Добірка наукової літератури з теми "Dynamic stochastic models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamic stochastic models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dynamic stochastic models"
Assaf, A. George, Mike G. Tsionas, and Florian Kock. "Dynamic quantile stochastic frontier models." International Journal of Hospitality Management 89 (August 2020): 102588. http://dx.doi.org/10.1016/j.ijhm.2020.102588.
Повний текст джерелаDror, Moshe, and Warren Powell. "Stochastic and Dynamic Models in Transportation." Operations Research 41, no. 1 (February 1993): 11–14. http://dx.doi.org/10.1287/opre.41.1.11.
Повний текст джерелаReichman, David R. "On Stochastic Models of Dynamic Disorder†." Journal of Physical Chemistry B 110, no. 38 (September 2006): 19061–65. http://dx.doi.org/10.1021/jp061992j.
Повний текст джерелаYano, Makoto. "Comparative statics in dynamic stochastic models." Journal of Mathematical Economics 18, no. 2 (January 1989): 169–85. http://dx.doi.org/10.1016/0304-4068(89)90020-7.
Повний текст джерелаZilcha, I. "Efficiency in Stochastic Dynamic Economic Models." IFAC Proceedings Volumes 22, no. 5 (June 1989): 357–61. http://dx.doi.org/10.1016/s1474-6670(17)53474-6.
Повний текст джерелаPopkov, Yu S. "Macrosystems Models of Dynamic Stochastic Networks." Automation and Remote Control 64, no. 12 (December 2003): 1956–74. http://dx.doi.org/10.1023/b:aurc.0000008434.58605.1b.
Повний текст джерелаCreal, Drew D., and Ruey S. Tsay. "High dimensional dynamic stochastic copula models." Journal of Econometrics 189, no. 2 (December 2015): 335–45. http://dx.doi.org/10.1016/j.jeconom.2015.03.027.
Повний текст джерелаFan, Ruzong, Bin Zhu, and Yuedong Wang. "Stochastic dynamic models and Chebyshev splines." Canadian Journal of Statistics 42, no. 4 (November 3, 2014): 610–34. http://dx.doi.org/10.1002/cjs.11233.
Повний текст джерелаTsionas, Efthymios G. "Inference in dynamic stochastic frontier models." Journal of Applied Econometrics 21, no. 5 (2006): 669–76. http://dx.doi.org/10.1002/jae.862.
Повний текст джерелаPopkov, Yuri S., Alexey Yu Popkov, Yuri A. Dubnov, and Dimitri Solomatine. "Entropy-Randomized Forecasting of Stochastic Dynamic Regression Models." Mathematics 8, no. 7 (July 8, 2020): 1119. http://dx.doi.org/10.3390/math8071119.
Повний текст джерелаДисертації з теми "Dynamic stochastic models"
Balijepalli, Narasimha Chandrasekhar. "Stochastic process models for dynamic traffic assignment." Thesis, University of Leeds, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436385.
Повний текст джерелаChu, Qin. "Dynamic and stochastic models for container allocation." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11742.
Повний текст джерелаCorneli, Marco. "Dynamic stochastic block models, clustering and segmentation in dynamic graphs." Thesis, Paris 1, 2017. http://www.theses.fr/2017PA01E012/document.
Повний текст джерелаThis thesis focuses on the statistical analysis of dynamic graphs, both defined in discrete or continuous time. We introduce a new extension of the stochastic block model (SBM) for dynamic graphs. The proposed approach, called dSBM, adopts non homogeneous Poisson processes to model the interaction times between pairs of nodes in dynamic graphs, either in discrete or continuous time. The intensity functions of the processes only depend on the node clusters, in a block modelling perspective. Moreover, all the intensity functions share some regularity properties on hidden time intervals that need to be estimated. A recent estimation algorithm for SBM, based on the greedy maximization of an exact criterion (exact ICL) is adopted for inference and model selection in dSBM. Moreover, an exact algorithm for change point detection in time series, the "pruned exact linear time" (PELT) method is extended to deal with dynamic graph data modelled via dSBM. The approach we propose can be used for change point analysis in graph data. Finally, a further extension of dSBM is developed to analyse dynamic net- works with textual edges (like social networks, for instance). In this context, the graph edges are associated with documents exchanged between the corresponding vertices. The textual content of the documents can provide additional information about the dynamic graph topological structure. The new model we propose is called "dynamic stochastic topic block model" (dSTBM).Graphs are mathematical structures very suitable to model interactions between objects or actors of interest. Several real networks such as communication networks, financial transaction networks, mobile telephone networks and social networks (Facebook, Linkedin, etc.) can be modelled via graphs. When observing a network, the time variable comes into play in two different ways: we can study the time dates at which the interactions occur and/or the interaction time spans. This thesis only focuses on the first time dimension and each interaction is assumed to be instantaneous, for simplicity. Hence, the network evolution is given by the interaction time dates only. In this framework, graphs can be used in two different ways to model networks. Discrete time […] Continuous time […]. In this thesis both these perspectives are adopted, alternatively. We consider new unsupervised methods to cluster the vertices of a graph into groups of homogeneous connection profiles. In this manuscript, the node groups are assumed to be time invariant to avoid possible identifiability issues. Moreover, the approaches that we propose aim to detect structural changes in the way the node clusters interact with each other. The building block of this thesis is the stochastic block model (SBM), a probabilistic approach initially used in social sciences. The standard SBM assumes that the nodes of a graph belong to hidden (disjoint) clusters and that the probability of observing an edge between two nodes only depends on their clusters. Since no further assumption is made on the connection probabilities, SBM is a very flexible model able to detect different network topologies (hubs, stars, communities, etc.)
Nori, Vijay S. "Algorithms for dynamic and stochastic logistics problems." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/24513.
Повний текст джерелаPaltrinieri, Federico. "Modeling temporal networks with dynamic stochastic block models." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18805/.
Повний текст джерелаChung, Kun-Jen. "Some topics in risk-sensitive stochastic dynamic models." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/28644.
Повний текст джерелаLoddo, Antonello. "Bayesian analysis of multivariate stochastic volatility and dynamic models." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4359.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (April 26, 2007) Vita. Includes bibliographical references.
Foliente, Greg C. "Stochastic dynamic response of wood structural systems." Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-05042006-164535/.
Повний текст джерелаAhn, Kwangwon. "Dynamic stochastic general equilibrium models with money, default and collateral." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:78317412-e13d-4495-9665-340e777ab7b2.
Повний текст джерелаCherepnev, Alexey [Verfasser]. "Stochastic foundations of dynamic trade and labor market models / Alexey Cherepnev." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2015. http://d-nb.info/1225685508/34.
Повний текст джерелаКниги з теми "Dynamic stochastic models"
Galindo Gil, Hamilton, Alexis Montecinos Bravo, and Marco Antonio Ortiz Sosa. Dynamic Stochastic General Equilibrium Models. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58105-2.
Повний текст джерелаGong, Gang. Stochastic dynamic macroeconomics: Theory, numerics, and empirical evidence. New York: Oxford University Press, 2005.
Знайти повний текст джерелаChatterjee, Partha. Convergence in a stochastic dynamic Heckscher-Ohlin model. Ottawa: Bank of Canada, 2006.
Знайти повний текст джерелаPfann, Gerard A. Dynamic modelling of stochastic demand for manufacturing employment. Berlin: Springer-Verlag, 1990.
Знайти повний текст джерелаGong, Gang. Stochastic dynamic macroeconomics: Theory and empirical evidence. New York, NY: Oxford University Press, 2004.
Знайти повний текст джерелаC, Colander David, ed. Post Walrasian macroeconomics: Beyond the dynamic stochastic general equilibrium model. Cambridge: Cambridge University Press, 2006.
Знайти повний текст джерелаMerbis, Maarten Dirk. Optimal control for econometric models: An application of stochastic dynamic games. Amsterdam: Free University Press, 1986.
Знайти повний текст джерелаRansbotham, Sam. Sequential grid computing: Models and computational experiments. Bangalore: Indian Institute of Management Bangalore, 2009.
Знайти повний текст джерелаNijkamp, Peter. Spatial interaction and input-output models: A dynamic stochastic multi-objective framework. Amsterdam: Vrije Universiteit, Faculteit der Economische Wetenschappen en Econometrie, 1987.
Знайти повний текст джерелаauthor, Muler Nora, ed. Stochastic optimization in insurance: A dynamic programming approach. New York, NY: Springer, 2014.
Знайти повний текст джерелаЧастини книг з теми "Dynamic stochastic models"
Boguslavskiy, Josif A. "Estimating the Parameters of Stochastic Models." In Dynamic Systems Models, 125–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_7.
Повний текст джерелаZhang, Zhe George. "Dynamic Optimization in Stochastic Models." In Fundamentals of Stochastic Models, 449–514. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003150060-10.
Повний текст джерелаGómez M., Guillermo L. "Stochastic control theory." In Dynamic Probabilistic Models and Social Structure, 401–19. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2524-6_9.
Повний текст джерелаBenaroya, Haym. "Random Eigenvalues and Structural Dynamic Models." In Stochastic Structural Dynamics 1, 11–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84531-4_2.
Повний текст джерелаChen, Huey-Kuo. "Stochastic/Dynamic User-Optimal Route Choice Model." In Dynamic Travel Choice Models, 229–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59980-4_12.
Повний текст джерелаRan, Bin, and David Boyce. "Instantaneous Stochastic Dynamic Route Choice Models." In Modeling Dynamic Transportation Networks, 211–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_10.
Повний текст джерелаRan, Bin, and David Boyce. "Ideal Stochastic Dynamic Route Choice Models." In Modeling Dynamic Transportation Networks, 181–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_9.
Повний текст джерелаRavishanker, Nalini, Balaji Raman, and Refik Soyer. "Modeling Stochastic Volatility." In Dynamic Time Series Models using R-INLA, 197–204. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003134039-10.
Повний текст джерелаNijkamp, Peter, and Aura Reggiani. "Dynamic and Stochastic Spatial Interaction Models." In Interaction, Evolution and Chaos in Space, 89–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77509-3_5.
Повний текст джерелаTapiero, Charles S. "Dynamic Optimization." In Applied Stochastic Models and Control for Finance and Insurance, 237–74. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5823-1_6.
Повний текст джерелаТези доповідей конференцій з теми "Dynamic stochastic models"
Zhao, Lang, Xueying Wang, Yizheng Li, Cheng Chen, Yawen Qian, Peng Du, Hongtao Xie, Chen Zhang, and Zhiyu Wang. "Stochastic Dynamic Economic Dispatch Models of Ultra High Voltage AC-DC Hybrid Grids Based on Approximate Dynamic Programming." In 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE), 887–91. IEEE, 2024. https://doi.org/10.1109/epee63731.2024.10875448.
Повний текст джерелаRobinson, Jace, and Derek Doran. "Seasonality in dynamic stochastic block models." In WI '17: International Conference on Web Intelligence 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3106426.3109424.
Повний текст джерелаRey, Francesc, and Josep Sala-Alvarez. "Stochastic dynamic models in PHY abstraction." In 2013 Asilomar Conference on Signals, Systems and Computers. IEEE, 2013. http://dx.doi.org/10.1109/acssc.2013.6810577.
Повний текст джерелаGhorbanian, Parham, Subramanian Ramakrishnan, and Hashem Ashrafiuon. "EEG Stochastic Nonlinear Oscillator Models for Alzheimer’s Disease." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9676.
Повний текст джерелаChemistruck, Heather, and John B. Ferris. "Compact Models of Terrain Surfaces." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4037.
Повний текст джерелаAlexandre, Dolgui,. "Stochastic Dynamic Pricing Models of Monopoly Systems." In Information Control Problems in Manufacturing, edited by Bakhtadze, Natalia, chair Dolgui, Alexandre and Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00243.
Повний текст джерелаSion, R., and J. Tatemura. "Dynamic stochastic models for workflow response optimization." In IEEE International Conference on Web Services (ICWS'05). IEEE, 2005. http://dx.doi.org/10.1109/icws.2005.50.
Повний текст джерелаKashib, T., and S. Amanetu. "Dynamic Data Integration in Stochastic Reservoir Models." In Canadian International Petroleum Conference. Petroleum Society of Canada, 2003. http://dx.doi.org/10.2118/2003-091.
Повний текст джерелаEliasi, Parisa A., and Sundeep Rangan. "Stochastic dynamic channel models for millimeter cellular systems." In 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2015. http://dx.doi.org/10.1109/camsap.2015.7383773.
Повний текст джерелаKneser, R., and V. Steinbiss. "On the dynamic adaptation of stochastic language models." In Proceedings of ICASSP '93. IEEE, 1993. http://dx.doi.org/10.1109/icassp.1993.319375.
Повний текст джерелаЗвіти організацій з теми "Dynamic stochastic models"
Fernandez-Villaverde, Jesus, Pablo Guerrón-Quintana, and Juan Rubio-Ramírez. Estimating Dynamic Equilibrium Models with Stochastic Volatility. Cambridge, MA: National Bureau of Economic Research, September 2012. http://dx.doi.org/10.3386/w18399.
Повний текст джерелаPitarka, A. Testing Dynamic Earthquake Rupture Models Generated With Stochastic Stress Drop. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1490953.
Повний текст джерелаJudd, Kenneth, Lilia Maliar, and Serguei Maliar. How to Solve Dynamic Stochastic Models Computing Expectations Just Once. Cambridge, MA: National Bureau of Economic Research, September 2011. http://dx.doi.org/10.3386/w17418.
Повний текст джерелаJudd, Kenneth, Lilia Maliar, and Serguei Maliar. Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models. Cambridge, MA: National Bureau of Economic Research, August 2009. http://dx.doi.org/10.3386/w15296.
Повний текст джерелаGhil, Michael, Mickael D. Chekroun, Dmitri Kondrashov, Michael K. Tippett, Andrew Robertson, Suzana J. Camargo, Mark Cane, et al. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada572180.
Повний текст джерелаGelain, Paolo, and Pierlauro Lopez. A DSGE Model Including Trend Information and Regime Switching at the ZLB. Federal Reserve Bank of Cleveland, December 2023. http://dx.doi.org/10.26509/frbc-wp-202335.
Повний текст джерелаChen, Xin, Yanfeng Ouyang, Ebrahim Arian, Haolin Yang, and Xingyu Ba. Modeling and Testing Autonomous and Shared Multimodal Mobility Services for Low-Density Rural Areas. Illinois Center for Transportation, August 2022. http://dx.doi.org/10.36501/0197-9191/22-013.
Повний текст джерелаMalin, Benjamin, Dirk Krueger, and Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, October 2007. http://dx.doi.org/10.3386/t0345.
Повний текст джерелаMalin, Benjamin, Dirk Krueger, and Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, October 2007. http://dx.doi.org/10.3386/w13517.
Повний текст джерелаFernández-Villaverde, Jesús, Galo Nuño, and Jesse Perla. Taming the curse of dimensionality: quantitative economics with deep learning. Madrid: Banco de España, November 2024. http://dx.doi.org/10.53479/38233.
Повний текст джерела