Добірка наукової літератури з теми "Elastic rods and waves"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Elastic rods and waves".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Elastic rods and waves"

1

Coleman, Bernard D., and Ellis H. Dill. "Flexure waves in elastic rods." Journal of the Acoustical Society of America 91, no. 5 (May 1992): 2663–73. http://dx.doi.org/10.1121/1.402974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lenells, Jonatan. "Traveling waves in compressible elastic rods." Discrete & Continuous Dynamical Systems - B 6, no. 1 (2006): 151–67. http://dx.doi.org/10.3934/dcdsb.2006.6.151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Borshch, E. I., E. V. Vashchilina, and V. I. Gulyaev. "Helical traveling waves in elastic rods." Mechanics of Solids 44, no. 2 (April 2009): 288–93. http://dx.doi.org/10.3103/s0025654409020149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Đuričković, Bojan, Alain Goriely, and Giuseppe Saccomandi. "Compact waves on planar elastic rods." International Journal of Non-Linear Mechanics 44, no. 5 (June 2009): 538–44. http://dx.doi.org/10.1016/j.ijnonlinmec.2008.10.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Coleman, Bernard D., and Daniel C. Newman. "On waves in slender elastic rods." Archive for Rational Mechanics and Analysis 109, no. 1 (1990): 39–61. http://dx.doi.org/10.1007/bf00377978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thurston, R. N. "Elastic waves in rods and optical fibers." Journal of the Acoustical Society of America 89, no. 4B (April 1991): 1901. http://dx.doi.org/10.1121/1.2029441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Soerensen, M. P., P. L. Christiansen, P. S. Lomdahl, and O. Skovgaard. "Solitary waves on nonlinear elastic rods. II." Journal of the Acoustical Society of America 81, no. 6 (June 1987): 1718–22. http://dx.doi.org/10.1121/1.394786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thurston, R. N. "Elastic waves in rods and optical fibers." Journal of Sound and Vibration 159, no. 3 (December 1992): 441–67. http://dx.doi.org/10.1016/0022-460x(92)90752-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Antman, Stuart S., and Gregory M. Crosswhite. "Planar Travelling Waves in Incompressible Elastic Rods." Methods and Applications of Analysis 11, no. 3 (2004): 431–46. http://dx.doi.org/10.4310/maa.2004.v11.n3.a13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krishnaswamy, Shankar, and R. C. Batra. "On Extensional Oscillations and Waves in Elastic Rods." Mathematics and Mechanics of Solids 3, no. 3 (September 1998): 277–95. http://dx.doi.org/10.1177/108128659800300302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Elastic rods and waves"

1

Durickovic, Bojan. "Waves on Elastic Rods and Helical Spring Problems." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/202750.

Повний текст джерела
Анотація:
This work examines problems in the statics and traveling wave propagation on uniform elastic rods with constant curvature and torsion, i.e. a straight rod and a helical rod. The first set of problems concerns planar traveling loop-like waves on intrinsically straight rods. It is shown that loops with compact support can exist on homogeneous rods with a nonlinear constitutive relation, where the strain-energy density contains a quartic term. Next, the effect of heterogeneity in the material properties on the shape of the loop is examined using a homogenization method. The second set of problems deals with a system consisting of a helical spring with a force and a torque applied along the helix axis. First, an overview is presented of problems of finding the stresses given the strains, or vice-versa, assuming that the elastic parameters of the spring are known. Then, the inverse problem is examined, where both stresses and strains are measured, and optimal elastic parameters within the linear consitutive model are sought. Various forms of measured strains are considered. Finally, the special problem with zero axial torque is considered, and criteria when the spring overwinds with a tensile axial force applied are established.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fu, Tuan-Chun. "FEM simulation of ultrasonic wave propagation in solid rods." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3452.

Повний текст джерела
Анотація:
Thesis (M.S.)--West Virginia University, 2004.
Title from document title page. Document formatted into pages; contains x, 82 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 80-81).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cazzolli, Alessandro. "Snapping and Fluttering of Elastic Rods." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/259120.

Повний текст джерела
Анотація:
The exact solutions for planar rods undergoing large rotations and subject to kinematically controlled ends are presented in the first part of the thesis. In particular, the equilibrium equations for a rod subject to Dirichlet boundary conditions and to isoperimetric constraints are derived through variational principles for both the Euler's elastica and the Reissner beam, while the related closed-form solutions are obtained in terms of the Jacobi elliptic functions. The study of stability of the Euler's elastica is addressed in the second part of the thesis through a modified version of the conjugate points method, thus disclosing the existence of a universal snap surface that represents the whole set of "saddle points" of the total potential energy, and therefore corresponding to snapping configurations. These theoretical findings allow for the prediction of snapping instabilities along any equilibrium path involving variations in the boundary conditions and are confirmed by numerical and experimental data. The universal snap surface is also exploited towards the realization of the elastica catastrophe machine, as the first extension of the classical Zeeman's machine to continuous elastic elements. Two families of the elastica catastrophe machine are presented and the theoretical model is fully validated through a prototype designed and tested at the Instability Lab of the University of Trento. Finally, the equations of motion of a pre-stressed planar rod and of its discretized counterpart subject to non-holonomic constraints are obtained in the last part. The analysis of the linearized stability surprisingly proves the existence of flutter instabilities despite the conservative nature of the considered systems. Moreover, Hopf bifurcations and destabilization paradoxes in the presence of dissipative forces are found. The non-linear equations of the proposed discretized model are also numerically solved, thus confirming the predicted stability properties and revealing the birth of periodic stable solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Miller, James Thomas Ph D. Massachusetts Institute of Technology. "Mechanical behavior of elastic rods under constraint." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/88280.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 213-223).
We present the results of an experimental investigation of the mechanics of thin elastic rods under a variety of loading conditions. Four scenarios are explored, with increasing complexity: i) the shape of a naturally curved rod suspended under self-weight, ii) the buckling and post-buckling behavior of a rod compressed inside a cylindrical constraint, iii) the mechanical instabilities arising when a rod is progressively injected into a horizontal cylinder, and iv) strategies for mitigation of these instabilities by dynamic excitation of the constraint. First, we consider the role of natural curvature in determining the shape of a hanging elastic rod suspended under its own weight. We categorize three distinct configurations: planar hooks, localized helices, and global helices. Experimental results are contrasted with simulations and theory and the phase diagram of the system is rationalized. Secondly, in what we call the classic case experiment, we study the buckling and post-buckling behavior of a rod compressed inside a cylindrical constraint. Under imposed displacement, the initially straight rod buckles into a sinusoidal mode and eventually undergoes a secondary instability into a helical configuration. The critical buckling loads are quantified and found to depend strongly on the aspect ratio of the rod to pipe diameter. Thirdly, we inject a thin elastic rod into a horizontal cylinder under imposed velocity in the real case experiment. Friction between the rod and constraining pipe causes an increasing axial load with continued injection. Consecutive buckling transitions lead to straight, sinusoidal, and helical configurations in a spatially heterogeneous distribution. We quantify critical lengths and loads for the onset of the helical instability. The geometric parameters of the system strongly affect the buckling and post-buckling behavior. Finally, we explore active strategies for delaying the onset of helical buckling in the real case. Distributed vertical vibration is applied to the cylindrical constraint, which destabilizes frictional contacts between the rod and pipe. Injection speed, peak acceleration of vibration, and vibration frequency are all found to affect the postponement of helical initiation. The process is rationalized and design
by James T. Miller.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Khalid, Jawed Mohammad. "Coiling of elastic rods on rigid substrates." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93774.

Повний текст джерела
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-120).
We investigate the deployment of a thin elastic rod onto a rigid substrate and study the resulting coiling patterns. In our approach, we combine precision model experiments, scaling analyses, and computer simulations towards developing predictive understanding of the coiling process. Both cases of deposition onto static and moving substrates are considered. We construct phase diagrams for the possible coiling patterns, e.g. meandering, stretched coiling, alternating loops, and translated coiling, and characterize them as a function of the geometric and material properties of the rod, as well as the height and relative speeds of deployment. The various modes selected and their characteristic length-scales are found to arise from a complex interplay between gravitational, bending, and twisting energies of the rod, coupled to the geometric nonlinearities intrinsic to their large deformations. We give particular emphasis to the first sinusoidal mode of instability, which we find to be consistent with a Hopf bifurcation, and rationalize the meandering wavelength and amplitude. Throughout, we systematically vary natural curvature of the rod as a control parameter, which has a qualitative and quantitative effect on the pattern formation, above a critical value that we determine. Upon establishing excellent quantitative agreement between experiments and simulations with no fitting parameters, we perform a numerical survey to relate the pattern size to the relevant length-scales arising from material properties and the setup geometry, and quantify the typical strain levels in the rod. The universality conferred by the prominent role of geometry in the deformation modes of the rod suggests using the gained understanding as design guidelines, in the original applications that motivated the study. These include the coiling of carbon nanotubes and the deployment of submarine cables and pipelines onto the seabed.
by Mohammad Khalid Jawed.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guo, Hanfen. "Quasi-static universal motions of homogeneous monotropic elastic rods." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq23326.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beretta, Robert K. (Robert Kneeland). "A geometrically exact dynamic model for spatial elastic rods." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gong, Chen. "Surface waves in elastic material." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227640.

Повний текст джерела
Анотація:
A finite volume method based solver for Rayleigh waves in two dimensional elastic materials is constructed  by using the Conservation Laws Package (Clawpack). The Lax-Wendroff scheme is implemented and only first-order accuracy is achieved for the Rayleigh wave problems by the default elastic wave solver in Clawpack. A Lamb's problem is solved by Clawpack and some instabilities occur in the cases of almost incompressible materials. The Rayleigh wave problem in complex geometries is transformed by a smooth mapping function and solved by using a fourth-order summation-by-parts (SBP) operators  with a simultaneous approximation term (SAT) method. The stability is proved by the energy method in the continuous and discrete form. The numerical experiment shows that the curved boundary has influences on the magnitude and phase of the Rayleigh waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dreyer, Daniel 1975. "Application of the Element Free Galerkin Method to elastic rods." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/80918.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2000.
"February 2000."
Includes bibliographical references (p. 115-119) and index.
by Daniel Dreyer.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Connell, I. J. "Large elastic deformations of tubes, wires and springs." Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Elastic rods and waves"

1

Stability theory of elastic rods. Singapore: World Scientific, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

E, Dieulesaint, ed. Elastic waves in solids. Berlin: Springer, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Engelbrecht, Jüri. Questions About Elastic Waves. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14791-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wei, Peijun. Theory of Elastic Waves. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5662-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Classical and generalized models of elastic rods. Boca Raton: Chapman & Hall/CRC Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vibrations of Shells and Rods. Berlin: Springer-Verlag, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

C, Xi Z., ed. Elastic waves in anisotropic laminates. Boca Raton, USA: CRC Press, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Royer, Daniel, and Eugène Dieulesaint. Elastic Waves in Solids II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-06938-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rushchitsky, Jeremiah J. Nonlinear Elastic Waves in Materials. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00464-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kulikovskiǐ, A. G. Nonlinear waves in elastic media. Boca Raton: CRC Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Elastic rods and waves"

1

Mindlin, R. D., and H. D. McNiven. "Axially Symmetric Waves in Elastic Rods." In The Collected Papers of Raymond D. Mindlin Volume I, 393–99. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8865-4_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Onoe, Morio, H. D. McNiven, and R. D. Mindlin. "Dispersion of Axially Symmetric Waves in Elastic Rods." In The Collected Papers of Raymond D. Mindlin Volume I, 527–32. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8865-4_65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schiehlen, Werner, Bin Hu, and Peter Eberhard. "Longitudinal Waves in Elastic Rods with Discontinuous Cross Sections." In Solid Mechanics and Its Applications, 117–24. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1154-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Elkaranshawy, Hesham A., and Nasser S. Bajaba. "A Finite Element Simulation of Longitudinal Impact Waves in Elastic Rods." In Materials with Complex Behaviour II, 3–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22700-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kuscher, G. F., V. Hohler, and A. J. Stilp. "Non-Linear Propagation of Elasto-Plastic Waves in Rods." In Shock Waves in Condensed Matter, 377–81. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2207-8_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vollmann, J., M. R. Pfaffinger, and J. Dual. "Complete Elastic Characterization of Transversely Isotropic Composite Rods by Guided Structural Waves." In Material Identification Using Mixed Numerical Experimental Methods, 237. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1471-1_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pastrone, F. "Wave Propagation in Elastic Rods, with Shear and Rotary Inertia Effects." In Lecture Notes in Engineering, 202–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83040-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mindlin, R. D., and G. Herrmann. "A One-Dimensional Theory of Compressional Waves in an Elastic Rod." In The Collected Papers of Raymond D. Mindlin Volume I, 243–48. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8865-4_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Le, Khanh Chau. "Elastic rods." In Vibrations of Shells and Rods, 123–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59911-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Le, Khanh Chau. "Elastic rods." In Vibrations of Shells and Rods, 311–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59911-8_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Elastic rods and waves"

1

BONDARENKO, A. A. "ELASTIC WAVES IN RODS OF RECTANGULAR CROSS SECTION." In Proceedings of the 13th General Meeting. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814277686_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guo, Zhe, Bao-rui Peng, and Yong-qiang Guo. "Theoretical analysis of longitudinal vibrations of piezoelectric/elastic composite rods." In 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2017. http://dx.doi.org/10.1109/spawda.2017.8340337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ramabathiran, Amuthan Arunkumar, and S. Gopalakrishnan. "Galerkin Finite Element Schemes for Axial Waves in Nonlinear Elastic Rods." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Colombi, A., R. Craster, M. Clark, and D. Colquitt. "Slow waves, elastic rainbow and dynamic anisotropy with a cluster of resonant rods on an elastic halfspace." In 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials). IEEE, 2017. http://dx.doi.org/10.1109/metamaterials.2017.8107830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kuroda, Masaharu, and Francis C. Moon. "Local Complexity and Global Nonlinear Modes in Large Arrays of Fluid-Elastic Oscillators." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32752.

Повний текст джерела
Анотація:
Transition from local complexity to global spatio-temporal dynamics in a two dimensional array of fluid-elastic oscillators is examined experimentally with an apparatus comprising 90–1000 cantilevered rods in a wind tunnel. Wave-like behavior is observed which may be related to soliton solutions in nonlinear arrays of nonlinear oscillators. The 90 to 1000 steel and polycarbonate rods have gap ratios ranging from 1.0 to 2.5. As the Reynolds number (based on rod diameter) increases from 200 to 900, a pattern with characteristics of spatio-temporal chaos emerges in global behavior of the elastic-rod array. There are local and global patterns. Local patterns comprise transient rest, linear motion, and elliptical motion. In 90-rod experiments, a cluster-pattern entropy measure based on these three patterns is introduced as a quantitative measure of local complexity. No significant dynamics appear below a threshold wind velocity. Video images reveal that, at first, each rod moves individually; then clusters consisting of several rods emerge. Finally, global wave-like motion occurs at higher flow velocities. Spatial patterns in rod-density distribution appear as more rods impact with their nearest neighbors. Furthermore, these collective nonlinear motions of rods are observed and categorized into several global modes. Using accelerometer data, the rod impact rate versus flow velocity shows a power-law scaling relation. This phenomenon may have application to plant-wind dynamics and damage as well as heat exchangers in energy systems. This experiment may also be a two dimensional analog of impact dynamics of granular materials in a flow.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

OTHMAN, R., G. GARY, M. N. BUSSAC, and P. COLLET. "APPLICATION OF THE LIKELIHOOD METHOD TO THE ANALYSIS OF WAVES IN ELASTIC AND VISCOELASTIC RODS." In Proceedings of the International Conference to Celebrate Robert P Gilbert's 70th Birthday. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704405_0035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Keskinen, Erno, Taina Vuoristo, Veli-Tapani Kuokkala, and Matti Martikainen. "Viscoelastic Wave Analysis of Hopkinson Split Bar System." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81241.

Повний текст джерела
Анотація:
Axially elastic rods are basic machine elements in hydraulic hammers, pilers and percussive drills. The problem to analyze the motion history of such mechanisms is a very complex one, because the rods are simultaneously in large amplitude axial motion superimposed with a small amplitude elastic wave motion. The wave motion experiences division to reflected and transmitted components at each rod-rod interface depending on the current boundary stiffness. The wave motion in each rod can be computed by finite elements or alternatively in space of semidefinite eigenfunctions. The feasibility of these methods in solving wave propagation problems in multi-rod systems with nonlinearly behaving rod-rod interfaces has been investigated and evaluated. The object of the case study is a classical Hopkinson split bar apparatus used in experimental analysis of material response to shock pulses.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Georgiou, Ioannis T. "On the Physics of Conversion of Longitudinal Elastic Waves Into Extended Vibrations in a Suspended Aluminum Rod." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65726.

Повний текст джерела
Анотація:
This work concerns a two stage decomposition analysis of a dynamics phenomenon due to reflection of longitudinal pulse elastic waves in long elastic rods. Elastic pulse waves are induced by impacting a miniature modal hammer at one of its free ends whereas its dynamics is recorded by a high performance piezoelectric sensor at the other end. An underlining characteristic time scale leads to a natural decomposition of experimental time series of wave acceleration into a sequence of time frames. The signals are viewed as a sequence of time frames and thus are analyzed globally and locally by further decomposing them into their intrinsic Proper Orthogonal Decomposition Modes (POD) or Principal Component Analysis (PCA) modes. It is found that experimental signals of acceleration during propagation of elastic pulse waves are governed by a small number of POD modes; one of the modes is dominant. It is conjectured that these intrinsic modes of the time frame-arranged signals represent physical modes of pulse wave propagation. The introduced method of the two-stage decomposition analysis is potentially useful for data-driven analysis in wave propagation-based damage detection.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Marconi, Jacopo, Gabriele Cazzulani, Massimo Ruzzene, and Francesco Braghin. "A Physical Interpretation for Broken Reciprocity in Spatiotemporal Modulated Periodic Rods." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3877.

Повний текст джерела
Анотація:
Periodic systems have long been known for their peculiar characteristics in wave propagation and have been studied in many fields over the last century, going from electro-magnetics and optics to elastic structures, which drew an increasing interest in structural and mechanical engineering for vibration suppression and control spanning over broadband frequency ranges. Recently, on the stream of other studies conducted in different fields, spatiotemporal modulated elastic structures have been studied, showing promising results for wave control in that one-way propagation in the so called directional-bands can be achieved, constituting what may be called a mechanical diode. Despite of the fact that mathematical methods for the analysis of such structures have already been developed, often physics behind them is difficult to grasp. In this work, a simplified interpretation of the undergoing phenomena is thus given relating wave propagation in the mean to its physical characteristics as well as to modulation parameters. Exploiting Doppler effect and passive equivalent structures, it is shown that the broken reciprocity is due to the fact that opposite travelling waves effectively see two different periodic structures. To this aim the rod case is analysed for low modulation speeds and low modulation amplitudes; finally, in the light of the previous analysis, an explanation for First Brillouin Zone’s asymmetry is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Leishear, Robert A. "Stresses During Impacts on Horizontal Rods." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79178.

Повний текст джерела
Анотація:
The impact of an object striking the tip of a horizontally mounted bar provides some insight into the dynamics of structural impact in general. Modeling a cylindrical bar provides significant simplifications to enable comparison between experiment and theory. In particular, experimental results available in the literature are compared herein to both elastic wave theory and vibration theory. Relating these two theories is the focus of this paper. Vibrations can be directly related to the time of impact, the maximum stress at the tip of the bar, and the frequencies of the struck bar. Once these stresses and frequencies are found, elastic wave theory can then be used to describe the stresses throughout the bar.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Elastic rods and waves"

1

Korneev, V. A., K. T. Nihei, and L. R. Myer. Nonlinear interaction of plane elastic waves. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/290877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gritto, Roland. Rayleigh scattering and nonlinear inversion of elastic waves. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/224955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tadjbakhsh, Iradj G., and Dimitris C. Lagoudas. Variational Theory of Deformations of Curved, Twisted and Extensible Elastic Rods. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada260331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tadjbakhsh, Iradj, and Dimitris C. Lagoudas. Variational Theory of Motion of Curved, Twisted and Extensible Elastic Rods. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada261028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheng, A. C. H. (In-situ permeability determination and fracture characterization using elastic waves). Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7180476.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Scott, Waymond R., Rogers Jr., Martin Peter H., and James S. Investigation of the Interaction of Elastic Waves with Buried Mines. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada379655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Simpson, Jr., W., and R. McClung. An investigation of elastic guided waves for ceramic joint evaluation. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5260427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuperman, W. Workshop on Imaging of Complex Media with Acoustic and Elastic Waves. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada425356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Varley, E. Interaction of Large Amplitude Stress Waves in Layered Elastic-Plastic Materials. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada153519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ALDRIDGE, DAVID F. Radiation of Elastic Waves from Point Sources in a Uniform Wholespace. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/759486.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії