmeledningsförmågan i UN och bestämma dess porositetsberoende. Detta gjordes genom att tillverka kompakta och porösa prover av UN och undersöka dem med laserblixtmetoden, vilket tillsammans med värmekapacitet och värmeutvidgning ger värmeledningsförmågan. För att analysera resultatet gjordes en teoretisk studie av värmeledning såväl som en genomgång av och jämförelse med tidigare undersökningar. Provernas porositet sträckte sig från 0.1% till 31% av teoretisk densitet. Värmediffusivitetsdata från laserblixtmetoden, värmeutvidgningsdata och värmekapacitetsdata samlades in för 25–1400 C. Värdena från laserblixtmätningen hade hög diskrepans vid höga temperaturer p.g.a. termisk instabilitet i anordningen och avvikelser p.g.a. grafitavlagring på proverna, men data för låga temperaturer borde vara tillförlitliga. Eftersom resultaten från värmekapacitetsmätningen var av dålig kvalité, användes litteraturdata istället. Som en konsekvens av bristerna i mätningen av värmediffusivitet är presenterade data för värmeledningsförmåga mest exakta för låga temperaturer. En modifierad version av Ondracek-Schulz porositetsmodell användes för att analysera värmeledningsförmågans porositetsberoende genom att ta hänsyn till olika inverkan av öppen och sluten porositet.

Книги з теми "Elasticity and Thermal Conductivity":

1

1947-, Miller Robert A., and NASA Glenn Research Center, eds. Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

International, Thermal Conductivity Conference (18th 1983 Rapid City S. D. ). Thermal conductivity 18. New York: Plenum Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wilkes, Kenneth E., Ralph B. Dinwiddie, and Ronald S. Graves. Thermal Conductivity 23. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

International, Thermal Conductivity Conference (19th 1985 Cookeville Tenn ). Thermal conductivity 19. New York: Plenum Press, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hasselman, D. P. H., and J. R. Thomas, eds. Thermal Conductivity 20. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0761-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ashworth, T., and David R. Smith, eds. Thermal Conductivity 18. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

International Thermal Conductivity Conference (21st 1989 Lexington, Ky.). Thermal conductivity 21. New York: Plenum Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

International Thermal Conductivity Conference (22nd 1993 Arizona State University). Thermal conductivity 22. Lancaster, Penn: Technomic Pub. Co., 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hasselman, D. P. H. Thermal Conductivity 20. Boston, MA: Springer US, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

International Thermal Conductivity Conference (20th 1987 Blacksburg, Va.). Thermal conductivity 20. New York: Plenum Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Elasticity and Thermal Conductivity":

1

Gooch, Jan W. "Conductivity (Thermal)." In Encyclopedic Dictionary of Polymers, 166. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hirao, Kiyoshi, and You Zhou. "Thermal Conductivity." In Ceramics Science and Technology, 665–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hirao, Kiyoshi, and You Zhou. "Thermal Conductivity." In Ceramics Science and Technology, 665–96. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Michaelides, Efstathios E. "Thermal Conductivity." In Nanofluidics, 163–225. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05621-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rusoke-Dierich, Olaf. "Thermal Conductivity." In Diving Medicine, 91–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73836-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brüesch, Peter. "Thermal Conductivity." In Springer Series in Solid-State Sciences, 76–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-52271-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gooch, Jan W. "Thermal Conductivity." In Encyclopedic Dictionary of Polymers, 741. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hartwig, Günther. "Thermal Conductivity." In Polymer Properties at Room and Cryogenic Temperatures, 97–116. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-6213-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Godovsky, Yuli K. "Thermal Conductivity." In Thermophysical Properties of Polymers, 43–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51670-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Yong. "Thermal Conductivity." In Physical Properties of Polymers Handbook, 155–63. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-69002-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Elasticity and Thermal Conductivity":

1

Lazarz, J. D., S. McGrane, R. Perriot, C. Bolme, M. J. Cawkwell, and K. J. Ramos. "Anisotropic thermal conductivity and elasticity of RDX using impulsive stimulated thermal scattering." In SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Masoom, Abulkhair M. "Thermal Vibrations of Beams With Temperature-Dependent Material Properties." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Thin beams subjected to thermal loads are considered. The formulation includes the temperature dependence of thermal conductivity and elastic modulus as well as coupled theory. A comparison is made between beams made of stainless steel and silicon carbide. Results show that significant differences are possible for temperature and stress solutions when temperature-dependent elasticity and conductivity are used, as opposed to the constant properties evaluated at a reference temperature.
3

Li, Jiwei, Yang Ding, Wentao Liu, Guangwen Bi, Ruirui Zhao, and Qin Zhou. "Out-of-Pile Properties Investigation of UO2-BeO Fuel Pellet." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In order to increasing the thermal conductivity of fuel pellet used in nuclear power plants, a UO2-BeO composite fuel was developed. The fuel pellets with different beryllia addition were manufactured by sintering and the physical properties were tested and compared with uranium dioxide fuel. The metallograph show that the continuous phase of beryllia was formed. The results show that the thermal conductivity was obviously larger and the elasticity modulus and the coefficient of thermal expansion were a little smaller than uranium dioxide. The thermal conductivity and the elasticity modulus were increased and the coefficient of thermal expansion was decreased by increasing the ratio of beryllia contents.
4

Bifano, Michael F. P., and Vikas Prakash. "Thermal Properties of Nanotubes and Nanowires With Acoustically Stiffened Surfaces." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A core-shell elasticity model is employed to investigate the effect of a nanowire and nanotube’s increased surface moduli on specific heat, ballistic thermal conductance, and thermal conductivity as a function of temperature. Phonon confinement is analyzed using approximated phonon dispersion relations that result from solutions to the frequency equation of a vibrating rod and tube. The results indicate a maximum 10% decrease in lattice thermal conductivity and ballistic thermal conductance near 160 K for a 10 nm outer diameter nanotube with an inner diameter of 5 nm when the average Young’s Modulus of both the inner and outer free surfaces is increased by a factor of 1.53. In the presence of the acoustically stiffened surfaces, the specific heat of the nanotube is found to decrease by up to 20% at 160 K. Near room temperature, changes in thermal properties are less severe. In contrast, a 10 nm outer diameter nanowire composed of similar material exhibits up to a 12% maximum increase in thermal conductivity at 600 K, a 25% increase in ballistic thermal conductance at 400 K, and a 48% increase in specific heat at 470 K when its outer free surface is acoustically stiffened to the same degree. Our simplified model may be extended to investigate the acoustic tuning of nanowires and nanotubes by inducing surface stiffening or softening via appropriate surface chemical functionalization and coatings.
5

Li, Like, Renwei Mei, James F. Klausner, and David W. Hahn. "Heat Transfer Between Colliding Surfaces and Particles." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Collisional heat transfer between two contacting curved surfaces is investigated computationally using the finite difference method and analytically using various asymptotic methods. Transformed coordinates that scale with the contact radius and the diffusion length are used for the computations. Hertzian contact theory of elasticity is used to characterize the contact area as a function of time. For an axisymmetric contact area, a two-dimensional self-similar solution for the thermal field during the initial period of contact is obtained and it serves as an initial condition for the heat transfer simulation throughout the entire duration of collision. A modified 2-D asymptotic result of heat transfer at small Fourier number is obtained. For finite Fourier numbers the heat transfer during the collision has been determined computationally. A closed-form formula is developed to predict the heat transfer as a function of the Fourier number, the thermal diffusivity ratio and conductivity ratio of the impacting particles.
6

Bochkareva, L. V., and D. M. Sanikovich. "Computer Modeling of the Properties of Carbon Nanotubes and Composite Materials." In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper is devoted to the modeling of thermal conductivity of carbon nanotubes, damping and elasticity of composite materials. In work the researches are carried out on the basis of the method of molecular dynamics and the finite elements method. The creation of the software with the help of CASE-tools is carried out.
7

Ahmed, Jasem A., and M. A. Wahab. "Stress Analysis of Functionally Graded Thick-Cylinders Subjected to Mechanical and Thermal Loads." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thermo-mechanical stresses in functionally graded (FG) thick-walled cylindrical vessels are investigated in this paper. The cylinder is assumed to be made of a functionally graded material (FGM) with varying material properties in the radial direction. The modulus of elasticity, thermal conductivity, and coefficient of thermal expansion are expressed using power laws. The hollow cylinder is subjected to axisymmetric mechanical and thermal loading. Governing equations are developed for the desired configuration by using equations of equilibrium, stain-displacement relation, and Hooke’s law. A computer program is written in Maple −14 to show the effect of the power indices on the radial, tangential, axial, and Von-Mises stress distributions. The results are compared from the work available in the existing literature. Results show that the Von-Mises stress can be relaxed for specific gradients. Thus, appropriate gradients can be used to make functionally graded cylindrical vessels to maintain structural integrity when subjected to severe mechanical and thermal loads.
8

Chen, Yunfei, Deyu Li, Jennifer R. Lukes, and Zhonghua Ni. "Monte Carlo Simulation of Thermal Conductivities of Silicon Nanowires." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One-dimensional (1D) materials such as various kinds of nanowires and nanotubes have attracted considerable attention due to their potential applications in electronic and energy conversion devices. The thermal transport phenomena in these nanowires and nanotubes could be significantly different from that in bulk material due to boundary scattering, phonon dispersion relation change, and quantum confinement. It is very important to understand the thermal transport phenomena in these materials so that we can apply them in the thermal design of microelectronic, photonic, and energy conversion devices. While intensive experimental efforts are being carried out to investigate the thermal transport in nanowires and nanotube, an accurate numerical prediction can help the understanding of phonon scattering mechanisms, which is of fundamental theoretical significance. A Monte Carlo simulation was developed and applied to investigate phonon transport in single crystalline Si nanowires. The Phonon-phonon Normal (N) and Umklapp (U) scattering processes were modeled with a genetic algorithm to satisfy both the energy and the momentum conservation. The scattering rates of N and U scattering processes were given from the first perturbation theory. Ballistic phonon transport was modeled with the code and the numerical results fit the theoretical prediction very well. The thermal conductivity of bulk Si was then simulated and good agreement was achieved with the experimental data. Si nanowire thermal conductivity was then studied and compared with some recent experimental results. In order to study the confinement effects on phonon transport in nanowires, two different phonon dispersions, one based on bulk Si and the other solved from the elastic wave theory for nanowires, were adopted in the simulation. The discrepancy from the simulations based on different phonon dispersions increases as the nanowire diameter decreases, which suggests that the confinement effect is significant when the nanowire diameter goes down to tens nanometer range. It was found that the U scattering probability engaged in Si nanowires was increased from that in bulk Si due to the decrease of the frequency gap between different modes and the reduced phonon group velocity. Simulation results suggest that the dispersion relation for nanowire solved from the elasticity theory should be used to evaluate nanowire thermal conductivity as the nanowire diameter reduced to tens nanometer.
9

Margadant, N., S. Siegmann, J. Patscheider, T. Keller, W. Wagner, J. Ilavsky, J. Pisacka, G. Barbezat, and P. Fiala. "Microstructure-Property Relationships and Cross-Property Correlations of Thermal Sprayed Ni-Alloy Coatings." In ITSC2001, edited by Christopher C. Berndt, Khiam A. Khor, and Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p0643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Relationships between the properties of thermally sprayed nickel based alloys and their microstructure (density, porosity, oxide phase content) are investigated. Cross-property- correlation of physical properties such as electrical conductivity and elasticity were examined. The experimental results of the structures and properties of the different coatings are discussed with respect to their pore surface area obtained by small angle neutron scattering (SANS) measurements. As wide as possible range of thermally sprayed microstructures of NiCr and NiCrAlY was produced by vacuum - and atmospheric plasma spraying, flame spraying, HVOF and water stabilized plasma spraying. Commercially available powders with process specific grain size distributions were used as feedstock materials resulting in a wide range of microstructures of the coatings depending on the spraying technique and, to much less extent, on the variation of the process parameters. In this work the examination of the pore structure was carried out by optical microscopy on metallographic cross sections. Phase composition and distribution were investigated by hot gas extraction for oxygen and nitrogen determination and by Scanning Auger Microscopy on polished cross sections and fracture surfaces. The properties of the coatings were characterized by their wear (ASTM G75) behavior, reflecting application-oriented properties. Significant and varying amount of anisotropy of the coating properties - electrical conductivity and elastic modulus - was found in the sprayed microstructures. This anisotropy could be directly linked to microstructure anisotropy as characterized by Small-Angle Neutron Scattering.
10

Amano, R. S., E. K. Lee, P. K. Rohatgi, H. G. Seong, and V. K. Tiwari. "On the Numerical Analysis of Different Controlling Parameters During the Solidification of Aluminum-Carbon Fiber Composite With Thermal Management." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal matrix composites (MMCs) consist of two or more distinct phases, namely a continuous metallic phase known as the matrix and a reinforcing phase. MMCs offer advantages over traditional monolithic materials of enhanced material properties such as strength, thermal/electrical conductivity, toughness, modulus of elasticity, wear resistance, etc. It is desirable to shorten the solidification time when producing MMCs because the higher the cooling rate, the finer the microstructures of the MMCs will be. The present research investigates MMCs processed in a novel way, in which the ends of the reinforcement phase are extended outside the liquid matrix envelope and cooled by a heat sink. By doing so, heat extraction in the axial direction greatly reduces the solidification time compared with conventional way of making MMCs. Due to the complicated geometry of the calculation domain, analytical result is very difficult to obtain. Therefore, attempts have been made to solve the energy equation by finite difference numerical method for a 2-D axis-symmetric model involving phase change. The calculation domain is based on the proposed experimental configuration by Rohatgi et al. [1]. In this paper, the effects of selected parameters which can influence the process of solidification are examined. These parameters include the volume fraction, the thermal conductivity of the reinforcing phase, and the heat sink temperature.

Звіти організацій з теми "Elasticity and Thermal Conductivity":

1

Wilkinson, A., and A. E. Taylor. Thermal Conductivity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guidotti, R. A., and M. Moss. Thermal conductivity of thermal-battery insulations. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/102467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Clark, D. Thermal Conductivity of Helium. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/1031796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

M.J. Anderson, H.M. Wade, and T.L. Mitchell. Invert Effective Thermal Conductivity Calculation. US: Yucca Mountain Project, Las Vegas, Nevada, March 2000. http://dx.doi.org/10.2172/894317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Leader, D. R. Thermal conductivity of cane fiberboard. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/402292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, H. Thermal conductivity Measurements of Kaolite. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/885883.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hin, Celine. Thermal Conductivity of Metallic Uranium. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1433931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bootle, John. High Thermal Conductivity Composite Structures. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alvin Solomon, Shripad Revankar, and J. Kevin McCoy. Enhanced Thermal Conductivity Oxide Fuels. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/862369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bootle, John. High Thermal Conductivity Composite Structures. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada379694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії