Добірка наукової літератури з теми "Dynamics in media"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamics in media".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dynamics in media"

1

Kushner, Alexei G., and Valentin V. Lychagin. "On dynamics of molecular media." Differential Geometry and its Applications 81 (April 2022): 101845. http://dx.doi.org/10.1016/j.difgeo.2021.101845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tokbaeva, Dinara. "Media Entrepreneurs and Market Dynamics." Journal of Media Management and Entrepreneurship 1, no. 1 (January 2019): 40–56. http://dx.doi.org/10.4018/jmme.2019010103.

Повний текст джерела
Анотація:
The post-Soviet space has seen a large-scale transformation of media markets that is marked with an unprecedented rise of entrepreneurial initiatives across business sectors, including media businesses. This paper analysed the dynamics of Russian media markets and the challenges of Russian media entrepreneurs. The media markets of Russia shifted toward more concentration and fragmentation, and media holdings are continuously gaining more power. This paper also looked at the regional media markets of Russia. According to research, there are less than 20 self-sustainable regional media holdings in Russia due to the low capacity of regional advertising markets. National media holdings have a diversified portfolio consisting of different types of media with a growing fraction of digital media companies, and the regional media lag behind in terms of its digital component. Most regional media holdings operate traditional media. Their digital channels are yet to be developed, despite the chief executives' acknowledgement that the future of revenue streams comes from digital channels.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martí, A. C., F. Sagués, and J. M. Sancho. "Front dynamics in turbulent media." Physics of Fluids 9, no. 12 (December 1997): 3851–57. http://dx.doi.org/10.1063/1.869485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Adda-Bedia, Mokhtar, and Martine Ben Amar. "Crack dynamics in elastic media." Philosophical Magazine B 78, no. 2 (August 1998): 97–102. http://dx.doi.org/10.1080/13642819808202930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schneider, Guido, and C. Eugene Wayne. "Kawahara dynamics in dispersive media." Physica D: Nonlinear Phenomena 152-153 (May 2001): 384–94. http://dx.doi.org/10.1016/s0167-2789(01)00181-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rollet, A. L., M. Jardat, J. F. Dufrêche, P. Turq, and D. Canet. "Multiscale dynamics in ionic media." Journal of Molecular Liquids 92, no. 1-2 (June 2001): 53–65. http://dx.doi.org/10.1016/s0167-7322(01)00177-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Delia, Duminică, and Popescu Georgiana. "Motivational Dynamics in Media Organizations." Procedia - Social and Behavioral Sciences 76 (April 2013): 312–16. http://dx.doi.org/10.1016/j.sbspro.2013.04.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Erzhanov, Zh S., N. Zh Zhubaev, O. Baigonysov, and S. K. Tleukenov. "Dynamics of periodically inhomogeneous media." Soviet Applied Mechanics 23, no. 6 (June 1987): 513–18. http://dx.doi.org/10.1007/bf00887014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Casciati, F. "Stochastic dynamics of hysteretic media." Structural Safety 6, no. 2-4 (November 1989): 259–69. http://dx.doi.org/10.1016/0167-4730(89)90026-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

van de Veerdonk, R. J. M., X. W. Wu, R. W. Chantrell, and J. J. Miles. "Slow dynamics in perpendicular media." IEEE Transactions on Magnetics 38, no. 4 (July 2002): 1676–81. http://dx.doi.org/10.1109/tmag.2002.1017755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Dynamics in media"

1

Durling, Nicola Emma. "Reaction dynamics in supercritical media." Thesis, University of Leicester, 2003. http://hdl.handle.net/2381/30077.

Повний текст джерела
Анотація:
An in situ dielectric method is used to measure aromatic solubilities as a function of pressure and to follow the progress of an Esterification, Aldol and Friedel-Crafts reactions in supercritical (sc) difluoromethane (HFC 32). This is achieved by measuring the changes in the sc solution capacitance as the composition of the sc system changes. The solubility of p-hydroxybenzoic, p-toluic, p-aminobenzoic and p-chlorobenzoic acids and also p-chlorophenol and p-aminophenol is determined in sc HFC 32 at 363 K using the dielectric method, and presented as a function of pressure. The compounds are shown to be more soluble than in the commonly employed sc solvent, CO2 under comparative conditions. The enhancement factor is used as a way of expressing solubility to remove the effect of vapour pressure and the observed trend in solubility is found to be highly dependent on the polarity of the substituents present on the aromatic ring. The use of the in situ dielectric method for monitoring a reaction in a sc fluid is proposed. The Esterification. Aldol and Friedel-Crafts reactions in sc HFC 32 were used to test the applicability of this technique. These are the first reported reactions to be carried out in sc HFC 32. The rate/equilibrium constants for these reactions are determined and found to decrease with increasing pressure. It is proposed that the observed high reaction rates at low pressure are due to local composition enhancements. Determination of solvent-solute interactions is key to the understanding of solvent, properties in liquids and sc fluids. The Kamlet-Taft parameters were determined for HFC 32 and 1,1,1,2-tetrafluoroethane (HFC 134a) as a function of temperature and pressure in the range 313 to 403 K and 50 to 220 bar using three solvatochromic dyes. It is shown that both solvents exhibit considerable hydrogen bond donor and acceptor properties and these parameters also obey the three region density model often invoked when describing the polarisability/dipolarity parameter in sc fluids.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Molale, Dimpho Millicent. "A computational evaluation of flow through porous media." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Iotov, Mihail S. Goddard William A. "Diffusion in amorphous media." Diss., Pasadena, Calif. : California Institute of Technology, 1998.

Знайти повний текст джерела
Анотація:
Thesis (Ph. D.)--California Institute of Technology, 1998. UM #9842258.
Advisor names found in the Acknowledgments pages of the thesis. Title from home page. Viewed 02/01/2010. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reitberger, Wolfgang Heinrich. "Affective Dynamics in Responsive Media Spaces." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4975.

Повний текст джерела
Анотація:
In this thesis computer-mediated human interaction and human computer interaction in responsive spaces are discussed. Can such spaces be de-signed to create an affective response from the players? What are the de-sign heuristics for a space that allows for the establishment of affective dy-namics? I research the user experience of players of existing spaces built by the Topological Media Lab. In addition to that I review other relevant ex-perimental interfaces, e.g. works by Myron Krueger and my own earlier piece Riviera in order to analyze their affective dynamics. Also, I review the different applications and programming paradigms involved in authoring such spaces (e.g. Real-time systems like Max/MSP/Jitter and EyeCon) and how to apply them in compliance with the design heuristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Palapanidis, Konstantinos. "Relativistic fluid dynamics and electromagnetic media." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/427364/.

Повний текст джерела
Анотація:
In this thesis we describe fluid media with electromagnetic properties in the context of general relativity. Using the variational principle we derive the Einstein equations from the Einstein-Hilbert action, the Euler-Lagrange equations for a multicomponent fluid and the Maxwell equations. We provide a covariant description of linear electromagnetic media and we also discuss media with non linear electromagnetic properties. We also provide a formula that generalises the expression for the Lagrangian of linear media, to that of non linear media and we discuss a set of constraints for linear electromagnetic media in terms of the material derivative. We discuss a model for a multifluid with general electromagnetic properties. We also derive the limit for the single fluid ideal magnetohydrodynamics in general relativistic context. In the final part we look into the linear stability of specific systems using the geometric optics method along with the notion of "fast" and "slow" variables. Employing this method we reproduce a number of results in Newtonian context, building gradually to the derivation of the magnetorotational instability. Additionally, we discuss the vanishing magnetic field of this configuration. Subsequently, considering an unperturbed background spacetime we derive the characteristic equations describing the relativistic inertial waves, the relativistic Rayleigh shearing instability and the relativistic magnetorotational instability. Finally, by assuming a low velocity and flat metric limit of the relativistic equations we reproduce the Newtonian characteristic equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xu, Jinshan. "Dynamics and synchronization in biological excitable media." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00776373.

Повний текст джерела
Анотація:
This thesis investigates the origin of spontaneous activity in the uterus. This organ does not show any activity until shortly before delivery, where fast and efficient contractions are generated. The aim of this work is to provide insight into the origin of spontaneous oscillations and into the transition from asynchronous to synchronized activity in the pregnant uterus. One intriguing aspect in the uterus is the absence of any pacemaker cell. The organ is composed of muscular cells, which are excitable, and connective cells, whose behavior is purely passive; None of these cells, taken in isolation, spontaneously oscillates. We develop an hypothesis based on the observed strong increase in the electrical coupling between cells in the last days of pregnancy. The study is based on a mathematical model of excitable cells, coupled to each other on a regular lattice, and to a fluctuating number of passive cells, consistent with the known structure of the uterus. The two parameters of the model, the coupling between excitable cells, and between excitable and passive cells, grow during pregnancy.Using both a model based on measured electrophysiological properties, and a generic model of excitable cell, we demonstrate that spontaneous oscillations can appear when increasing the coupling coefficients, ultimately leading to coherent oscillations over the entire tissue. We study the transition towards a coherent regime, both numerically and semi-analytically, using the simple model of excitable cells. Last, we demonstrate that, the realistic model reproduces irregular action potential propagation patterns as well as the bursting behavior, observed in the in-vitro experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Borek, Bartlomiej. "Dynamics of heterogeneous excitable media with pacemakers." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107795.

Повний текст джерела
Анотація:
The heart is a heterogeneous excitable tissue embedded with pacemakers. To understand the fundamental rules governing its behaviour it is useful to investigate the interplay between structure and dynamics in simplified experimental and mathematical models. This thesis examines FitzHugh-Nagumo type reaction-diffusion equation models motivated by experiments with engineered cardiac tissue culture. The aim is to relate how the design properties of these systems determine the underlying spatiotemporal dynamics. First, a functional relation between randomly distributed heterogeneities and conduction velocity is proposed in two dimensional heterogeneous excitable media. The transitions to wave break are studied for two types of heterogeneities related to fibroblasts and collagen deposits. The effects of pacemakers are next considered with a theoretical study of the transitions in one-dimensional wave patterns of a pacemaker reset by a stimulus pulse from a distance. Reflected wave solutions are found near the apparent discontinuity in the phase transition curve of the system, and they grow into more multi-reflected trajectories for a coarser spatial discretization of the model. Finally, the dynamical regimes arising from the interaction of two pacemakers in heterogeneous excitable media are investigated. A novel chick culture is developed to exhibit dominant pacemaker dynamics. This stable rhythm undergoes transitions to more complex reentrant patterns following induction of new pacemakers by the application of the potassium channel blocker, E-4031. The dynamics are reproduced by the FitzHugh-Nagumo model, which further demonstrates the effects of pacemaker size and heterogeneity density on the transition to wave break and reentry. These findings may contribute to our understanding of the generic mechanisms governing the dynamics of wave propagation through heterogeneous excitable media with pacemakers, including healthy and diseased hearts.
Le coeur est un tissu hétérogène excitable qui contient des générateurs de rythme. Pour comprendre les règles fondamentales qui dirigent son comportement, il est utile d'étudier l'interaction entre la structure et la dynamique des modèles expérimentaux et mathématiques simplifiés. Dans cette thèse, j'utilise des modèles d'équations de FitzHugh-Nagumo. Ces modèles sont motivés par l'expérimentation avec des tissus cardiaques modifiés pour étudier comment les propriétés des conceptions influencent la dynamique d'ondes. Tout d'abord, une relation fonctionelle entre la densité des hétérogénéités distribuées au hasard et la vitesse de conduction est proposée dans un modèle numérique de deux dimensions de média hétérogènes excitables. Les transitions à l'onde rupturée sont différentes pour deux types de substrats hétérogènes. Les effets des régions automatiques sont alors considérés avec une étude théorique des transitions dans les ondes unidimensionelles des générateurs de rythme réinitialisés par une seule impulsion d'une distance. Des solutions d'ondes réfléchies se trouvent près de la discontinuité apparente de la courbe de transition de phase du système et deviennent des trajectoires plus complexes pour une discrétisation spatiale plus grossière du modèle. Enfin, les modèles d'ondes résultant de l'interaction de deux générateurs de rythme dans des médias hétérogènes excitables sont étudiés. Une nouvelle culture de tissu cardiaque de poussin est développée pour présenter la dynamique dominante déterminée par un générateur de rythme. Ce rythme stable subit des transitions à des modèles d'ondes réentrants plus complexes suivant l'induction de nouveaux générateurs de rythme, par l'application du bloqueur des canaux potassiques, E-4031. La dynamique est reproduite par le modèle FitzHugh-Nagumo, prévoyant l'effet de la taille du générateur de rythme et la densité de l'hétérogèneité sur la transition de l'onde rupturée et à la réentrée. Ces résultants contribuent à notre compréhension des mécanismes de média hétérogènes excitables avec des générateurs de rythme, dont les coeurs sains et malades.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dambal, Ajey Krishnamurty. "Polymer dynamics in confined and concentrated media /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seebaluck, Ajay. "How social media affects the dynamics of protest." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44666.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
Digital technologies have created a new environment in the virtual world, which may either reinforce or undermine state authority. The wave of protests that erupted in the North African region during the last decade has increased the interest of scholars in investigating the catalysts for these uprisings. While there are conflicting views about the role of new technology in social protest, the Arab Spring has highlighted the role played by social media as a key tool in garner mass mobilization. However, a number of other factors could have been involved in the Arab uprisings. Thus, focusing only on one particular cause may lead to incorrect conclusions. Using cross-sectional-time series data, and multivariate regression, this thesis seeks to demonstrate that the Internet has a direct relationship with the onset of civil protests in Africa when certain economic conditions exist.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shokri-Kuehni, Salomé Michelle Sophie. "Dynamics of saline water evaporation from porous media." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/dynamics-of-saline-water-evaporation-from-porous-media(df48eec0-7bf4-46f5-96ef-d7f3f9419ec2).html.

Повний текст джерела
Анотація:
Saline water evaporation from porous media with the associated salt precipitation patterns is frequently observed in a number of industrial and environmental applications and it is important in a variety of topics including, but not limited to, water balance and land-atmosphere interaction, terrestrial ecosystem functioning, geological carbon storage, and preservation of historical monuments. The excess accumulation of salt in soil is a global problem and is one of the most widespread soil degradation processes. Thus, it is important to understand the dominant mechanisms controlling saline water evaporation from porous media. This process is controlled by the transport properties of the porous medium, the external conditions, and the properties of the evaporating fluid. During saline water evaporation from porous media, the capillary induced liquid flow transports the solute towards the evaporation surface while diffusive transport tends to spread the salt homogeneously thorough the porous medium. Therefore, the solute distribution is influenced by the competition between the diffusive and convective transport. As water evaporates, salt concentration in the pore space increases continually until it precipitates. The formation of precipitated salt adds to the complexity of the description of saline water evaporation from porous media. In this dissertation, the effects of salt concentration, type of salt, and the presence of precipitated salt, on the evaporation dynamics have been investigated. The obtained results show that the precipitated salt has a porous structure and it evolves as the drying progresses. The presence of porous precipitated salt at the surface causes top-supplied creeping of the evaporating solution, feeding the growth of subsequent crystals. This could be visualized by thermal imaging in the form of appearance and disappearance of cold-spots on the surface of the porous medium, brought about by preferential water evaporation through the salt crust. My results show that such a phenomenon influences the dynamics of saline water evaporation from porous media. Moreover, a simple but effective tool was developed in this dissertation capable of describing the effects of ambient temperature, relative humidity, type of salt and its concentration, on the evaporative fluxes. Additionally, pore-scale data obtained by synchrotron x-ray tomography was used to study ion transport during saline water evaporation from porous media in 4D (3D space + time). Using iodine K-edge dual energy imaging, the ion concentration at pore scale with a high temporal and spatial resolution could be quantified. This enabled us to reveal the mechanisms controlling solute transport during saline water evaporation from porous media and extend the corresponding physical understanding of this process. Within this context, the effects of particle size distribution on the dispersion coefficient were investigated together with the evolution of the dispersion coefficient as the evaporation process progresses. The results reported in this dissertation shed new insight on the physics of saline water evaporation from porous media and its complex dynamics. The results of this dissertation have been published in 3 peer-reviewed journal papers together with one additional manuscript which is currently under review.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dynamics in media"

1

Nigmatulin, Robert Iskanderovich. Dynamics of multiphase media. New York: Hemisphere Pub. Corp., 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dynamics of mass media writing. Hillsdale, N.J: Lawrence Erlbaum Associates, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Burgess, Jean, Hartley John, and Axel Bruns. A companion to new media dynamics. Chichester: John Wiley & Sons, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dynamics of fluids in porous media. New York: Dover, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rutherford, Aris, Aronson Don, and Swinney H. L. 1939-, eds. Patterns and dynamics in reactive media. New York: Springer-Verlag, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Davis, Julian L. Introduction to dynamics of continuous media. New York: Macmillan, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aris, Rutherford, Donald G. Aronson, and Harry L. Swinney, eds. Patterns and Dynamics in Reactive Media. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3206-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hartley, John, Jean Burgess, and Axel Bruns, eds. A Companion to New Media Dynamics. Oxford, UK: Wiley-Blackwell, 2013. http://dx.doi.org/10.1002/9781118321607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Panfilov, Mikhail. Physicochemical Fluid Dynamics in Porous Media. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527806577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aris, Rutherford. Patterns and Dynamics in Reactive Media. New York, NY: Springer New York, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dynamics in media"

1

Wu, Lei. "Porous Media Flow." In Rarefied Gas Dynamics, 209–16. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2872-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Radjai, Farhang. "Multicontact Dynamics." In Physics of Dry Granular Media, 305–12. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2653-5_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kelley, Larry D., Kim Bartel Sheehan, Lisa Dobias, David E. Koranda, and Donald W. Jugenheimer. "Dynamics of paid media." In Advertising Media Planning, 20–23. 5th ed. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003258162-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kelley, Larry D., Kim Bartel Sheehan, Lisa Dobias, David E. Koranda, and Donald W. Jugenheimer. "Dynamics of owned media." In Advertising Media Planning, 24–28. 5th ed. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003258162-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kelley, Larry D., Kim Bartel Sheehan, Lisa Dobias, David E. Koranda, and Donald W. Jugenheimer. "Dynamics of earned media." In Advertising Media Planning, 29–32. 5th ed. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003258162-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verruijt, Arnold. "Dynamics of Porous Media." In An Introduction to Soil Dynamics, 91–112. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3441-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Olver, Peter J. "Dynamics of Planar Media." In Introduction to Partial Differential Equations, 435–501. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02099-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cubitt, Sean. "Media Studies and New Media Studies." In A Companion to New Media Dynamics, 13–32. Oxford, UK: Wiley-Blackwell, 2013. http://dx.doi.org/10.1002/9781118321607.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hartley, John, Jean Burgess, and Axel Bruns. "Introducing Dynamics." In A Companion to New Media Dynamics, 1–11. Oxford, UK: Wiley-Blackwell, 2013. http://dx.doi.org/10.1002/9781118321607.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dulos, E., J. Boissonade, and P. De Kepper. "Excyclon Dynamics." In Nonlinear Wave Processes in Excitable Media, 423–34. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3683-7_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dynamics in media"

1

Kulbida, U. N., O. N. Kaneva, and A. V. Zykina. "Media planning optimization treatment." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saveliev, S. V. "Modeling of dynamic deformation of soil media by vibratory rollers in construction of transport objects." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parlitz, Ulrich. "EXCITABLE MEDIA AND CARDIAC DYNAMICS." In Conferência Brasileira de Dinâmica, Controle e Aplicações. SBMAC, 2011. http://dx.doi.org/10.5540/dincon.2011.001.1.0217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cui, J. "Bubble dynamics in constrained media." In INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nakajo, Sota, Takaaki Shigematsu, Naoya Sakashita, Gozo Tsujimoto, and Kosei Takehara. "120. OSCILLATORY TURBULENT FLOW INSIDE AND AROUND POROUS MEDIA." In Coastal Dynamics 2009 - Impacts of Human Activities on Dynamic Coastal Processes. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814282475_0120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Groppi, M. "Particle transport in inelastically scattering media." In RAREFIED GAS DYNAMICS: 22nd International Symposium. AIP, 2001. http://dx.doi.org/10.1063/1.1407545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

O'Hora, Denis, Sam Redfern, Nicholas Duran, Arkady Zgonnikov, and Daragh Sweeney. "In-Game Motion Dynamics Provide a Means of Exploring the Cognitive Dynamics of Deception." In 2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE, 2018. http://dx.doi.org/10.1109/gem.2018.8516438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhaduri, Swayamdipta, Pankaj Sahu, Siddhartha Das, Aloke Kumar, and Sushanta K. Mitra. "Capillary Imbibition Dynamics in Porous Media." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21120.

Повний текст джерела
Анотація:
The phenomenon of capillary imbibition through porous media is important both due to its applications in several disciplines as well as the involved fundamental flow physics in micro-nanoscales. In the present study, where a simple paper strip plays the role of a porous medium, we observe an extremely interesting and non-intuitive wicking or imbibition dynamics, through which we can separate water and dye particles by allowing the paper strip to come in contact with a dye solution. This result is extremely significant in the context of understanding paper-based microfluidics, and the manner in which the fundamental understanding of the capillary imbibition phenomenon in a porous medium can be used to devise a paper-based microfluidic separator.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tomer, L., D. V. Petrov, J. P. Torres, G. Molina, J. Martorell, R. Vilaseca, and J. M. Soto-Crespo. "Vortex Dynamics in Quadratic Nonlinear Media." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/nlgw.1999.we1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wiersma, Noémi, Nicolas Marsal, Marc Sciamanna, and Delphine Wolfersberger. "Airy-induced dynamics in nonlinear media." In SPIE Photonics Europe, edited by Benjamin J. Eggleton, Neil G. R. Broderick, and Alexander L. Gaeta. SPIE, 2016. http://dx.doi.org/10.1117/12.2227669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Dynamics in media"

1

Akkutlu, I. Yucel, and Yannis C. Yortsos. The dynamics of combustion fronts in porous media. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/756596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

C.C. Maneri and P.F. Vassallo. Dynamics of Bubbles Rising in Finite and Infinite Media. Office of Scientific and Technical Information (OSTI), October 2000. http://dx.doi.org/10.2172/821300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wettlaufer, John S. Freezing in porous media: Phase behavior, dynamics and transport phenomena. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1247131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tang, Hong, Xiankai Sun, and Kingyan Fong. Control of the Dissipation Dynamics of Nanomechanical Resonator in Viscous Media. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada604766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kevrekidis, Yannis G. Expected Dynamics in Complex Media & Stochastic Simulations A Course-Time Steeper. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada419612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cushman, J. H., and Madilyn Fletcher. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/792910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Glenn, Lewis, Ray Harris, John Shelton, Karen Benson, and James Barker. Perforation Dynamics in Geological Media: Project Accomplishments Summary CRADA No. TO-1115-95. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/1410082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cushman, J. H. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/765221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ginn, T. R., D. R. Boone, M. M. Fletcher, D. M. Friedrich, and E. M. Murphy. Dynamics of coupled contaminant and microbial transport in heterogeneous porous media. 1997 annual progress report. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/13693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ginn, T. R., J. H. Cushman, E. M. Murphy, and M. Fletcher. Dynamics of coupled contaminant and microbial transport in heterogeneous porous media. 1998 annual progress report. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/13694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії