Добірка наукової літератури з теми "Dynamical Correlation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamical Correlation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dynamical Correlation"

1

Handy, Nicholas C., and Aron J. Cohen. "A dynamical correlation functional." Journal of Chemical Physics 116, no. 13 (April 2002): 5411–18. http://dx.doi.org/10.1063/1.1457432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mok, Daniel K. W., Ralf Neumann, and Nicholas C. Handy. "Dynamical and Nondynamical Correlation." Journal of Physical Chemistry 100, no. 15 (January 1996): 6225–30. http://dx.doi.org/10.1021/jp9528020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anishchenko, V. S., T. E. Vadivasova, G. A. Okrokvertskhov, and G. I. Strelkova. "Correlation analysis of dynamical chaos." Physica A: Statistical Mechanics and its Applications 325, no. 1-2 (July 2003): 199–212. http://dx.doi.org/10.1016/s0378-4371(03)00199-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hotta, Takashi, and Yasutami Takada. "Dynamical localization and electron correlation." Czechoslovak Journal of Physics 46, S5 (May 1996): 2625–26. http://dx.doi.org/10.1007/bf02570299.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dubin, Joel A., and Hans-Georg Müller. "Dynamical Correlation for Multivariate Longitudinal Data." Journal of the American Statistical Association 100, no. 471 (September 2005): 872–81. http://dx.doi.org/10.1198/016214504000001989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kalman, G., K. Kempa, and M. Minella. "Dynamical correlation effects in alkali metals." Physical Review B 43, no. 17 (June 15, 1991): 14238–40. http://dx.doi.org/10.1103/physrevb.43.14238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Evangelisti, Stefano, Thierry Leininger, and Daniel Maynau. "A local approach to dynamical correlation." Journal of Molecular Structure: THEOCHEM 580, no. 1-3 (March 2002): 39–46. http://dx.doi.org/10.1016/s0166-1280(01)00593-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Becker, K. W., and W. Brenig. "Cumulant approach to dynamical correlation functions." Zeitschrift f�r Physik B Condensed Matter 79, no. 2 (June 1990): 195–201. http://dx.doi.org/10.1007/bf01406585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Valderrama, E., J. M. Mercero, and J. M. Ugalde. "The separation of the dynamical and non-dynamical electron correlation effects." Journal of Physics B: Atomic, Molecular and Optical Physics 34, no. 3 (January 18, 2001): 275–83. http://dx.doi.org/10.1088/0953-4075/34/3/306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ramachandran, B. "Scaling Dynamical Correlation Energy from Density Functional Theory Correlation Functionals†." Journal of Physical Chemistry A 110, no. 2 (January 2006): 396–403. http://dx.doi.org/10.1021/jp050584x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Dynamical Correlation"

1

Kobayashi, Miki U. "Determination of dynamical correlation functions in chaotic systems." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guzzo, Matteo. "Dynamical correlation in solids : a perspective in photoelectron spectroscopy." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00784815.

Повний текст джерела
Анотація:
My thesis fits into the domain of theoretical spectroscopy. This term describes a set of theoretical approaches that go hand-in-hand with several experimental techniques such as optical absorption and reflectivity, inelastic X-ray scattering (IXS), electron energy-loss spectroscopy (EELS) and photoelectron (or photoemission) spectroscopy. This set of ab-initio theories is used to simulate, study, predict and understand what is and will be seen in experiment. These spectroscopies are all connected to the dielectric function ε(ω ) of an electronic system which is, in fact, a fundamental quantity in many modern electronic structure theories. In particular I focused my research on photoemission spectroscopy, where the dielectric function enters as the screening of the hole due to the system. During my thesis I have worked on the development of new theoretical approaches, the aim of my project being to go beyond state-of-the-art methods used in electronic structure calculations. These methods stem mainly from two larger theoretical frameworks: Time-Dependent Density-functional Theory (TDDFT) and Green's function theory -- also known as Many-Body Perturbation Theory (MBPT). I carried on the theoretical development in parallel with numerical simulations on real materials and with experimental measurements, performed to verify the reliability of theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tupikina, Liubov. "Temporal and spatial aspects of correlation networks and dynamical network models." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17746.

Повний текст джерела
Анотація:
In der vorliegenden Arbeit untersuchte ich die komplexen Strukturen von Netzwerken, deren zeitliche Entwicklung, die Interpretationen von verschieden Netzwerk-Massen und die Klassen der Prozesse darauf. Als Erstes leitete ich Masse für die Charakterisierung der zeitlichen Entwicklung der Netzwerke her, um räumlich Veränderungsmuster zu erkennen. Als Nächstes führe ich eine neue Methode zur Konstruktion komplexer Netzwerke von Flussfeldern ein, bei welcher man das Set-up auch rein unter Berufung Berufung auf das Geschwindigkeitsfeld ändern kann. Diese Verfahren wurden für die Korrelationen skalarer Grössen, z. B. Temperatur, entwickelt, welche eine Advektions-Diffusions-Dynamik in der Gegenwart von Zwingen und Dissipation. Die Flussnetzwerk-Methode zur Zeitreihenanalyse konstruiert die Korrelationsmatrizen und komplexen Netzwerke. Dies ermöglicht die Charakterisierung von Transport in Flüssigkeiten, die Identifikation verschiedene Misch-Regimes in dem Fluss und die Anwendung auf die Advektions-DiffusionsDynamik, Klimadaten und anderen Systemen, in denen Teilchentransport eine entscheidende Rolle spielen. Als Letztes, entwickelte ich ein neuartiges Heterogener Opinion Status Modell (HOpS) und Analysetechnik basiert auf Random Walks und Netzwerktopologie Theorien, um dynamischen Prozesse in Netzwerken zu studieren, wie die Verbreitung von Meinungen in sozialen Netzwerken oder Krankheiten in der Gesellschaft. Ein neues Modell heterogener Verbreitung auf einem Netzwerk wird als Beispielssystem für HOpS verwendent, um die vergleichsweise Einfachheit zu nutzen. Die Analyse eines diskreten Phasenraums des HOPS-Modells hat überraschende Eigenschaften, welches sensibel auf die Netzwerktopologie reagieren. Sie können verallgemeinert werden, um verschiedene Klassen von komplexen Netzwerken zu quantifizieren, Transportphänomene zu charakterisieren und verschiedene Zeitreihen zu analysieren.
In the thesis I studied the complex architectures of networks, the network evolution in time, the interpretation of the networks measures and a particular class of processes taking place on complex networks. Firstly, I derived the measures to characterize temporal networks evolution in order to detect spatial variability patterns in evolving systems. Secondly, I introduced a novel flow-network method to construct networks from flows, that also allows to modify the set-up from purely relying on the velocity field. The flow-network method is developed for correlations of a scalar quantity (temperature, for example), which satisfies advection-diffusion dynamics in the presence of forcing and dissipation. This allows to characterize transport in the fluids, to identify various mixing regimes in the flow and to apply this method to advection-diffusion dynamics, data from climate and other systems, where particles transport plays a crucial role. Thirdly, I developed a novel Heterogeneous Opinion-Status model (HOpS) and analytical technique to study dynamical processes on networks. All in all, methods, derived in the thesis, allow to quantify evolution of various classes of complex systems, to get insight into physical meaning of correlation networks and analytically to analyze processes, taking place on networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vanzini, Marco. "Auxiliary systems for observables : dynamical local connector approximation for electron addition and removal spectra." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX012/document.

Повний текст джерела
Анотація:
Cette thèse propose une méthode théorique innovante pour l'étude des spectres d'excitation à un électron, mesurée par spectroscopie de photoémission directe et inverse.La plupart des calculs actuels au niveau de l’état de l’art reposent sur des fonctions de Green à plusieurs corps et des self-énergies complexes et non locales, évaluées spécifiquement pour chaque matériau. Même lorsque les spectres calculés sont en très bon accord avec les expériences, le coût de calcul est très important. La raison est que la méthode elle-même n'est pas efficace, car elle fournit beaucoup d'informations superflues qui ne sont pas nécessaires pour l'interprétation des données expérimentales.Dans cette thèse, nous proposons deux raccourcis par rapport à la méthode standard. Le premier est l'introduction d'un système auxiliaire qui cible, en principe, le spectre d'excitation du système réel. L'exemple type est la théorie de la fonctionnelle de la densité, pour lequel le système auxiliaire est le système de Kohn-Sham : elle reproduit exactement la densité du système réel par l'intermédiaire d'un potentiel réel et statique, le potentiel de Kohn-Sham. La théorie de la fonctionnelle de la densité est, cependant, une théorie de l'état fondamental, qui ne fournit que rarement des propriétés d'état excités : un exemple est le fameux problème de la sous-estimation de la bande interdite. Le potentiel que nous proposons (le potentiel spectral), local et dépendant de la fréquence, mais réelle, peut être considéré comme une généralisation dynamique du potentiel de Kohn-Sham qui donne en principe le spectre exact.Le deuxième raccourci est l'idée de calculer ce potentiel une fois pour toute dans un système modèle, le gaz d'électrons homogène, et de le tabuler. Pour étudier des matériaux réels, nous concevons un connecteur qui prescrit l'utilisation des résultats du gaz pour calculer les spectres électroniques.La première partie de la thèse traite de l'idée de systèmes auxiliaires, montrant le cadre général dans lequel ils peuvent être introduits et les équations qu'ils doivent satisfaire. Nous utilisons des modèles de Hubbard solubles exactement pour mieux comprendre le rôle du potentiel spectral ; en particulier, il est démontré que le potentiel peut être défini uniquement chaque fois que le spectre est non nul, et donne toujours les spectres attendus, même lorsque la partie imaginaire ou les contributions non locales de la self-énergie jouent un rôle de premier plan.Dans la deuxième partie de la thèse, nous nous concentrons sur les calculs pour les systèmes réels. Nous évaluons d'abord le potentiel spectral dans le gaz d'électrons homogène, puis l'importons dans le système auxiliaire pour évaluer le spectre d'excitation. Toute l’interdependence non triviale entre l'interaction électronique et l'inhomogénéité du système réel entre dans la forme du connecteur. Trouver une expression pour cela est le véritable défi de la procédure. Nous proposons une approximation raisonnable basée sur les propriétés locales du système, que nous appelons approximation du connecteur dynamique local.Nous mettons en œuvre cette procédure pour quatre prototypes de matériaux différents : le sodium, un métal presque homogène ; l'aluminium, encore un métal mais moins homogène ; le silicium, un semi-conducteur ; l'argon, un isolant inhomogène. Les spectres que nous obtenons avec cette approche concordent de manière impressionnante avec ceux qui sont évalués via la self-énergie, très coûteuse en temps de calcul, démontrant ainsi le potentiel de cette théorie
This thesis proposes an innovative theoretical method for studying one-electron excitation spectra, as measured in photoemission and inverse photoemission spectroscopy.The current state-of-the-art realistic calculations rely usually on many-body Green’s functions and complex, non-local self energies, evaluated specifically for each material. Even when the calculated spectra are in very good agreement with experiments, the computational cost is very large. The reason is that the method itself is not efficient, as it yields much superfluous information that is not needed for the interpretation of experimental data.In this thesis we propose two shortcuts to the standard method. The first one is the introduction of an auxiliary system that exactly targets, in principle, the excitation spectrum of the real system. The prototypical example is density functional theory, in which the auxiliary system is the Kohn-Sham system: it exactly reproduces the density of the real system via a real and static potential, the Kohn-Sham potential. Density functional theory is, however, a ground state theory, which hardly yields excited state properties: an example is the famous band-gap problem. The potential we propose (the spectral potential), local and frequency-dependent, yet real, can be viewed as a dynamical generalisation of the Kohn-Sham potential which yields in principle the exact spectrum.The second shortcut is the idea of calculating this potential just once and forever in a model system, the homogeneous electron gas, and tabulating it. To study real materials, we design a connector which prescribes the use of the gas results for calculating electronic spectra.The first part of the thesis deals with the idea of auxiliary systems, showing the general framework in which they can be introduced and the equations they have to fulfill. We then use exactly-solvable Hubbard models to gain insight into the role of the spectral potential; in particular, it is shown that a meaningful potential can be defined wherever the spectrum is non-zero, and that it always yields the expected spectra, even when the imaginary or the non-local parts of the self energy play a prominent role.In the second part of the thesis, we focus on calculations for real systems. We first evaluate the spectral potential in the homogeneous electron gas, and then import it in the auxiliary system to evaluate the excitation spectrum. All the non-trivial interplay between electron interaction and inhomogeneity of the real system enters the form of the connector. Finding an expression for it is the real challenge of the procedure. We propose a reasonable approximation for it, based on local properties of the system, which we call dynamical local connector approximation.We implement this procedure for four different prototypical materials: sodium, an almost homogeneous metal; aluminum, still a metal but less homogeneous; silicon, a semiconductor; argon, an inhomogeneous insulator. The spectra we obtain with our approach agree to an impressive extent with the ones evaluated via the computationally expensive self energy, demonstrating the potential of this theory
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hagy, Matthew Canby. "Dynamical simulation of structured colloidal particles." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50328.

Повний текст джерела
Анотація:
In this thesis, computer simulations are used to study the properties of new colloidal systems with structured interactions. These are pair interactions that include both attraction and repulsion. Structured colloids differ from conventional colloids in which the interactions between particles are either strictly attractive or strictly repulsive. It is anticipated that these novel interactions will give rise to new microscopic structure and dynamics and therefore new material properties. Three classes of structured interactions are considered: radially structured interactions with an energetic barrier to pair association, Janus surface patterns with two hemispheres of different surface charge, and striped surface patterns. New models are developed to capture the structured interactions of these novel colloid systems. Dynamical computer simulations of these models are performed to quantify the effects of structured interactions on colloid properties. The results show that structured interactions can lead to unexpected particle ordering and novel dynamics. For Janus and striped particles, the particle order can be captured with simpler isotropic coarse-grained models. This relates the static properties of these new colloids to conventional isotropically attractive colloids (e.g. depletion attracting colloids). In contrast, Janus and striped particles are found to have substantially slower dynamics than isotropically attractive colloids. This is explained by the observation of longer-duration reversible bonds between pairs of structured particles. Dynamical mapping methods are explored to relates the dynamics of these structured colloids to isotropically attractive colloids. These methods could also facilitate future nonequilibrium simulation of structured colloids with computationally efficient coarse-grained models.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thunström, Patrik. "Correlated Electronic Structure of Materials : Development and Application of Dynamical Mean Field Theory." Doctoral thesis, Uppsala universitet, Materialteori, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-173300.

Повний текст джерела
Анотація:
This thesis is dedicated to the development, implementation and application of a combination of Density Functional Theory and Dynamical Mean Field Theory. The resulting program is shown through several examples to be a powerful and flexible tool for calculating the electronic structure of strongly correlated materials. The main part of this work is focused on the development and implementation of three methods for solving the effective impurity model arising in the Dynamical Mean Field Theory: Hubbard-I approximation (HIA), Exact Diagonalization (ED), and Spin-Polarized T-matrix Fluctuation-exchange (SPTF). The Hubbard-I approximation is limited to systems where the hybridization between the 4f-orbitals and the rest of the material can be completely neglected, and can therefore not capture any Kondo physics. It has been used to study the atomic-like multiplet spectrum of the strongly localized 4f-electrons in the Lanthanide compounds YbInCu4, YbB12, Yb2Pd2Sn, YbPd2Sn, SmB6, SmSn3, and SmCo5. The calculated spectral properties are shown to be in excellent agreement with experimental direct and inverse photoemission data, clearly affirming the applicability of the Hubbard-I approximation for this class of systems if we are not focusing on Kondo physics. Full self-consistence in both self-energy and electron density is shown to be of key importance in the extraction of the magnetic properties of the hard permanent magnet SmCo5. The Exact Diagonalization solver is implemented as an extension of the Hubbard-I approximation. It takes into account a significant part of the hybridization between the correlated atom and the host through the use of a few effective bath orbitals. This approach has been applied to the long-standing problem of the electronic structure of NiO, CoO, FeO, and MnO. The resulting spectral densities are favorably compared to photoemission spectroscopy. Apart from predicting the correct spectral properties, the Exact Diagonalization solver also provides full access to the many-body density operator. This feature is used to make an in-depth investigation of the correlations in the electronic structure, and two measures of the quantum entanglement of the many-body ground-states are presented. It is shown that CoO possesses the most intricate entanglement properties, due to a competition between crystal field effects and Coulomb interaction, and such a mechanism likely carries over to several classes of correlated electron systems. The Exact Diagonalization solver has also been applied to the prototypical dilute magnetic semiconductor Mn doped GaAs, a material of great importance in the study of future spintronics applications. The problem of Fe impurities in Cs has been used to study the dependence of the spectral properties on the local environment. Finally, the Spin-polarized T-matrix Fluctuation-exchange solver has been implemented and applied to more delocalized electron systems where the effective impurity problem can be solved as a perturbation with respect to the strength of the local Coulomb interaction. This approach has been used to study the magnetic and spectral properties of the late transition metals, Fe, Co and Ni, and NiS.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Avila, Karina E. "Dynamical Heterogeneity in Granular Fluids and Structural Glasses." Ohio University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1389072160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lacevic, Naida. "Dynamical heterogeneity in simulated glass-forming liquids studied via a four-point spatiotemporal density correlation function." Available to US Hopkins community, 2003. http://wwwlib.umi.com/dissertations/dlnow/3080704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lott, Geoffrey Adam 1980. "Probing local conformation and dynamics of molecular complexes using phase-selective fluorescence correlation and coherence spectroscopy." Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10914.

Повний текст джерела
Анотація:
xv, 177 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
When two or more fluorescent chromophores are closely spaced in a macromolecular complex, dipolar coupling leads to delocalization of the excited states, forming excitons. The relative transition frequencies and magnitudes are sensitive to conformation, which can then be studied with optical spectroscopy. Non-invasive fluorescence spectroscopy techniques are useful tools for the study of dilute concentrations of such naturally fluorescent or fluorescently labeled biological systems. This dissertation presents two phase-selective fluorescence spectroscopy techniques for the study of dynamical processes in bio-molecular systems across a wide range of timescales. Polarization-modulated Fourier imaging correlation spectroscopy (PM-FICS) is a novel phase-selective fluorescence spectroscopy for simultaneous study of translational and conformational dynamics. We utilize modulated polarization and intensity gratings with phase-sensitive signal collection to monitor the collective fluctuations of an ensemble of fluorescent molecules. The translational and conformational dynamics can be separated and analyzed separately to generate 2D spectral densities and joint probability distributions. We present results of PM-FICS experiments on DsRed, a fluorescent protein complex. Detailed information on thermally driven dipole-coupled optical switching pathways is found, for which we propose a conformation transition mechanism. 2D phase-modulation electronic coherence spectroscopy is a third-order nonlinear spectroscopy that uses collinear pulse geometry and acousto-optic phase modulation to isolate rephasing and nonrephasing contributions to the collected fluorescence signal. We generate 2D spectra, from which we are able to determine relative dipole orientations, and therefore structural conformation, in addition to detailed coupling information. We present results of experiments on magnesium tetraphenylporphyrin dimers in lipid vesicle bilayers. The 2D spectra show clearly resolved diagonal and off-diagonal features, evidence of exciton behavior. The amplitudes of the distinct spectral features change on a femtosecond timescale, revealing information on time-dependent energy transfer dynamics. This dissertation includes co-authored and previously published material.
Committee in charge: Hailin Wang, Chairperson, Physics; Andrew Marcus, Advisor, Chemistry; Stephen Gregory, Member, Physics; Michael Raymer, Member, Physics; Marina Guenza, Outside Member, Chemistry
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tupikina, Liubov [Verfasser], Jürgen [Gutachter] Kurths, Lutz [Gutachter] Schimansky-Geier, and Sergei [Gutachter] Nechaev. "Temporal and spatial aspects of correlation networks and dynamical network models : analytical approaches and physical applications / Liubov Tupikina ; Gutachter: Jürgen Kurths, Lutz Schimansky-Geier, Sergei Nechaev." Berlin : Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://d-nb.info/1130698483/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dynamical Correlation"

1

Bakunin, Oleg G. Chaotic Flows: Correlation effects and coherent structures. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

S, Sarkar, Gatski T. B, and Langley Research Center, eds. Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Speziale, Charles G. Modeling the pressure-strain correlation of turbulence - an invariant dynamical systems approach. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

S, Sarkar, Gatski T. B, and Langley Research Center, eds. Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

H, McGuire J. Electron correlation dynamics in atomic collisions. Cambridge: Cambridge University Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sarkar, Shondeep L. Modeling the pressure-dilation correlation. Hampton, Va: National Aeronautics and Space Administration Langley Research Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Center, Langley Research, ed. Modeling the pressure-dilation correlation. Hampton, Va: National Aeronautics and Space Administration Langley Research Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Condensed matter physics: Dynamic correlations. 2nd ed. Menlo Park, Calif: Benjamin/Cummings, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

1938-, Pecora Robert, ed. Dynamic light scattering: Applications of photon correlation spectroscopy. New York: Plenum Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rick, Lind, Brenner Martin J, and United States. National Aeronautics and Space Administration., eds. Correlation filtering of modal dynamics using the Laplace wavelet. [Washington, DC: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dynamical Correlation"

1

Dyadyusha, G. G., and I. V. Repyakh. "Dynamical Correlation in Finite Polymethine Chains." In Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors, 100–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76753-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pulay, Péter, and Svein Saebø. "Strategies of Gradient Evaluation for Dynamical Electron Correlation." In Geometrical Derivatives of Energy Surfaces and Molecular Properties, 95–107. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4584-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Turkowski, Volodymyr. "DMFT Exchange–Correlation Potentials for Static DFT." In Dynamical Mean-Field Theory for Strongly Correlated Materials, 341–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64904-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sasaki, Kazuo. "Correlation Functions of the Non-Ideal Gas of Sine-Gordon Solitons." In Dynamical Problems in Soliton Systems, 122–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02449-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Blom, Kristian. "Global Speed Limit for Finite-Time Dynamical Phase Transition in Nonequilibrium Relaxation." In Pair-Correlation Effects in Many-Body Systems, 131–62. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-29612-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Turkowski, Volodymyr. "DMFT Exchange-Correlation Potentials for Time-Dependent DFT." In Dynamical Mean-Field Theory for Strongly Correlated Materials, 355–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64904-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gallo, Paola, and Mauro Rovere. "Dynamical Correlation Functions and Linear Response Theory for Fluids." In Physics of Liquid Matter, 195–219. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68349-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhou, Xiaokang, and Qun Jin. "User Correlation Discovery and Dynamical Profiling Based on Social Streams." In Active Media Technology, 53–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35236-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhou, Xiaokang, Jian Chen, Qun Jin, and Timothy K. Shih. "Learning Activity Sharing and Individualized Recommendation Based on Dynamical Correlation Discovery." In Advances in Web-Based Learning - ICWL 2012, 200–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33642-3_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hanke, W. "Dynamical Correlation Effects on the Quasi-Particle Bloch States of a Semiconductor." In Proceedings of the 17th International Conference on the Physics of Semiconductors, 1005–8. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dynamical Correlation"

1

Watanabe, Y., T. Yuasa, B. Devaraj, and T. Akatsuka. "Tomographic imaging of dynamical characteristics in highly scattering media with heterodyne detection." In Photon Correlation and Scattering. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/pcs.2000.tuc4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Suzuki, Yoko. "Dynamical stokes shift observed by two-dimensional Raman spectroscopy." In International symposium on two-dimensional correlation spectroscopy. AIP, 2000. http://dx.doi.org/10.1063/1.1302889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martin, James E. "Application of Dynamic Light Scattering to Aggregation and Gelation." In Photon Correlation Techniques and Applications. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/pcta.1988.dsopp208.

Повний текст джерела
Анотація:
In the last several years there has been considerable interest in the structure of aggregates and gels, in large part due to the high interest in the fractal geometry these objects exhibit. Of course, light scattering is commonly used to determine fractal dimensions, so it is natural enough to run the scattered field into an autocorrelator to find out what the dynamics are up to. This seemingly innocent move is the first step in a long journey into the unusual dynamical behaviors exhibited by these fractal systems. Since the dynamics of aggregates and gels are quite different, it will be helpful to discuss them sequentially.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakayama, T., and K. Yakubo. "Dynamical correlation function of fractal networks: Computer experiments." In Slow dynamics in condensed matter. AIP, 1992. http://dx.doi.org/10.1063/1.42366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ruiz Gale, M. Fernanda, Elsa N. Hogert, and Néstor G. Gaggioli. "An application of speckle correlation to dynamical surfaces." In Speckle06: Speckles, From Grains to Flowers, edited by Pierre Slangen and Christine Cerruti. SPIE, 2006. http://dx.doi.org/10.1117/12.695478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumar, Krishan, Vinayak Garg, and R. K. Moudgil. "Dynamical correlation effects on pair-correlation functions of spin polarized two-dimensional electron gas." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sutton, Mark. "Using x-ray correlation spectroscopy to test dynamical scaling." In Laser Science. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ls.2009.lsthc3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pagano, Emanuele Vincenzo, L. Acosta, L. Auditore, T. Cap, G. Cardella, M. Casolino, E. De Filippo, et al. "Signals for dynamical process from IMF-IMF correlation function." In 55th International Winter Meeting on Nuclear Physics. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.302.0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Suthar, P. H. "Dynamical correlation in Zr80Pt20 metallic glass at various temperatures." In ADVANCES IN BASIC SCIENCE (ICABS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5122409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dankovic, Bratislav, Dragan Antic, Zoran Jovanovic, and Darko Mitic. "On a correlation between sensitivity and identificability of dynamical systems." In IEEE International Joint Conference on Computational Cybernetics and Technical Informatics (ICCC-CONTI 2010). IEEE 8th International Conference on Computational Cybernetics and 9th International Conference on Technical Informatics. IEEE, 2010. http://dx.doi.org/10.1109/icccyb.2010.5491249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Dynamical Correlation"

1

Cao, Jianshu, and Gregory A. Voth. Semiclassical Approximations to Quantum Dynamical Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada300432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Soloviev, V., and V. Solovieva. Quantum econophysics of cryptocurrencies crises. [б. в.], 2018. http://dx.doi.org/10.31812/0564/2464.

Повний текст джерела
Анотація:
From positions, attained by modern theoretical physics in understanding of the universe bases, the methodological and philosophical analysis of fundamental physical concepts and their formal and informal connections with the real economic measuring is carried out. Procedures for heterogeneous economic time determination, normalized economic coordinates and economic mass are offered, based on the analysis of time series, the concept of economic Plank's constant has been proposed. The theory has been approved on the real economic dynamic's time series, related to the cryptocurrencies market, the achieved results are open for discussion. Then, combined the empirical cross-correlation matrix with the random matrix theory, we mainly examine the statistical properties of cross-correlation coefficient, the evolution of average correlation coefficient, the distribution of eigenvalues and corresponding eigenvectors of the global cryptocurrency market using the daily returns of 15 cryptocurrencies price time series across the world from 2016 to 2018. The result indicated that the largest eigenvalue reflects a collective effect of the whole market, practically coincides with the dynamics of the mean value of the correlation coefficient and very sensitive to the crisis phenomena. It is shown that both the introduced economic mass and the largest eigenvalue of the matrix of correlations can serve as quantum indicator-predictors of crises in the market of cryptocurrencies.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zemach, Charles, and Susan Kurien. Notes from 1999 on computational algorithm of the Local Wave-Vector (LWV) model for the dynamical evolution of the second-rank velocity correlation tensor starting from the mean-flow-coupled Navier-Stokes equations. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duron, Ziyad, Enrique E. Matheu, Vincent P. Chiarito, John F. Hall, and Michael K. Sharp. Dynamic Testing and Numerical Correlation Studies For Folsom Dam. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada446669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Irwin, John. Model-Independent Analysis of Beam Dynamics with BPM Correlation Matrices. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/9925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Carter, Emily A. New Methods for Treatment of Electron Correlation and Surface Dynamics. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada296909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Engle, Robert, and Kevin Sheppard. Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH. Cambridge, MA: National Bureau of Economic Research, October 2001. http://dx.doi.org/10.3386/w8554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pulay, Peter, and Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada416248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wikswo, John P. Correlations Between Single Cell Signaling Dynamics and Protein Expressions Profiles. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada437412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fromer, Neil Alan. Dynamics of Coulomb correlations in semiconductors in high magnetic fields. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/799597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії