Добірка наукової літератури з теми "Dynamical models on networks"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamical models on networks".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dynamical models on networks"
Innocenti, Giacomo, and Paolo Paoletti. "Embedding dynamical networks into distributed models." Communications in Nonlinear Science and Numerical Simulation 24, no. 1-3 (July 2015): 21–39. http://dx.doi.org/10.1016/j.cnsns.2014.12.009.
Повний текст джерелаPiqueira, José R. C., and Felipe Barbosa Cesar. "Dynamical Models for Computer Viruses Propagation." Mathematical Problems in Engineering 2008 (2008): 1–11. http://dx.doi.org/10.1155/2008/940526.
Повний текст джерелаMalyshev, V. A. "Networks and dynamical systems." Advances in Applied Probability 25, no. 01 (March 1993): 140–75. http://dx.doi.org/10.1017/s0001867800025210.
Повний текст джерелаMalyshev, V. A. "Networks and dynamical systems." Advances in Applied Probability 25, no. 1 (March 1993): 140–75. http://dx.doi.org/10.2307/1427500.
Повний текст джерелаHouse, Thomas, and Matt J. Keeling. "Insights from unifying modern approximations to infections on networks." Journal of The Royal Society Interface 8, no. 54 (June 10, 2010): 67–73. http://dx.doi.org/10.1098/rsif.2010.0179.
Повний текст джерелаYeung, Enoch, Jongmin Kim, Ye Yuan, Jorge Gonçalves, and Richard M. Murray. "Data-driven network models for genetic circuits from time-series data with incomplete measurements." Journal of The Royal Society Interface 18, no. 182 (September 2021): 20210413. http://dx.doi.org/10.1098/rsif.2021.0413.
Повний текст джерелаCESSAC, B. "A VIEW OF NEURAL NETWORKS AS DYNAMICAL SYSTEMS." International Journal of Bifurcation and Chaos 20, no. 06 (June 2010): 1585–629. http://dx.doi.org/10.1142/s0218127410026721.
Повний текст джерелаCAO, QI, GUILHERME RAMOS, PAUL BOGDAN, and SÉRGIO PEQUITO. "THE ACTUATION SPECTRUM OF SPATIOTEMPORAL NETWORKS WITH POWER-LAW TIME DEPENDENCIES." Advances in Complex Systems 22, no. 07n08 (November 2019): 1950023. http://dx.doi.org/10.1142/s0219525919500231.
Повний текст джерелаHasani, Ramin, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. "Liquid Time-constant Networks." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (May 18, 2021): 7657–66. http://dx.doi.org/10.1609/aaai.v35i9.16936.
Повний текст джерелаWANG, XIAO FAN. "COMPLEX NETWORKS: TOPOLOGY, DYNAMICS AND SYNCHRONIZATION." International Journal of Bifurcation and Chaos 12, no. 05 (May 2002): 885–916. http://dx.doi.org/10.1142/s0218127402004802.
Повний текст джерелаДисертації з теми "Dynamical models on networks"
Tupikina, Liubov. "Temporal and spatial aspects of correlation networks and dynamical network models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17746.
Повний текст джерелаIn the thesis I studied the complex architectures of networks, the network evolution in time, the interpretation of the networks measures and a particular class of processes taking place on complex networks. Firstly, I derived the measures to characterize temporal networks evolution in order to detect spatial variability patterns in evolving systems. Secondly, I introduced a novel flow-network method to construct networks from flows, that also allows to modify the set-up from purely relying on the velocity field. The flow-network method is developed for correlations of a scalar quantity (temperature, for example), which satisfies advection-diffusion dynamics in the presence of forcing and dissipation. This allows to characterize transport in the fluids, to identify various mixing regimes in the flow and to apply this method to advection-diffusion dynamics, data from climate and other systems, where particles transport plays a crucial role. Thirdly, I developed a novel Heterogeneous Opinion-Status model (HOpS) and analytical technique to study dynamical processes on networks. All in all, methods, derived in the thesis, allow to quantify evolution of various classes of complex systems, to get insight into physical meaning of correlation networks and analytically to analyze processes, taking place on networks.
DI, GANGI Domenico. "Models of dynamical networks with applications to finance." Doctoral thesis, Scuola Normale Superiore, 2022. http://hdl.handle.net/11384/112204.
Повний текст джерелаPreciado, Víctor Manuel. "Spectral analysis for stochastic models of large-scale complex dynamical networks." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45873.
Повний текст джерелаIncludes bibliographical references (p. 179-196).
Research on large-scale complex networks has important applications in diverse systems of current interest, including the Internet, the World-Wide Web, social, biological, and chemical networks. The growing availability of massive databases, computing facilities, and reliable data analysis tools has provided a powerful framework to explore structural properties of such real-world networks. However, one cannot efficiently retrieve and store the exact or full topology for many large-scale networks. As an alternative, several stochastic network models have been proposed that attempt to capture essential characteristics of such complex topologies. Network researchers then use these stochastic models to generate topologies similar to the complex network of interest and use these topologies to test, for example, the behavior of dynamical processes in the network. In general, the topological properties of a network are not directly evident in the behavior of dynamical processes running on it. On the other hand, the eigenvalue spectra of certain matricial representations of the network topology do relate quite directly to the behavior of many dynamical processes of interest, such as random walks, Markov processes, virus/rumor spreading, or synchronization of oscillators in a network. This thesis studies spectral properties of popular stochastic network models proposed in recent years. In particular, we develop several methods to determine or estimate the spectral moments of these models. We also present a variety of techniques to extract relevant spectral information from a finite sequence of spectral moments. A range of numerical examples throughout the thesis confirms the efficacy of our approach. Our ultimate objective is to use such results to understand and predict the behavior of dynamical processes taking place in large-scale networks.
by Víctor Manuel Preciado.
Ph.D.
He, Ping. "Robust synchronization of dynamical networks with delay and uncertainty :synthesis & application." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691044.
Повний текст джерелаNath, Madhurima. "Application of Network Reliability to Analyze Diffusive Processes on Graph Dynamical Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/86841.
Повний текст джерелаPh. D.
The research presented here explores the effects of the structural properties of an interacting system on the outcomes of a diffusive process using Moore-Shannon network reliability. The network reliability is a finite degree polynomial which provides the probability of observing a certain configuration for a diffusive process on networks. Examples of such processes analyzed here are outbreak of an epidemic in a population, spread of an invasive species through international trade of commodities and spread of a perturbation in a physical system with discrete magnetic spins. Network reliability is a novel tool which can be used to compare the efficiency of network models with the observed data, to find important components of the system as well as to estimate the functions of thermodynamic state variables.
McLoone, Seamus Cornelius. "Nonlinear identification using local model networks." Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326349.
Повний текст джерелаGong, Xue. "Dynamical Systems in Cell Division Cycle, Winnerless Competition Models, and Tensor Approximations." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1458303716.
Повний текст джерелаHellmann, Tim. "Stable networks in static and dynamic models of network formation." Hamburg Kovač, 2009. http://d-nb.info/1001547497/04.
Повний текст джерелаLi, Caiwei. "Dynamic scheduling of multiclass queueing networks." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/24339.
Повний текст джерелаSIRI, ENRICO. "Dynamic traffic assignment models for disrupted networks." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1091373.
Повний текст джерелаКниги з теми "Dynamical models on networks"
Traag, Vincent. Algorithms and Dynamical Models for Communities and Reputation in Social Networks. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06391-1.
Повний текст джерелаStavros, Siokos, ed. Financial networks: Statics and dynamics. Berlin: Springer-Verlag, 1997.
Знайти повний текст джерелаMenache, Ishai. Network games: Theory, models, and dynamics. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2011.
Знайти повний текст джерелаA, Arbib Michael, Amari Shun'ichi, and U.S.-Japan Seminar on Competition and Cooperation in Neural Nets (1987 : University of Southern California), eds. Dynamic interactions in neural networks: Models and data. New York: Springer-Verlag, 1989.
Знайти повний текст джерелаG, Chen. Fundamentals of complex networks: Models, structures, and dynamics. Singapore: John Wiley & Sons Inc., 2015.
Знайти повний текст джерелаArbib, Michael A., and Shun-ichi Amari, eds. Dynamic Interactions in Neural Networks: Models and Data. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4536-0.
Повний текст джерелаAldo, Romano, and SpringerLink (Online service), eds. Dynamic Learning Networks: Models and Cases in Action. Boston, MA: Springer-Verlag US, 2009.
Знайти повний текст джерелаM, Harris-Warrick Ronald, ed. Dynamic biological networks: The stomatogastric nervous system. Cambridge, Mass: MIT Press, 1992.
Знайти повний текст джерелаAura, Reggiani, and Nijkamp Peter, eds. Spatial dynamics, networks and modelling. Cheltenham, UK: Edward Elgar, 2006.
Знайти повний текст джерелаH, Gartner Nathan, Improta Gennaro 1942-, and International Seminar on Urban Traffic Networks (2nd : 1992 : Capri, Italy), eds. Urban traffic networks: Dynamic flow modeling and control. Berlin: Springer-Verlag, 1995.
Знайти повний текст джерелаЧастини книг з теми "Dynamical models on networks"
Elhadj, Zeraoulia. "Robust Chaos in Neural Networks Models." In Dynamical Systems, 96–116. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429028939-4.
Повний текст джерелаSporns, Olaf, Giulio Tononi, and Gerald M. Edelman. "Reentry and Dynamical Interactions of Cortical Networks." In Models of Neural Networks, 315–41. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4320-5_9.
Повний текст джерелаMeng, Ziyang, Tao Yang, and Karl H. Johansson. "Networked Dynamical System Models." In Systems & Control: Foundations & Applications, 21–27. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-030-84682-4_3.
Повний текст джерелаBoccara, Nino. "Automata Network Models of Interacting Populations." In Cellular Automata, Dynamical Systems and Neural Networks, 23–77. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1005-3_2.
Повний текст джерелаNagurney, Anna, and Stavros Siokos. "Dynamic Imperfect Market Models." In Financial Networks, 278–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59066-5_10.
Повний текст джерелаNagurney, Anna, and Stavros Siokos. "Dynamic Single Country Models." In Financial Networks, 218–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59066-5_8.
Повний текст джерелаAbou-Jaoudé, Wassim, Jérôme Feret, and Denis Thieffry. "Derivation of Qualitative Dynamical Models from Biochemical Networks." In Computational Methods in Systems Biology, 195–207. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23401-4_17.
Повний текст джерелаAmari, Shun-ichi. "Dynamical Stability of Formation of Cortical Maps." In Dynamic Interactions in Neural Networks: Models and Data, 15–34. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4536-0_2.
Повний текст джерелаKinzel, Wolfgang, and Manfred Opper. "Dynamics of Learning." In Models of Neural Networks, 149–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97171-6_4.
Повний текст джерелаAddison, J. D., and B. G. Heydecker. "Traffic Models for Dynamic Assignment." In Urban Traffic Networks, 213–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79641-8_8.
Повний текст джерелаТези доповідей конференцій з теми "Dynamical models on networks"
Pasa, Luca, Alessandro Sperduti, and Peter Tino. "Linear dynamical based models for sequential domains." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7966122.
Повний текст джерелаBove, Pasquale, Alessio Micheli, Paolo Milazzo, and Marco Podda. "Prediction of Dynamical Properties of Biochemical Pathways with Graph Neural Networks." In 11th International Conference on Bioinformatics Models, Methods and Algorithms. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008964700320043.
Повний текст джерелаOuyang, Zhengyu, and Mingzhou Song. "Statistical Analysis of Discrete Dynamical System Models for Biological Networks." In 2009 International Joint Conference on Bioinformatics, Systems Biology and Intelligent Computing. IEEE, 2009. http://dx.doi.org/10.1109/ijcbs.2009.10.
Повний текст джерелаRevay, Max, Ruigang Wang, and Ian R. Manchester. "Recurrent Equilibrium Networks: Unconstrained Learning of Stable and Robust Dynamical Models." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683054.
Повний текст джерелаWang, Bo, Sergey Nersesov, and Hashem Ashrafiuon. "Formation Control for Underactuated Surface Vessel Networks." In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3178.
Повний текст джерелаChaouiya, Claudine, Aurelien Naldi, Elisabeth Remy, and Denis Thieffry. "Reduction of logical models of regulatory networks yields insight into dynamical properties." In Control (MSC). IEEE, 2010. http://dx.doi.org/10.1109/cca.2010.5611238.
Повний текст джерелаMoriya, Satoshi, Hideaki Yamamoto, Ayumi Hirano-Iwata, Shigeru Kubota, and Shigeo Sato. "Quantitative Analysis of Dynamical Complexity in Cultured Neuronal Network Models for Reservoir Computing Applications." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852207.
Повний текст джерелаYang, Chun-Lin, and C. Steve Suh. "On the Dynamics of Complex Network." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71994.
Повний текст джерелаDan Wang, Xiaolong Qian, and Xiaozheng Jin. "Dynamical evolution of weighted scale-free network models." In 2012 24th Chinese Control and Decision Conference (CCDC). IEEE, 2012. http://dx.doi.org/10.1109/ccdc.2012.6244073.
Повний текст джерелаCrippa, Paolo, Francesco Gianfelici, and Claudio Turchetti. "Information theoretical algorithm based on statistical models for blind identification of nonstationary dynamical systems." In 2009 International Joint Conference on Neural Networks (IJCNN 2009 - Atlanta). IEEE, 2009. http://dx.doi.org/10.1109/ijcnn.2009.5178880.
Повний текст джерелаЗвіти організацій з теми "Dynamical models on networks"
Hirsch, Morris W., Bill Baird, Walter Freeman, and Bernice Gangale. Dynamical Systems, Neural Networks and Cortical Models ASSERT 93. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada295495.
Повний текст джерелаAbarbanel, Henry, and Philip Gill. Parameter Estimation and Model Validation of Nonlinear Dynamical Networks. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1177970.
Повний текст джерелаYu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang, and Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.
Повний текст джерелаSaito, Kazumi. Dynamic Trust Models between Users over Social Networks. Fort Belvoir, VA: Defense Technical Information Center, March 2016. http://dx.doi.org/10.21236/ada636879.
Повний текст джерелаLi, Jing. Various New Statistical Models for Modeling and Change Detection in Multidimensional Dynamic Networks. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada606729.
Повний текст джерелаThai, My. Combating Weapons of Mass Destruction: Models, Complexity, and Algorithms in Complex Dynamic and Evolving Networks. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ada625120.
Повний текст джерелаUtsugi, Akio, and Motoyuki Akamatsu. Analysis of Car-Following Behavior Using Dynamic Probabilistic Models~Identification of Driving Mode Transition Using Dynamic Bayesian Networks. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0241.
Повний текст джерелаEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Повний текст джерелаField, Richard V.,, Hamilton E. Link, Jacek Skryzalin, and Jeremy D. Wendt. A dynamic model for social networks. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1472229.
Повний текст джерелаLiu, Ernest, and Aleh Tsyvinski. Dynamical Structure and Spectral Properties of Input-Output Networks. Cambridge, MA: National Bureau of Economic Research, December 2020. http://dx.doi.org/10.3386/w28178.
Повний текст джерела