Добірка наукової літератури з теми "Dynamical instabilities"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamical instabilities".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dynamical instabilities"
Fuchs, B., and O. Esquivel. "Can Massive Dark Haloes Destroy the Discs of Dwarf Galaxies?" Proceedings of the International Astronomical Union 3, S244 (June 2007): 336–40. http://dx.doi.org/10.1017/s1743921307014184.
Повний текст джерелаBarnes, Joshua. "Dynamical Instabilities in Spherical Stellar Systems." Symposium - International Astronomical Union 113 (1985): 297–99. http://dx.doi.org/10.1017/s0074180900147461.
Повний текст джерелаMichtchenko, T. A., S. Ferraz-Mello, and C. Beaugé. "Dynamical instabilities in planetary systems." EAS Publications Series 42 (2010): 315–31. http://dx.doi.org/10.1051/eas/1042035.
Повний текст джерелаIvanov, Yu B. "Dynamical instabilities in hadron plasma:." Nuclear Physics A 474, no. 3-4 (November 1987): 693–716. http://dx.doi.org/10.1016/0375-9474(87)90602-6.
Повний текст джерелаWest, Bruce J. "Book review:Synergetics and dynamical instabilities." Journal of Statistical Physics 62, no. 1-2 (January 1991): 493–95. http://dx.doi.org/10.1007/bf01020886.
Повний текст джерелаOrellana, P., F. Claro, E. V. Anda, and E. S. Rodrigues. "Dynamical Instabilities in Resonant Tunneling." physica status solidi (b) 218, no. 1 (March 2000): 303–7. http://dx.doi.org/10.1002/(sici)1521-3951(200003)218:1<303::aid-pssb303>3.0.co;2-f.
Повний текст джерелаBaier, Gerold, Peter Urban, and Klaus Wegmann. "Dynamical Instabilities in a Diffusion Layer." Zeitschrift für Naturforschung A 44, no. 11 (November 1, 1989): 1107–10. http://dx.doi.org/10.1515/zna-1989-1111.
Повний текст джерелаTamayo, D., J. A. Burns, D. P. Hamilton, and P. D. Nicholson. "DYNAMICAL INSTABILITIES IN HIGH-OBLIQUITY SYSTEMS." Astronomical Journal 145, no. 3 (January 18, 2013): 54. http://dx.doi.org/10.1088/0004-6256/145/3/54.
Повний текст джерелаBarnes, J., P. Hut, and J. Goodman. "Dynamical instabilities in spherical stellar systems." Astrophysical Journal 300 (January 1986): 112. http://dx.doi.org/10.1086/163786.
Повний текст джерелаBarnes, Joshua E. "Dynamical Instabilities in Hollow Halo Models." Astrophysical Journal 419 (December 1993): L17. http://dx.doi.org/10.1086/187126.
Повний текст джерелаДисертації з теми "Dynamical instabilities"
Lin, Min-Kai. "Dynamical instabilities in disc-planet interactions." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/245135.
Повний текст джерелаTomadin, Andrea. "Dynamical instabilities in quantum many-body systems." Doctoral thesis, Scuola Normale Superiore, 2010. http://hdl.handle.net/11384/85874.
Повний текст джерелаPersson, Kristin Aslaug. "Thermodynamical and Dynamical Instabilities from Ab initio Electronic-Structure Calculations." Doctoral thesis, KTH, Physics, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3137.
Повний текст джерелаPersson, Kristin. "Thermodynamical and dynamical instabilities from Ab initio electronic-structure calculations /." Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3137.
Повний текст джерелаMadden, Francis. "Dynamical instabilities in a fluid spin-up and in an open flow system." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293436.
Повний текст джерелаRostami, Masoud. "Dynamical influence of diabatic processes upon developing instabilities of Earth and planetary jets and vortices." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066186.
Повний текст джерелаThe thesis is devoted to understanding dynamical influence of diabatic effects, like moist convection, on instabilities of vortices in Earth and planetary atmospheres. A vertically integrated atmospheric model with relaxational parameterisation of phase transitions and related heat release, and with convective fluxes included in mass and momentum equations, the moist-convective rotating shallow water model, was used for this purpose. The previous version of the model was improved to include precipitable water and its vaporisation and entrainment. The approach consists in 1)detailed stability analysis of idealised, or extracted from the data, vortex profiles, 2)study of nonlinear saturation of the instabilities with the help of finite-volume high-resolution numerical code. The main results of the thesis are: 1. Demonstration and quantification of strong influence of moist effects upon instabilities of synoptic vortices, including cyclone-anticyclone asymmetry of mid-latitude vortices of weak intensity, and intensification of tropical-cyclone like vortices with formation of typical cloud patterns. 2. Explanation of the dynamical origin of the Saturn's North Polar hexagon, and of the lack of similar structure at the South Pole, in terms of instability of the coupled polar vortex and circumpolar jet, and their nonlinear saturation.3. Explanation of the observed structure of Mars' winter polar vortex in terms of instability of the latter, and its saturation in the presence of radiative heating/cooling and CO2 deposition (gas-solid phase transition). A new simple parameterisation of the latter process, including the influence of deposition nuclei, was developed in the thesis
Rostami, Masoud. "Dynamical influence of diabatic processes upon developing instabilities of Earth and planetary jets and vortices." Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066186.
Повний текст джерелаThe thesis is devoted to understanding dynamical influence of diabatic effects, like moist convection, on instabilities of vortices in Earth and planetary atmospheres. A vertically integrated atmospheric model with relaxational parameterisation of phase transitions and related heat release, and with convective fluxes included in mass and momentum equations, the moist-convective rotating shallow water model, was used for this purpose. The previous version of the model was improved to include precipitable water and its vaporisation and entrainment. The approach consists in 1)detailed stability analysis of idealised, or extracted from the data, vortex profiles, 2)study of nonlinear saturation of the instabilities with the help of finite-volume high-resolution numerical code. The main results of the thesis are: 1. Demonstration and quantification of strong influence of moist effects upon instabilities of synoptic vortices, including cyclone-anticyclone asymmetry of mid-latitude vortices of weak intensity, and intensification of tropical-cyclone like vortices with formation of typical cloud patterns. 2. Explanation of the dynamical origin of the Saturn's North Polar hexagon, and of the lack of similar structure at the South Pole, in terms of instability of the coupled polar vortex and circumpolar jet, and their nonlinear saturation.3. Explanation of the observed structure of Mars' winter polar vortex in terms of instability of the latter, and its saturation in the presence of radiative heating/cooling and CO2 deposition (gas-solid phase transition). A new simple parameterisation of the latter process, including the influence of deposition nuclei, was developed in the thesis
Dufour, Oscar. "Enhanced agent-based models for pedestrian crowds : insights from empirical data at the Festival of Lights and refinements of mechanical interactions, pedestrian shapes, and decisional aspects." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10338.
Повний текст джерелаWith the surge in mass events, crowd dynamics have become an increasingly important subject of study. Understanding how groups move and evolve in space, particularly at medium and high densities, is crucial for organising such events.The first section of this PhD dissertation presents one of the first field datasets on dense crowds. This dataset includes pedestrian trajectories and meta-information collected during the 2022 Festival of Lights in Lyon as part of the Franco-German MADRAS project. It includes up to 7000 trajectories, GPS data, and contact information. In addition, some rare events have been identified, providing an in-depth description of pedestrian dynamics in complex, real-life scenarios. Subsequently, I develop a theoretical framework for modelling crowd dynamics that integrates a decision-making component, where pedestrians regularly adjust their desired speed, and a mechanical layer that confronts these decisions with the surrounding physical reality. Most existing models fail to faithfully reproduce mechanical interactions, often relying on idealised interaction forces and simplified circular shapes. Drawing inspiration from the scientific literature on grain dynamics, I integrate more realistic mechanical interactions into the Newtonian equations, using damped springs that are tangential and normal to the contact surfaces. I also use anthropometric data to represent the human contour as faithfully as possible, in two dimensions, rather than using simple discs. This allows me to create a synthetic crowd that incorporates individual heterogeneity. Regarding decision-making, pedestrians strive to choose a desired speed while adhering to various metabolic, physical, and psychological constraints, largely supported by empirical data. These constraints include:- A destination constraint which considers the goal of reaching a specific location.- Biomechanical limits related to the muscular and articular capacities of pedestrians.- A cost associated with the misalignment between the body and the desired direction of movement.- A desire to preserve one's social bubble, a zone that individuals wish to keep free of any intrusion, whether from obstacles or neighbouring pedestrians.- An intention to avoid collisions or interpenetration of comfort spaces during movement based on the estimation of time to collision.This comfort space is modelled by a scalar field of discomfort whose contours are not simply circular. The model is implemented in C++ and tested in various scenarios. After validation in simple situations involving pairs of pedestrians or a pedestrian near a wall, I successfully compare the model's predictions with experiments involving the propagation of a push through a row of people, evacuations, and weaving movements between walls and pedestrians.Finally, I investigate collective phenomena that occur not only in crowds but also in vehicular traffic, specifically stop-and-go waves resulting from the growth of dynamical instabilities. To better understand these phenomena, I simulate a car-following model that relies on maintaining a constant time gap with the following vehicle. Although the deterministic version of the model is unconditionally stable, introducing noise intriguingly leads to the emergence of stop-and-go waves. I explain this observation using an analogy with the Kapitza pendulum, which develops a new stationary state under strong vibrations. Specifically, discontinuities in a suitably defined order parameter appear when noise or density exceeds a finite threshold, echoing a liquid-gas transition. This noise may stem from inaccuracies in drivers' and pedestrians' observations, difficulties in brain information processing, or unaccounted interactions. My research on crowd dynamics highlights the importance of integrating decision-making processes with mechanical interactions to deepen our understanding of complex collective behaviours, notably in crowded environments
Cordeiro, Timothy Joseph. "Dynamic instabilities imparted by CubeSat propulsion." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105612.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 120-123).
As the role of CubeSats evolves to include more challenging and complex missions in addition to technology demonstrations, the demand for agility have increased. As the technology improves and gains flight heritage, CubeSats are being deployed to accomplish more difficult missions including, but not limited to, large constellations and missions beyond Low Earth Orbit (LEO). To perform missions like station keeping for constellations, and to move beyond LEO, CubeSat developers are increasingly integrating propulsion into the design of their CubeSats. In addition, more complex payloads and communication systems require more power generation, which leads to larger deployed solar arrays. Meanwhile, the limiting factor for the CubeSat remains the size and weight constraints of the containerized launch deployers. In order to meet these constraints, the solar array design has to trade stiffness and strength for size. In this work, we investigate whether designs that use a combination of propulsion and solar arrays stress the dynamics of the solar panels and the hinges that hold them in place. Our approach uses SimXpert to perform dynamic simulations on CubeSat models, both 3U and 6U, with deployable solar panels and propulsion forces. By default, SimXpert treats every part as a rigid body and stress is not calculated. By doing a modal analysis of the panels in Nastran and importing the results into SimXpert, stress on the panels can be tracked during propulsive maneuvers. We determine that Margin of Safety (MoS) for the solar panels analyzed is over 100 when combined with three different COTS propulsion units. We also show the movement induced on the panels from propulsion can cause errors in body attitude ranging from 0.04 to 90 degrees. The worst case showed a difference becoming one degree in five seconds before growing exponentially to 90 degrees in 30 seconds.
by Timothy Joseph Cordeiro.
S.M.
Nguyen, Thi Thu Tra. "Dynamic instabilities of model granular materials." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSET007/document.
Повний текст джерелаThis thesis reports a laboratory study on the dynamic instabilities of model saturated granular material using a triaxial apparatus. The term instability consists of isotropic collapse and liquefaction under isotropic compression and of stick-slip under triaxial compression in drained condition. The instabilities spontaneously occur at unpredictable effective stress with unexpected buildup of excess pore pressure irrespective of fully drained condition, contrasting with the instability-free behaviour of natural granular materials. In isotropic compression, instantaneous local collapse happens and in triaxial compression, very large and quasi-periodic stick-slip occurs with sudden volumetric compaction and axial contraction. Sometimes, these local failures (collapse and stick-slip) can develop into total liquefaction failure, destroying completely the granular structure. High time-resolved data permit the discovery of a new family of dynamic and static liquefaction. Passive acoustic measurements allow the identification of typical spectral signature. For stick-slip phenomenon, the slip phase with constant duration of stress drop can be interpreted as dynamic consolidation at constant deviatoric stress, limited by a unique boundary inside the critical state line in the effective stress plane. The precise temporal sequence of mechanical measurements excludes the generated pore pressure as the main cause of the instabilities. However, the role of pore pressure is emphasised by consistent quantitative relations between the amplitude of incremental stresses, incremental strains and the ephemeral stabilised excess pore pressure developed during the dynamic event, leading to the quasi-deterministic nature of granular instabilities. These empirical relations are based only on the short-lived maximum vertical acceleration and governed separately by the confining pressure and the initial void ratio. The similarity of pore pressure evolution for different kinds of instability strongly suggests some common speculative triggering mechanisms, probably originated from different rearrangements of the granular micro-structure
Книги з теми "Dynamical instabilities"
Enrique, Tirapegui, Villarroel D, Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas., Universidad Técnica Federico Santa María., and International Workshop on Instabilities and Nonequilibrium Structures (2nd : 1987 : Valparaíso, Chile), eds. Instabilities and nonequilibrium structures II: Dynamical systems and instabilities. Dordrecht: Kluwer Academic Publishers, 1989.
Знайти повний текст джерелаTirapegui, Enrique. Instabilities and Nonequilibrium Structures II: Dynamical Systems and Instabilities. Dordrecht: Springer Netherlands, 1989.
Знайти повний текст джерелаCollet, Pierre. Instabilities and fronts in extended systems. Princeton, N.J: Princeton University Press, 1990.
Знайти повний текст джерелаSergei, Fedotov, and Horsthemke W. (Werner) 1950-, eds. Reaction-transport systems: Mesoscopic foundations, fronts, and spatial instabilities. Heidelberg: Springer, 2010.
Знайти повний текст джерелаCharru, François. Hydrodynamic instabilities. Cambridge: Cambridge University Press, 2011.
Знайти повний текст джерела1925-, Knopoff Leon, Keĭlis-Borok Vladimir Isaakovich, and Puppi G, eds. Instabilities in continuous media. Basel: Birkhäuser, 1985.
Знайти повний текст джерелаEnrique, Tirapegui, Villarroel D, and International Workshop on Instabilities and Nonequilibrium Structures (1st : 1985 : Universidad Técnica Federico Santa María), eds. Instabilities and nonequilibrium structures. Dordrecht: D. Reidel Pub. Co., 1987.
Знайти повний текст джерелаEckelmann, Helmut, J. Michael R. Graham, Patrick Huerre, and Peter A. Monkewitz, eds. Bluff-Body Wakes, Dynamics and Instabilities. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-00414-2.
Повний текст джерелаIUTAM, Symposium (1992 Göttingen Germany). Bluff-body wakes, dynamics and instabilities. Berlin: Springer-Verlag, 1993.
Знайти повний текст джерелаEnrique, Tirapegui, and Zeller Walter, eds. Instabilities and nonequilibrium structures IV. Dordrecht: Kluwer Academic Publishers, 1993.
Знайти повний текст джерелаЧастини книг з теми "Dynamical instabilities"
Kiss, István Z., Timea Nagy, and Vilmos Gáspár. "Dynamical Instabilities in Electrochemical Processes." In Solid State Electrochemistry II, 125–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635566.ch4.
Повний текст джерелаMagnani, Loris, and Steven N. Shore. "Dynamical Considerations: Instabilities and Turbulence." In Astrophysics and Space Science Library, 267–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54350-4_11.
Повний текст джерелаWalgraef, D. "Flow Field Effects on Dynamical Instabilities." In Instabilities and Nonequilibrium Structures II, 269–83. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2305-8_21.
Повний текст джерелаMiguel, M. San, E. Hernández-García, P. Colet, M. O. CáCeres, and F. de Pasquale. "Passage Time Description of Dynamical Processes." In Instabilities and Nonequilibrium Structures III, 143–55. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3442-2_13.
Повний текст джерелаBarnes, Joshua. "Dynamical Instabilities in Spherical Stellar Systems." In Dynamics of Star Clusters, 297–99. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5335-2_30.
Повний текст джерелаGraham, R. "Weak Noise Limit and Nonequilibrium Potentials of Dissipative Dynamical Systems." In Instabilities and Nonequilibrium Structures, 271–90. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3783-3_12.
Повний текст джерелаGrimvall, Göran. "Dynamical Lattice Instabilities in Alloy Phase Diagrams." In Properties of Complex Inorganic Solids 2, 473–78. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1205-9_35.
Повний текст джерелаWilliamson, C. H. K., T. Leweke, and G. D. Miller. "Wing Wake Vortices and Temporal Vortex Pair Instabilities." In Fluid Mechanics and the Environment: Dynamical Approaches, 379–400. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44512-9_20.
Повний текст джерелаFerrari, P. A., S. Martinez, and P. Picco. "Some Properties of Quasi Stationary Distributions in the Birth and Death Chains: A Dynamical Approach." In Instabilities and Nonequilibrium Structures III, 177–87. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3442-2_16.
Повний текст джерелаBourlioux, A., A. Majda, and V. Roytburd. "Nonlinear Development of Low Frequency One-Dimensional Instabilities for Reacting Shock Waves." In Dynamical Issues in Combustion Theory, 63–82. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0947-8_3.
Повний текст джерелаТези доповідей конференцій з теми "Dynamical instabilities"
Burrello, Stefano, Maria Colonna, Francesco Matera, and Rui Wang. "Consistent description of mean-field instabilities and clustering phenomena within a unified dynamical approach." In 10th International Conference on Quarks and Nuclear Physics, 179. Trieste, Italy: Sissa Medialab, 2025. https://doi.org/10.22323/1.465.0179.
Повний текст джерелаHaken, H. "The adiabatic elimination principle in dynamical theories." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.the1.
Повний текст джерелаRosenberger, A. T., L. A. Orozco, and H. J. Kimble. "Instrinsic Dynamical Instability in Optical Bistability with Two-Level Atoms." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wa2.
Повний текст джерелаFressengeas, Claude, Satya VARADHAN, and Armand J. BEAUDOIN. "Coupling the dynamical behavior of compatible/incompatible dislocation distributions." In International conference on Statistical Mechanics of Plasticity and Related Instabilities. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.023.0004.
Повний текст джерелаGraham, R. "Quantized Chaotic Systems." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.thc1.
Повний текст джерелаNhu, Viet-Hung, Mathieu Renouf, Francesco Massi, and Aurélien Saulot. "Wear particles: Influence on local stress and dynamical instabilities." In POWDERS AND GRAINS 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media. AIP, 2013. http://dx.doi.org/10.1063/1.4812061.
Повний текст джерелаKouomou, Y. Chembo, Laurent Larger, Herve Tavernier, Ryad Bendoula, Pere Colet, and Enrico Rubiola. "Dynamical instabilities in opto-electronic ultra-pure microwave generators." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386142.
Повний текст джерелаCasati, Giulio. "Overview Of Classical And Quantum Hamiltonian Chaos." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wb1.
Повний текст джерелаNew, G. H. C., and J. M. Catherall. "Perturbations and Instabilities in Laser Mode-Locking Dynamics." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.fc1.
Повний текст джерелаPare, C., M. Piche, and P. A. Belanger. "Instabilities of Self-Pumped Phase-Conjugate Laser." In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wd29.
Повний текст джерелаЗвіти організацій з теми "Dynamical instabilities"
Harrison, Robert G. Dynamical Instabilities, Chaos And Spatial Complexity In Fundamental Nonlinear Optical Interactions. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada291223.
Повний текст джерелаStroud, Jr, and Carlos R. Optoelectronic Workshops. Dynamical Instabilities in Homogeneously Broadened Lasers (9th) (23 August 1988). Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada213482.
Повний текст джерелаWilliamson, Charles H. Vortex-Surface Interactions: Vortex Dynamics and Instabilities. Fort Belvoir, VA: Defense Technical Information Center, October 2015. http://dx.doi.org/10.21236/ada627306.
Повний текст джерелаSpong, D. A., K. C. Shaing, B. A. Carreras, J. D. Callen, and L. Garcia. Nonlinear dynamics of single-helicity neoclassical MHD tearing instabilities. Office of Scientific and Technical Information (OSTI), October 1988. http://dx.doi.org/10.2172/7079859.
Повний текст джерелаLiu, Joseph T. C. Vortex Shedding and Vortex Wakes: Dynamics, Instabilities and Modifications,. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada298840.
Повний текст джерелаTajima, T., W. Horton, P. Morrison, J. Schutkeker, T. Kamimura, K. Mima, and Y. Abe. Instabilities and vortex dynamics in shear flow of magnetized plasmas. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7055389.
Повний текст джерелаSymonds, P. S. Dynamic Plastic Instabilities in Nonlinear Inelastic Response to Pulse Loading. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada244486.
Повний текст джерелаBlinov, Sergey, Nathan Mackey, Ari Le, and Adam Stanier. Dynamics and Instabilities of a Plasma Blob in Curved Magnetic Geometries. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1883106.
Повний текст джерелаHassanein, A., and I. Konkashbaev. Dynamic behavior of plasma-facing materials during plasma instabilities in tokamak reactors. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/563287.
Повний текст джерелаBountis, T., and S. Tompaidis. Strong and weak instabilities in a 4-D mapping model of accelerator dynamics. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6944120.
Повний текст джерела