Добірка наукової літератури з теми "Dynamique de la Terre profonde"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamique de la Terre profonde".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dynamique de la Terre profonde"
Jalbert, Jean. "La Camargue, un delta face au défi climatique." Annales des Mines - Responsabilité et environnement N° 112, no. 4 (October 25, 2023): 104–7. http://dx.doi.org/10.3917/re1.112.0104.
Повний текст джерелаRifflart, Christine. "Cycle immobilier et politique du logement : comparaison internationale et étude du cas britannique." Revue de l'OFCE 52, no. 1 (January 1, 1995): 105–35. http://dx.doi.org/10.3917/reof.p1995.52n1.0105.
Повний текст джерелаRoby, Yves. "Les Canadiens français des États-Unis (1860-1900) : dévoyés ou missionnaires." Revue d'histoire de l'Amérique française 41, no. 1 (September 24, 2008): 3–22. http://dx.doi.org/10.7202/304520ar.
Повний текст джерелаNastopka, Kęstutis. "La sémiotique poétique de Gytis Norvilas." Semiotika 12 (December 22, 2016): 55–69. http://dx.doi.org/10.15388/semiotika.2016.16735.
Повний текст джерелаGUERRINI, Xavier, Vincent FREYCON, Alexandre De HALDAT du LYS, and Éric, André NICOLINI. "Dynamique contrastée de la compaction d’un ferralsol après une défriche mécanisée alternative en Guyane française." BOIS & FORETS DES TROPIQUES 348 (July 6, 2021): 65–78. http://dx.doi.org/10.19182/bft2021.348.a36751.
Повний текст джерелаMartin, Dominique. "Mouvement social, syndicalisme et modernisation en Pologne." Sociétés contemporaines 2, no. 2 (March 1, 1990): 65–79. http://dx.doi.org/10.3917/soco.p1990.2n1.0065.
Повний текст джерелаGharbi, Inès, and Mohamed Elloumi. "L’agriculture irriguée en Tunisie : politiques hydrauliques et politiques de régulation foncière." Cahiers Agricultures 32 (2023): 17. http://dx.doi.org/10.1051/cagri/2023010.
Повний текст джерелаLordon, Frédéric. "Formaliser la dynamique économique historique." Économie appliquée 49, no. 1 (1996): 55–84. http://dx.doi.org/10.3406/ecoap.1996.1590.
Повний текст джерелаRomanowicz, Barbara. "Structure, composition et dynamique du noyau de la Terre." La lettre du Collège de France, no. 33 (July 1, 2012): 30. http://dx.doi.org/10.4000/lettre-cdf.2522.
Повний текст джерелаCastex, Agathe. "La Terre d’Émile Zola ou l’impossible jacquerie." Quêtes littéraires, no. 14 (December 20, 2024): 26–40. https://doi.org/10.31743/ql.17952.
Повний текст джерелаДисертації з теми "Dynamique de la Terre profonde"
Boukaré, Charles-Edouard. "Dynamique du manteau dans la jeune Terre." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1011/document.
Повний текст джерелаEarly in the history of terrestrial planet, heat of accreation, radioactive deacay and core-mantle segratation may have melted the silicate mantle significantly. Magma ocean evolution depends on both physical properties of materials at relevant P-T conditions and the complex dynamics of a convecting cristallizing mantle. Present deep Earth mantle structures might be direclty linked to the crystallization of a potential magma ocean. We propose a complete thermodynamic model of the solid-liquid equilibrium in the MgO-FeO-SiO2 system which allows to compute self-consistenltly crystallization sequence at deep mantle conditions. The present study shows that, at thermodynamic equilibrium, the first solids that crystallize in the deep mantle are lighter than the liquid as they are more Mg-rich. This further enriches the melt in iron and this residual melt becomes much denser than the solid phase. Both the anti-freeze effect of iron and its high density suggest a mantle crystallization scenario similar to that described in Labrosse et al. (2007) where the ULVZ are iron rich and very fusible remnants of a primordial basal magma ocean. In addition, we have developped a multiphase convection code accounting for solid-liquid phase change, compaction and fractionnal cristallization. This mechanical model is dedicated to the investigation of the effects of various temperature profile and solid liquid density cross-overs on the dynamics of a cristallizing mantle. In this thesis, we show preliminary models illustrating the effect of chemical density contrasts between melt and solid in the case of univariant crystallization
Garcia, Raphael François. "Le Noyau Terrestre: étude sismologique de quelques structures majeures influençant la dynamique terrestre." Phd thesis, Université Paul Sabatier - Toulouse III, 2001. http://tel.archives-ouvertes.fr/tel-00370921.
Повний текст джерелаKocha, Cécile. "Interactions entre poussières désertiques et convection profonde en Afrique de l'Ouest : Observations et modélisation à échelle convective." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00741943.
Повний текст джерелаFrasson, Thomas. "Flux de chaleur hétérogène dans des simulations de convection mantellique : impact sur la géodynamo et les inversions magnétiques." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALU027.
Повний текст джерелаThe Earth’s magnetic field is generated within the Earth’s core, where convective motions ofthe electrically conducting liquid iron result in a dynamo action. This process, called the geodynamo,has been maintaining a magnetic field for billion of years. Paleomagnetic evidence showsthat the behaviour of the geodynamo has changed during geological times. These behaviourchanges are visible through variations in the strength and stability of the magnetic dipole. Variationsin the heat flux at the core-mantle boundary (CMB) due to mantle convection have beensuggested as one possible mechanism capable of driving such a change of behaviour.Numerical models of mantle convection and of the geodynamo have made significant improvementsin the recent years. Coupling mantle convection models and geodynamo models cangive insights into how the geodynamo reacts to variations in the CMB heat flux. Our current understandingof this thermal coupling between the mantle and the core is nonetheless restricted bylimitations in numerical models on both the mantle and core side. On the mantle side, the orientationof the mantle with respect to the spin axis has to be better constrained in order to exploitrecent simulations reproducing about 1 Gyr of mantle convection. Constraining this orientationrequires to align the maximum inertia axis of the mantle with the spin axis of the Earth, causingsolid-body rotations of the mantle called true polar wander (TPW). On the core side, numericalsimulations are still far from the parameter regime of the Earth, and it is not clear whether thereversing mechanism observed in these models is relevant for the Earth’s core.This work aims at acquiring a more complete understanding of how lateral heterogeneitiesof the CMB heat flux affect the geodynamo. In a first part, we explore the impact of TPW onthe CMB heat flux using two recently published mantle convection models: one model drivenby a plate reconstruction and a second that self-consistently produces a plate-like behaviour. Wecompute the geoid in both models to correct for TPW. An alternative to TPW correction is used forthe plate-driven model by simply repositioning the model in the original paleomagnetic referenceframe of the plate reconstruction. We find that in the plate-driven mantle convection model, themaximum inertia axis does not show a long-term consistency with the position of the magneticdipole inferred from paleomagnetism. TPW plays an important role in redistributing the CMBheat flux, notably at short time scales (≤ 10 Myr). Those rapid variations modify the latitudinaldistribution of the CMB heat flux. A principal component analysis (PCA) is computed to obtainthe dominant CMB heat flux patterns in the models.In a second part, we study the impact of heterogeneous heat flux conditions at the top of thecore in geodynamo models that expands towards more Earth-like parameter regimes than previouslydone. We especially focus on the heat flux distribution between the poles and the equator.More complex patterns extracted from the mantle convection models are also used. We show thatan equatorial cooling of the core is the most efficient at destabilizing the magnetic dipole, while apolar cooling of the core tends to stabilize the dipole. The observed effects of heterogeneous heatflux patterns are explained through the compatibility of thermal winds generated by the heat fluxpattern with zonal flows. Notably, heat flux patterns have a more moderate effect when westwardzonal flows are strong, with a destabilization of the dipole only for unrealistically large amplitudes.A parameter controlling the strength and stability of the magnetic dipole that is consistentwith the reversing behaviour of the geodynamo is suggested.i
Osorio-Leon, Ivan-David. "Dynamiques oxiques-anoxiques dans la subsurface continentale : prédiction et contrôle sur l'altération des roches et la biomasse profonde." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENB039.
Повний текст джерелаRedox reactions involving dissolved oxygen (DO) are the most energetic and provide a major source of energy for the deep biosphere. The ability of fractured rocks to rapidly transport oxygenated waters from the surface to depth allows for the existence of a deep oxic hydrosphere (DOH), which has been historically neglected. This thesis focuses on the origin, dynamics, and consequences of this DOH. First, we establish a conceptual framework to identify the factors controlling the reactive transport of DO at the watershed scale. We develop a water-rock interaction model to predict the depth of the DOH. This model is used to explain the occurrence of a DOH within the first 300 meters of the aquifer in the Critical Zone Observatory of Ploemeur. We investigate the δ18O of DO within the DOH to identify the distribution of biotic and abiotic processes that control the reactivity of DO in the watershed. Second, we conduct two in-situ experiments to explore the consequences of the DOH on the biogeochemical functioning of the subsurface. A reactive DO tracer test and a mineral incubation experiment are developed to study the response of, respectively, the planktonic and mineral-attached biomass to oxic and anoxic dynamics in the subsurface. This work highlights a DOH in which subsurface biogeochemical processes are sensitive to surface hydrological dynamics involving the transport of DO, thus challenging the paradigm of the deep biosphere as an inert and anoxic system
Las reacciones redox que involucran oxígeno disuelto (OD) son las más energéticas y proporcionan una fuente importante de energía para la biosfera subterránea. La capacidad de las rocas fracturadas para transportar rápidamente aguas oxigenadas desde la superficie hasta la profundidad permite la existencia de una hidrosfera óxica profunda (HOP), que históricamente ha sido ignorada. Esta tesis se centra en el origen, la dinámica y las consecuencias de esta HOP. En primer lugar, establecemos un marco conceptual para identificar los factores que controlan el transporte reactivo del OD a escala de cuenca. Desarrollamos un modelo de interacción agua-roca para predecir la profundidad de la HOP. Este modelo se utiliza para explicar la ocurrencia de una HOP dentro de los primeros 300 metros del acuífero en el Observatorio de la Zona Crítica de Ploemeur. Investigamos el δ18O del OD dentro de la HOP para identificar la distribución de los procesos bióticos y abióticos que controlan la reactividad del OD en la cuenca. En segundo lugar, realizamos dos experimentos in-situ para explorar las consecuencias de la HOP en el funcionamiento biogeoquímico del subsuelo. Se desarrolla una prueba de trazador reactivo con OD y un experimento de incubación mineral para estudiar la respuesta de la biomasa planctónica y adherida a los minerales, respectivamente, a las dinámicas óxicas y anóxicas en el subsuelo. Este trabajo destaca una HOP en la que los procesos biogeoquímicos subterráneos son sensibles a las dinámicas hidrológicas superficiales que implican el transporte de OD, desafiando así el paradigma de la biosfera profunda como un sistema inerte y anóxico
NAWAB, RAMIN. "Observation et demodulation des modes propres de la terre : contraintes sur la terre profonde." Paris 7, 1993. http://www.theses.fr/1993PA077289.
Повний текст джерелаAlbagnac, Julie. "Dynamique tridimensionnelle de dipôles tourbillonnaires en eau peu profonde." Phd thesis, Toulouse 3, 2010. http://oatao.univ-toulouse.fr/9847/1/Albagnac_9847.pdf.
Повний текст джерелаZerfa, Fatma Zohra. "Dynamique couplée des ouvrages en terre." Grenoble INPG, 2000. http://www.theses.fr/2000INPG0109.
Повний текст джерелаCharki, Zakaria. "Analyse théorique du problème de la convection de Bénard profonde." Lille 1, 1994. http://www.theses.fr/1994LIL10009.
Повний текст джерелаVigny, Christophe. "Géoïde et dynamique interne de la Terre." Paris 11, 1989. http://www.theses.fr/1989PA112302.
Повний текст джерелаКниги з теми "Dynamique de la Terre profonde"
Lacroix, Guy. Dynamique du recours au bien-être social à Terre-Neuve, 1986-1998. Hull, Qué: Développement des ressources humaines Canada, Direction générale de la recherche appliquée, 2002.
Знайти повний текст джерелаEuropean Commission. Joint Research Centre and World Health Organization, eds. Impacts of Europe's changing climate: 2008 indicator-based assessment : joint EEA-JRC-WHO report. Copenhagen: European Environment Agency, 2008.
Знайти повний текст джерелаAmbrose, James E. Simplified building design for wind and earthquake forces. 2nd ed. New York: Wiley, 1990.
Знайти повний текст джерелаLagabrielle, Yves, Gilbert Boillot, Philippe Huchon, and Jacques Boutler. Introduction à la géologie - 5e éd. - La dynamique de la Terre: La dynamique de la Terre. DUNOD, 2020.
Знайти повний текст джерелаDes femmes, une terre: Une nouvelle dynamique sociale au Bénin. Paris: L'Harmattan, 1993.
Знайти повний текст джерелаAccès à la terre: Dynamique démographique et ancestralité à Madagascar. Paris: Harmattan, 2008.
Знайти повний текст джерелаJohn, COENRAADS Robert KOIVULA. GEOLOGICA, LA DYNAMIQUE DE LA TERRE (REFERENCE ET NATURE) (French Edition). ULLMANN, 2009.
Знайти повний текст джерелаEcologie en résistance: Stratégies pour une Terre en péril. Éditions LIBRE, 2018.
Знайти повний текст джерелаEcologie en résistance: Stratégies pour une Terre en péril. 2nd ed. Éditions LIBRE, 2018.
Знайти повний текст джерелаImpacts of Europe's changing climate: An indicator-based assessment. Copenhagen, Denmark: European Environment Agency, 2004.
Знайти повний текст джерелаЧастини книг з теми "Dynamique de la Terre profonde"
MANTHILAKE, Geeth. "Mesures en laboratoire de la conductivité électrique et applications aux intérieurs planétaires." In Structure et dynamique de l’intérieur de la Terre 2, 269–98. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9166.ch8.
Повний текст джерелаBOLFAN-CASANOVA, Nathalie, and Bertrand MOINE. "Le cycle profond de l’hydrogène." In Structure et dynamique de l’intérieur de la Terre 2, 93–123. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9166.ch3.
Повний текст джерелаDEMOUCHY, Sylvie, and Patrick CORDIER. "La rhéologie du manteau terrestre." In Structure et dynamique de l’intérieur de la Terre 2, 239–68. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9166.ch7.
Повний текст джерелаPERRILLAT, Jean-Philippe. "Diagrammes de phases et composition minéralogique du manteau terrestre." In Structure et dynamique de l’intérieur de la Terre 2, 5–35. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9166.ch1.
Повний текст джерела"CHAPITRE VI COUPLAGES ET DYNAMIQUE." In Du soleil à la Terre, 253–308. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-86883-467-6.c008.
Повний текст джерела"Chapitre 9. Dynamique de la Terre." In La physique du XXe siècle, 155–68. EDP Sciences, 2003. http://dx.doi.org/10.1051/978-2-7598-0209-8.c010.
Повний текст джерела"Chapitre 9. Dynamique de la Terre." In La physique du XXe siècle, 155–68. EDP Sciences, 2003. https://doi.org/10.1051/978-2-86883-518-5.c010.
Повний текст джерелаMESCHINET DE RICHEMOND, Nancy, and Yvette VEYRET. "Crises et territoires : héritages, inerties et dynamiques." In Gestion des crises territoriales, 139–72. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9080.ch6.
Повний текст джерелаLABROSSE, Stéphane. "Flux de chaleur et refroidissement séculaire du manteau." In Structure et dynamique de l’intérieur de la Terre 1, 157–88. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9172.ch5.
Повний текст джерелаCHOBLET, Gaël. "Modèles de la dynamique du manteau." In Structure et dynamique de l’intérieur de la Terre 1, 5–42. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9172.ch1.
Повний текст джерелаТези доповідей конференцій з теми "Dynamique de la Terre profonde"
Labra Cenitagoya, Ana Isabel. "Neige ardente ou les métamorphoses des éléments dans les littératures maghrébines d'expression française." In XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.3173.
Повний текст джерелаЗвіти організацій з теми "Dynamique de la Terre profonde"
Turner, B., M. Quat, M. Boiridy, R. Debicki, and P. Thurston. Terre dynamique, Grand Sudbury : anciens fonds marins, roche fragmentée par une météorite, sculpture de l'âge glaciaire, fonderie de Grand Sudbury. Natural Resources Canada/CMSS/Information Management, 2015. http://dx.doi.org/10.4095/329901.
Повний текст джерелаGoerzen, C., H. Kao, R. Visser, R. M. H. Dokht, and S. Venables. A comprehensive earthquake catalogue for northeastern British Columbia, 2021 and 2022. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/332532.
Повний текст джерела