Добірка наукової літератури з теми "Écoulement en milieux poreux"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Écoulement en milieux poreux".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Écoulement en milieux poreux"
Bennacer, Rachid, Abdelwahab Tobbal, and Hassen Beji. "Convection naturelle Thermosolutale dans une Cavité Poreuse Anisotrope: Formulation de Darcy-Brinkman." Journal of Renewable Energies 5, no. 1 (June 30, 2002): 1–21. http://dx.doi.org/10.54966/jreen.v5i1.882.
Повний текст джерелаHenzel, Yann, Joël Bréard, Patrick Faitout, David Cayeux, and Raymond Gauvin. "Dynamique des écoulements en milieux poreux double échelle." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy 327, no. 11 (October 1999): 1171–77. http://dx.doi.org/10.1016/s1287-4620(00)88521-x.
Повний текст джерелаPetit, François, Florian Fichot, and Michel Quintard. "Écoulement diphasique en milieu poreux: modèle à non-équilibre local." International Journal of Thermal Sciences 38, no. 3 (March 1999): 239–49. http://dx.doi.org/10.1016/s1290-0729(99)80087-8.
Повний текст джерелаHirata, Sílvia C., and Mohamed Najib Ouarzazi. "Influence d'un écoulement horizontal sur les propriétés linéaires de la convection de fluides viscoélastiques en milieux poreux." Comptes Rendus Mécanique 338, no. 9 (September 2010): 538–44. http://dx.doi.org/10.1016/j.crme.2010.07.009.
Повний текст джерелаAuvinet, G. "Étude des écoulements en milieux poreux par la méthode de Monte Carlo." Revue Française de Géotechnique, no. 70 (1995): 15–24. http://dx.doi.org/10.1051/geotech/1995070015.
Повний текст джерелаJacquin, C., and B. Legait. "Approche probabiliste des milieux poreux hétérogènes ou fracturés en relation avec les écoulements diphasiques." Revue de l'Institut Français du Pétrole 42, no. 1 (January 1987): 31–38. http://dx.doi.org/10.2516/ogst:1987002.
Повний текст джерелаKimmerlin, Gilles, and Michel Combarnous. "Éditorial - Physique des écoulements en milieux poreux naturels : de l’échelle du pore à l’échelle du réservoir." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 67, no. 5 (September 2012): 731–36. http://dx.doi.org/10.2516/ogst/2012057.
Повний текст джерелаNayagum, Dharumarajen, Gerhard Schäfer, and Robert Mose. "Approximation par les éléments finis mixtes d'une équation de diffusion non linéaire modélisant un écoulement diphasique en milieu poreux." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, no. 2 (February 2001): 87–90. http://dx.doi.org/10.1016/s1620-7742(00)01299-x.
Повний текст джерелаAttard, G., Y. Rossier, J. Bardonnet, and L. Eisenlohr. "Quantifier la contribution des parcelles et les temps de transit de l’eau souterraine pour protéger la qualité des captages d’eau potable." Techniques Sciences Méthodes, no. 6 (June 2019): 39–50. http://dx.doi.org/10.1051/tsm/201906039.
Повний текст джерелаBertin, H., M. Quintard, P. V. Corpel, and S. Whitaker. "Écoulement polyphasique dans un milieu poreux stratifié. Résultats expérimentaux et interprétation par la méthode de prise de moyenne à grande échelle." Revue de l'Institut Français du Pétrole 45, no. 2 (March 1990): 205–30. http://dx.doi.org/10.2516/ogst:1990016.
Повний текст джерелаДисертації з теми "Écoulement en milieux poreux"
Hume, Laurène. "Approche numérique d'écoulements complexes à l'échelle des pores en milieux poreux." Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3011/document.
Повний текст джерелаThis scientific computing work presents an iterative method for the solution of incompressibleStokes equation at the pore scale of porous media. This method is based on solid matrixpenalization and involves vorticity field. We adapt tools from vortex methods (generally used forexternal and transport-dominant flows) to viscous flows at low scale.The pore space flow is computed with this iterative method, alternating penalization anddiffusion steps. Only usual operators are used in the proposed formulation, such that the nonseparableproperty of the penalization-diffusion initial equation is overcome. We then performhigh resolution and low memory storage simulations on various geometries, including real porousmedia. We validate the code with these results, and by estimating permeability of samples.From this work which consists in no-slip flow at solid interface, we propose a generalizationto rough solid walls at the interface. This thesis presents the modeling of such roughness usinga tangential slip Robin condition, and the ensuing method as a computation of the resultingperturbation.This work also includes a study of variable viscosity flows. With a particle-based method,we present the numerical solution of a non-linear Stokes problem coupled with diffusion andtransport for xanthan flow in a Bentheimer sandstone. The viscosity law is a Carreau law, asxanthan solution is a shear-thinning substance : the method is then able to handle high viscosityvariations. About the same topic of variable viscosity flows, and more precisely about mixturehomogenization, we introduce a theoretical estimator of effective viscosity for random mixtures.This estimator is validated on a large number of Stokes simulation, with a methodology inspiredby Monte-Carlo methods
Hourtané, Virginie. "Écoulement de mousse dans des modèles de milieux poreux." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0330/document.
Повний текст джерелаCrude oil is already usually trapped into heterogeneous porous media. In order to increase the recovery efficiency, one of the chemical solutions consists in injecting foams in porous media to expel oil from the rock. Foam is indeed able in some cases to greatly decrease the mobility, leading to a better sweeping of the reservoir. However, the mechanisms controlling the foam mobility are not well known. We propose a microfluidic approach allowing a direct observation of the flow of bubbles in a model of porous media. We observe that the flow is not homogeneous in the porous medium: it is concentrated in some paths. The number of these preferential paths depends of the foam quality and the capillary number. If we simplify the geometry of the porous medium to a loop, we prove that the formation of preferential paths depends of the size of the loop. Indeed we can only immobilize the bubbles if the size of the loop is around the size of the bubbles
Zeltz, Eric. "Modélisations d'injections multiphasiques en milieux poreux." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0027/these.pdf.
Повний текст джерелаBy using the mathematical techniques of homogenization and by starting from the Navier-Stokes equations, we model the injection of fuids in porous medium in three different cases. - First, in the case of a compressible fluid: we recover the model of Aronson. -then in the case of an incompressible fluid injected in the porous medium filled with another incompressible fluid. We demonstrate that the interface is determined by a problem of Riemann and that its average speed is linear. We show that the nature of the interface is essentially de fined by the coefficient of mobility of both fluids. We validate the model thanks to an experience of injection of resin in a porous medium. We use our model to interpret a known physical phenomenon but in our knowledge never explained in satisfactory way: the headway of the interface along the walls of the porous mould in the case of the injection of a very sticky fluid. - Finally we consider the previous case when the injected uid is condensable. We demonstrate again that the interface is determined by a Riemann problem but that its speed goes asymptotically towards zero. We validate our model with an experience of vapor injected in some concrete. We give a new explanation to a phenomenon classically called " phenomenon of cork " and observed in this type of experience
Panfilova, Irina. "Ecoulements diphasiques en milieux poreux : modèle de ménisque." Vandoeuvre-les-Nancy, INPL, 2003. http://docnum.univ-lorraine.fr/public/INPL_T_2003_PANFILOVA_I.pdf.
Повний текст джерелаA new macroscopic model of two-phase flow through porous media is suggested. It takes in consideration a typical structure of phase distribution in pores in the form of a repetitive field of mobile menisci. The presence of such interfaces givers rise to a supplementary term in the momentum balance equation, which introduces a vector field of capillary forces. The derivation of the model is based on the phenomenological approach with introducing a special continuum called the Meniscus-continuum. The closure relations to the phenomenological model are obtained by numerical simulations in network models of porous media. The new model remains hyperbolic even when the capillary forces are dominant, in contrast with the classical model which is parabolic. Analytical solutions to the mono-dimensional flow problems are constructed. They manifest non-classical structures like the double fronts or counter-flow fronts. To simulate 2D or 3D problems, a numerical algorithm is developed, which is a combination between the finite difference and the percolation techniques. Its application to the p:roblem of DNAPL propagation into the soil has enabled to detect several penetration regimes
Serres, Marion. "Étude hydrodynamique d'un écoulement gaz-liquide dans un milieu poreux confiné." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN018/document.
Повний текст джерелаThis thesis focuses on gas-liquid flow in porous media, a common problem encountered in various domains from fundamental physics to applied chemical engineering. We have characterized the hydrodynamic regimes based on two different experimental devices geometry: a millichannel (1D flow) and a Hele-Shaw cell (2D flow). The originality of this work is to analyze the influence of the porous medium (monodisperse micro-packed beds or open cell solid foams), confinement (1D/2D) and gravity by coupling global and local analysis from either chemical engineering or fundamental physics community. On the one hand, a global analysis made it possible to quantify pressure drops, residence time distributions (RTD) based on fluorescent dye transport and gas-liquid mass transfer on the 1D device. On the other hand, a local analysis of the liquid fraction and the spatio-temporal evolution of its frequency pointed out the existence of two hydrodynamic regimes: a Taylor-like regime in which the characteristics of the periodic flow upstream are conserved in the porous medium and a modulated regime characterized by the flow disorganization at the porous medium entrance. A phenomenological model is developed based on bubbles propagation inside the medium and reproduces well both regimes. These two analyses are finally coupled to study multiphase flows inside the Hele-Shaw cell. The effects of gravity and confinement are discussed
Cancès, Clément. "Ecoulements diphasiques en milieux poreux hétérogènes : modélisation et analyse." Aix-Marseille 1, 2008. http://www.theses.fr/2008AIX11016.
Повний текст джерелаHoang, Ha. "Modélisation du comportement et des couplages HMC des milieux poreux." Thesis, Orléans, 2012. http://www.theses.fr/2012ORLE2090/document.
Повний текст джерелаModelling of the behavior and the couplings HMC of the porous circles
Saad, Bilal. "Modélisation et simulation numérique d'écoulements multi-composants en milieux poreux." Ecole centrale de Nantes, 2011. https://tel.archives-ouvertes.fr/tel-00649033v2.
Повний текст джерелаThis work deals with the modelization and numerical simulation of two phase multi-component flow in porous media. The study is divided into two parts. First we study and prove the mathematical existence in a weak sense of two degenerate parabolic systems modeling two phase (liquid and gaz) two component (water and hydrogen) flow in porous media. In the first model, we assume that there is a local thermodynamic equilibrium between both phases of hydrogen by using the Henry’s law. The second model consists of a relaxation of the previous model : the kinetic of the mass exchange between dissolved hydrogen and hydrogen in the gaz phase is no longer instantaneous. The second part is devoted to the numerical analysis of those models. Firstly, we propose a numerical scheme to compare numerical solutions obtained with the first model and numerical solutions obtained with the second model where the characteristic time to recover the thermody-namic equilibrium goes to zero. Secondly, we present a finite volume scheme with a phase-by-phase upstream weighting scheme without simplified assumptions on the state law of gas densities. We also validate this scheme on a 2D test cases
Ene, Ioana-Andreea. "Etude de quelques problèmes d'écoulement dans les milieux poreux." Metz, 1995. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1995/Ene.Ioana_Andreea.SMZ9553.pdf.
Повний текст джерелаThe aim of this thesis is the study of two problems of flow through porous media. In the first and the second chapter we study in the general framework of the homogenization method the flow of a viscous fluid through an elastic thin porous media. After the proof of the convergence of the homogenization process by using the two-scale convergence method it is possible to take the limit as the second small parameter (who caracterize the thickness of the solid part) tends to zero. We obtain a viscoelastic media with fading memory. We consider the two classical cases, when we have a Stokes flow in the fluid part and when we have a Navier-Stokes flow in the fluid part. In the third chapter we study a double porosity model in a double periodicity media. From a mechanical point of view this model represents a fracturated porous media. From a mathematical point of view we study a Neumann problem with double periodicity. We prove existence and unicity for such a problem and using the three-scale convergence method we obtain the homogenized equation and the homogenized coefficients. The result we obtain is a Darcy law at the macroscale and this show us that, at least in the steady case, both the double periodicity model and the double porosity model are the same
Chupin, Olivier. "Écoulement et transport couplés en milieux poreux saturés : application à l'injection des sols." Nantes, 2005. http://www.theses.fr/2005NANT2096.
Повний текст джерелаКниги з теми "Écoulement en milieux poreux"
Bourbié, Thierry. Acoustique des milieux poreux. Paris: Technip, 1986.
Знайти повний текст джерелаCoussy, Olivier. Mécanique des milieux poreux. Paris: Technip, 1991.
Знайти повний текст джерелаKam, Marie. Simulation physico-chimique de l'évolution hydrothermale des milieux poreux ou fissurés. Strasbourg, France: Editions de l'Institut de géologie, 1990.
Знайти повний текст джерелаKam, Marie. Simulation physico-chimique de l'évolution hydrothermale des milieux poreux ou fissurés. Strasbourg, France: Editions de l'Institut de géologie, 1990.
Знайти повний текст джерелаUniversité Louis Pasteur de Strasbourg and Centre national de la recherche scientifique (France), eds. Simulation physico-chimique de l'évolution hydrothermale des milieux poreux ou fissurés. Strasbourg, France: Editions de l'Institut de géologie, Université Louis Pasteur de Strasbourg, 1988.
Знайти повний текст джерелаBesnard, Katia. Modélisation du transport réactif dans les milieux poreux hétérogènes: Application aux processus d'adsorption cinétique non linéaire. Rennes, France: Géosciences Rennes, 2004.
Знайти повний текст джерелаFrance. Comité d'action concertée "Récupération assistée du pétrole." and France. Ministère de la recherche et de la technologie., eds. Interactions solide-liquide dans les milieux poreux: Colloque-bilan, Nancy 6-10 février 1984 = Solid-liquid interactions in porous media. Paris: Editions Technip, 1985.
Знайти повний текст джерелаA, Shrefler B., and Lewis R. W, eds. The finite element method in the static and dynamic deformation and consolidation of porous media. 2nd ed. Chichester: John Wiley, 1998.
Знайти повний текст джерелаCoussy, Olivier. Mécanique des milieux poreux. Technip, 2000.
Знайти повний текст джерелаDormieux, Luc, and Emmanuel Bourgeois. Introduction à la micromécanique des milieux poreux. Ponts et chaussées, 2002.
Знайти повний текст джерелаЧастини книг з теми "Écoulement en milieux poreux"
"Partie 3 : Des suspensions aux milieux poreux." In La matière en désordre, 123–52. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1644-6-004.
Повний текст джерела"Partie 3 : Des suspensions aux milieux poreux." In La matière en désordre, 123–52. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1644-6.c004.
Повний текст джерелаLE CAËR, Sophie, and Jean-Philippe RENAULT. "Radiolyse des matériaux poreux et radiolyse aux interfaces." In Les matériaux du nucléaire sous irradiation, 185–203. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9148.ch6.
Повний текст джерелаMOULAY, M. S., and M. A. MOUSSAOUI. "RÉGULARITÉ DES SOLUTIONS DE L'EQUATION DES MILIEUX POREUX EN UNE DIMENSION D'ESPACE." In Mathematical Analysis and its Applications, 125–42. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-031636-9.50017-6.
Повний текст джерелаТези доповідей конференцій з теми "Écoulement en milieux poreux"
Pélissier, Simon, and Lanfranco Monti. "L’approche dite des « milieux poreux »." In Thermohydraulique des assemblages combustibles des réacteurs à eau légère. Les Ulis, France: EDP Sciences, 2013. http://dx.doi.org/10.1051/jtsfen/2013the02.
Повний текст джерела