Добірка наукової літератури з теми "Dynamical Inverse Problem"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamical Inverse Problem".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dynamical Inverse Problem"
Khan, B. A., S. Chatterjee, S. G. Ali, and B. Talukdar. "Inverse Variational Problem for Nonlinear Dynamical Systems." Acta Physica Polonica A 141, no. 1 (January 2022): 64–73. http://dx.doi.org/10.12693/aphyspola.141.64.
Повний текст джерелаMORASSI, A., G. NAKAMURA, and M. SINI. "An inverse dynamical problem for connected beams." European Journal of Applied Mathematics 16, no. 1 (March 23, 2005): 83–109. http://dx.doi.org/10.1017/s0956792505005826.
Повний текст джерелаAvdonin, S. A., B. P. Belinskiy, and J. V. Matthews. "Dynamical inverse problem on a metric tree." Inverse Problems 27, no. 7 (June 14, 2011): 075011. http://dx.doi.org/10.1088/0266-5611/27/7/075011.
Повний текст джерелаMerritt, David. "The Dynamical Inverse Problem for Axisymmetric Stellar Systems." Astronomical Journal 112 (September 1996): 1085. http://dx.doi.org/10.1086/118080.
Повний текст джерелаBelishev, M. I. "Dynamical inverse problem for a Lamé type system." Journal of Inverse and Ill-posed Problems 14, no. 8 (December 2006): 751–66. http://dx.doi.org/10.1515/156939406779768300.
Повний текст джерелаKharchenko, N. V. "Inverse problem of spectral analysis of conflict dynamical systems." Ukrainian Mathematical Journal 62, no. 1 (August 2010): 123–35. http://dx.doi.org/10.1007/s11253-010-0337-3.
Повний текст джерелаBaev, A. V. "Solution of the inverse dynamical seismic problem with absorption." Computational Mathematics and Modeling 4, no. 2 (1993): 122–24. http://dx.doi.org/10.1007/bf01131204.
Повний текст джерелаFederico, Salvatore, and Mawafag Alhasadi. "Inverse dynamics in rigid body mechanics." Theoretical and Applied Mechanics, no. 00 (2022): 11. http://dx.doi.org/10.2298/tam221109011f.
Повний текст джерелаChu, Moody T., and Gene H. Golub. "Structured inverse eigenvalue problems." Acta Numerica 11 (January 2002): 1–71. http://dx.doi.org/10.1017/s0962492902000016.
Повний текст джерелаMikhaylov, Alexander, and Victor Mikhaylov. "Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems." Journal of Mathematical Analysis and Applications 487, no. 1 (July 2020): 123970. http://dx.doi.org/10.1016/j.jmaa.2020.123970.
Повний текст джерелаДисертації з теми "Dynamical Inverse Problem"
Rachele, Lizabeth. "An inverse problem in elastodynamics /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/5735.
Повний текст джерелаTregidgo, Henry. "Inverse problems and control for lung dynamics." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/inverse-problems-and-control-for-lung-dynamics(0f3224e6-7449-4417-bd2b-8e48ec88e2bf).html.
Повний текст джерелаHellio, Gabrielle. "Modèles stochastiques de mesures archéomagnétiques." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAU004/document.
Повний текст джерелаThe aim of this thesis is to build stochastic models of the magnetic field for the last four millenia from archeomagnetic measurements. The sparse repartition of these data in space and time, and their associated large measurement and dating errors lead to an ill-posed problem. To determine the best solution, one needs to choose some prior information which consists usually on arbitrary regularizations in space and time. Instead, we use the temporal statistics of the geomagnetic field available from satellites, observatories and paleomagnetic measurements, and validated by numerical simulations, to define our prior information via auto-covariance functions. This bayesian method allows to get rid of arbitrary support functions, like splines, usually necessary to interpolate the model in time. The result consists in an ensemble of several possible realizations of the magnetic field. The ensemble dispersion represents the model uncertainties. We find that the methodology can be adapted to account for the age uncertainties and we use Markov Chain Monte Carlo to explore the possible dates of observations. This method improves the bootstrap method which gives the same weight to every draws of dates presenting very disparate probabilities. Each ensemble of realizations is then constructed from each selected model and the result is presented as a probability density function. The bayesian method together with the Markov Chain Monte Carlo provides regional time series with rapid variations compared to previous studies. We find that the possible values of geomagnetic field elements are not necessarily normally distributed. Another output of the model is better age estimates of archeological artefacts. The bayesian method has been used to build global models for which the axial dipole presents more rapid variations than for previous studies. Moreover, the obtained magnetic field displays reasonably similar behavior than models obtained from direct measurements (satellites, observatories, historical), despite very few data and sparser repartition. Models obtained from this study offer an alternative to published regularized models and can be used in a purpose of data assimilation together with dynamical models in the Earth's core
Lebel, David. "Statistical inverse problem in nonlinear high-speed train dynamics." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC2189/document.
Повний текст джерелаThe work presented here deals with the development of a health-state monitoring method for high-speed train suspensions using in-service measurements of the train dynamical response by embedded acceleration sensors. A rolling train is a dynamical system excited by the track-geometry irregularities. The suspension elements play a key role for the ride safety and comfort. The train dynamical response being dependent on the suspensions mechanical characteristics, information about the suspensions state can be inferred from acceleration measurements in the train by embedded sensors. This information about the actual suspensions state would allow for providing a more efficient train maintenance. Mathematically, the proposed monitoring solution consists in solving a statistical inverse problem. It is based on a train-dynamics computational model, and takes into account the model uncertainty and the measurement errors. A Bayesian calibration approach is adopted to identify the probability distribution of the mechanical parameters of the suspension elements from joint measurements of the system input (the track-geometry irregularities) and output (the train dynamical response).Classical Bayesian calibration implies the computation of the likelihood function using the stochastic model of the system output and experimental data. To cope with the fact that each run of the computational model is numerically expensive, and because of the functional nature of the system input and output, a novel Bayesian calibration method using a Gaussian-process surrogate model of the likelihood function is proposed. This thesis presents how such a random surrogate model can be used to estimate the probability distribution of the model parameters. The proposed method allows for taking into account the new type of uncertainty induced by the use of a surrogate model, which is necessary to correctly assess the calibration accuracy. The novel Bayesian calibration method has been tested on the railway application and has achieved conclusive results. Numerical experiments were used for validation. The long-term evolution of the suspension mechanical parameters has been studied using actual measurements of the train dynamical response
Lyubchyk, Leonid, and Galina Grinberg. "Inverse Dynamic Models in Chaotic Systems Identification and Control Problems." Thesis, Ternopil National Economic University, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/36824.
Повний текст джерелаSehlstedt, Niklas. "Hybrid methods for inverse force estimation in structural dynamics." Doctoral thesis, KTH, Vehicle Engineering, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3528.
Повний текст джерелаHerman, Michael [Verfasser], and Wolfram [Akademischer Betreuer] Burgard. "Simultaneous estimation of rewards and dynamics in inverse reinforcement learning problems." Freiburg : Universität, 2020. http://d-nb.info/1204003297/34.
Повний текст джерелаLefeuvre, Thibault. "Sur la rigidité des variétés riemanniennes." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS562/document.
Повний текст джерелаA Riemannian manifold is said to be rigid if the length of periodic geodesics (in the case of a closed manifold) or scattered geodesics (in the case of an open manifold) allows to recover the full geometry of the manifold. This notion naturally arises in imaging devices such as X-ray tomography. Thanks to a analytic framework introduced by Guillarmou and based on microlocal analysis (and more precisely on the analytic study of hyperbolic flows of Faure-Sjostrand and Dyatlov-Zworski), we show that the marked length spectrum, that is the lengths of the periodic geodesics marked by homotopy, of a closed Anosov manifold or of an Anosov manifold with hyperbolic cusps locally determines its metric. In the case of an open manifold with hyperbolic trapped set, we show that the length of the scattered geodesics marked by homotopy locally determines the metric. Eventually, in the case of an asymptotically hyperbolic surface, we show that a suitable notion of renormalized distance between pair of points on the boundary at infinity allows to globally reconstruct the geometry of the surface
Simon, Guillaume. "Endogeneity and instrumental variables in dynamic processes : inverse problems in finance." Thesis, Toulouse 1, 2011. http://www.theses.fr/2011TOU10061.
Повний текст джерелаThe objective of this thesis is to draw the theory of endogeneity in dynamic models in continuous time. Defining endogeneity in the static case is difficult, the aim of this work is to understand what are the implications and what is the mathematical framework to define endogeneity for dynamic processes. This is the subject of the first chapter. We first provide an extension of the separable set-up to a separate dynamic framework given in term of semi-martingale decomposition. Then we define our function of interest as a stopping time for an additional noise process, whose role is played by a Brownian motion for diffusions, and a Poisson process for counting processes. Société Générale Asset Management (now Lyxor AM) has supporter this thesis. SGAM was a financial investment company (Hedge Fund) for statistical study of which Hedge Fund databases was a constant and hard problem. Consequently, understanding the nature of the underlying duration processes of Hedge Funds in databases was a crucial problem. This is the aim of the second chapter. The third chapter brings a clear answer to a rarely tackled question (the casual effect of some precise, endogeneous variables on the funds' lifetimes) thanks to the empirical findings of the second chapter and the results of the first. Finally, as the resolution of such problems needs the inverse problem theory, an original application of this theory is also considered in the last chapter for portfolio allocation
Rivers, Derick Lorenzo. "Dynamic Bayesian Approaches to the Statistical Calibration Problem." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3599.
Повний текст джерелаКниги з теми "Dynamical Inverse Problem"
Gladwell, Graham M. L., and Antonino Morassi, eds. Dynamical Inverse Problems: Theory and Application. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0696-9.
Повний текст джерелаMorassi, Antonino, and G. M. L. Gladwell. Dynamical inverse problems: Theory and application. Wien: Springer, 2011.
Знайти повний текст джерелаMaksimov, V. I. Dynamical inverse problems of distributed systems. Utrecht: VSP, 2002.
Знайти повний текст джерелаTakewaki, Izuru. Dynamic structural design: Inverse problem approach. Southampton: WIT Press, 2000.
Знайти повний текст джерелаS, Osipov I͡U. Inverse problems for ordinary differential equations: Dynamical solutions. Basel, Switzerland: Gordon and Breach, 1995.
Знайти повний текст джерелаEl Hami, Abdelkhalak, and Bouchaib Radi. Dynamics of Large Structures and Inverse Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119332275.
Повний текст джерелаDigas, B. V., and S. I. Tarasova. Control, stability, and inverse problems of dynamics. Moscow: Maik Nauka/Interperiodica Pub., 2006.
Знайти повний текст джерелаPelant, Jaroslav. Inverse problem for two-dimensional flow through cascades. Letnany, Czech Republic: Information Centre for Aeronautics, 1998.
Знайти повний текст джерелаMoreau, Madylam R., and SpringerLink (Online service), eds. Turbulence Nature and the Inverse Problem. Dordrecht: Springer Netherlands, 2009.
Знайти повний текст джерелаPelant, Jaroslav. Inverse problem for two-dimensional flow around a profile. Letnany, Czech Republic: Information Centre for Aeronautics, 1998.
Знайти повний текст джерелаЧастини книг з теми "Dynamical Inverse Problem"
Hartenstein, Hannes, Matthias Ruhl, Dietmar Saupe, and Edward R. Vrscay. "On the Inverse Problem of Fractal Compression." In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, 617–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56589-2_26.
Повний текст джерелаGibbons, John. "The Zabolotskaya-Khokhlov Equation and the Inverse Scattering Problem of Classical Mechanics." In Dynamical Problems in Soliton Systems, 36–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02449-2_6.
Повний текст джерелаPuel, François. "Three Dimensional Equations of Szebehely of the Inverse Problem and Frenet Reference Frame." In Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems, 471–75. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3053-7_43.
Повний текст джерелаEvensen, Geir, Femke C. Vossepoel, and Peter Jan van Leeuwen. "Weak Constraint 4DVar." In Springer Textbooks in Earth Sciences, Geography and Environment, 49–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96709-3_5.
Повний текст джерелаWadati, Miki. "Quantum Inverse Scattering Method." In Dynamical Problems in Soliton Systems, 68–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02449-2_11.
Повний текст джерелаGladwell, Graham M. L. "Matrix Inverse Eigenvalue Problems." In Dynamical Inverse Problems: Theory and Application, 1–28. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0696-9_1.
Повний текст джерелаWunsch, Carl. "Tracer Inverse Problems." In Oceanic Circulation Models: Combining Data and Dynamics, 1–77. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1013-3_1.
Повний текст джерелаKaup, D. J. "Approximations for the Inverse Scattering Transform." In Dynamical Problems in Soliton Systems, 12–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02449-2_3.
Повний текст джерелаPilant, M., and W. Rundell. "Age Structured Population Dynamics." In Inverse Problems and Theoretical Imaging, 122–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75298-8_16.
Повний текст джерелаArneodo, A., G. Grasseau, and M. Holschneider. "Wavelet Transform Analysis of Invariant Measures of Some Dynamical Systems." In inverse problems and theoretical imaging, 182–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75988-8_15.
Повний текст джерелаТези доповідей конференцій з теми "Dynamical Inverse Problem"
Avdonin, Sergei A., Alexander S. Blagoveshchensky, Abdon E. Choque-Rivero, and Victor S. Mikhaylov. "Dynamical inverse problem for two-velocity systems on finite trees." In 2016 Days on Diffraction (DD). IEEE, 2016. http://dx.doi.org/10.1109/dd.2016.7756807.
Повний текст джерелаPàmies-Vilà, Rosa, and Josep M. Font-Llagunes. "Validation of the Inverse Dynamic Analysis of Human Gait Using a Forward Dynamics Approach." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13023.
Повний текст джерелаBottasso, Carlo L., and Alessandro Croce. "Multibody Inverse Dynamics Using an Energy Preserving Direct Transcription Process." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48331.
Повний текст джерелаMandali, Priyanka, and Qiao Sun. "Stable Inversion Using the Assumed-Modes Rayleigh-Ritz Approximation for Tip Tracking of an Elastic Beam." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87794.
Повний текст джерелаCoutel, S., C. H. Lamarque, and S. Pernot. "Identification Method for Both Linear and Piecewise Linear Dynamical Systems." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48625.
Повний текст джерелаDesaix, M., D. Anderson, M. Lisak, and M. L. Quiroga-Teixeiro. "An approximation procedure for the Zakharov-Shabat eigenvalue problem for real single-humped potentials." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlgw.1996.sad.13.
Повний текст джерелаSeifried, Robert, and Markus Burkhardt. "Servo-Constraints for Control of Flexible Multibody Systems With Contact." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12334.
Повний текст джерелаMeghdari, A., S. H. Mahboobi, and A. L. Gaskarimahalle. "Dynamics Modeling of “CEDRA” Rescue Robot on Uneven Terrains." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59239.
Повний текст джерелаBanerjee, Amit, and Issam Abu Mahfouz. "Comparative Study of Evolutionary Algorithms for Parameter Identification of an Impact Oscillator." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38855.
Повний текст джерелаDelaune, Xavier, Philippe Piteau, Vincent Debut, and Jose Antunes. "Experimental Validation of Inverse Techniques for the Remote Identification of Impact Forces in Gap-Supported Systems Subjected to Local and Flow Turbulence Excitations." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-26133.
Повний текст джерелаЗвіти організацій з теми "Dynamical Inverse Problem"
Ablowitz, Mark J., Gregory Beylkin, and Duane P. Sather. Nonlinear Problems in Fluid Dynamics and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada266234.
Повний текст джерелаBanks, H. T. Modeling, Inverse Problems and Feedback Control for Distributed Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, November 2000. http://dx.doi.org/10.21236/ada387505.
Повний текст джерелаAblowitz, Mark J. Nonlinear Problems in Fluid Dynamics and Inverse Scattering: Nonlinear Waves and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada289148.
Повний текст джерелаAblowitz, Mark J. Nonlinear Problems in Fluid Dynamics and Inverse Scattering - Inverse Scattering and Nonlinear Waves. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada299054.
Повний текст джерелаBeylkin, Gregory. Nonlinear Problems in Fluid Dynamics and Inverse Scattering. Propagation and Capturing of Singularities in Problems of Fluid Dynamics and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada282873.
Повний текст джерелаBeylkin, Gregory. Nonlinear Problems in Fluid Dynamics and Inverse Scattering: Propagation and capturing of singularities in problems of fluid dynamics and inverse scattering. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada289146.
Повний текст джерелаBeylkin, Gregory. Nonlinear Problems in Fluid Dynamics and Inverse Scattering: Propagation and Capturing of Singularities in Problems of Fluid Dynamics and Inverse Scattering. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada327352.
Повний текст джерелаRabitz, H. Analysis of forward and inverse problems in chemical dynamics and spectroscopy. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5901969.
Повний текст джерелаRabitz, H. Analysis of forward and inverse problems in chemical dynamics and spectroscopy. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6956545.
Повний текст джерелаSather, Duane P. Nonlinear Problems in Fluid Dynamics and Inverse Scattering: Langmuir Circulations and Spiral Flows. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada289194.
Повний текст джерела