Добірка наукової літератури з теми "Dynamic property"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamic property".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dynamic property":

1

Raovic, Nevena, Otto Anker Nielsen, and Carlo Giacomo Prato Carlo Giacomo Prato. "DYNAMIC QUEUING TRANSMISSION MODEL FOR DYNAMIC NETWORK LOADING." Transport 32, no. 2 (July 13, 2015): 146–59. http://dx.doi.org/10.3846/16484142.2015.1062417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents a new macroscopic multi-class dynamic network loading model called Dynamic Queuing Transmission Model (DQTM). The model utilizes ‘good’ properties of the Dynamic Queuing Model (DQM) and the Link Transmission Model (LTM) by offering a DQM consistent with the kinematic wave theory and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared with single-class LTM, single-class DQM and multi-class DQM. Under the model assumptions, single-class models indicate that the LTM and the DQTM give similar results and that the shock wave property is properly included in the DQTM, while the multi-class models show substantially different travel times for two vehicle classes. Moreover, the results show that the travel time will be underestimated without considering the shock wave property.
2

RAZALI, Muhammad Najib. "THE DYNAMIC OF RETURNS AND VOLATILITY OF MALAYSIAN LISTED PROPERTY COMPANIES IN ASIAN PROPERTY MARKET." International Journal of Strategic Property Management 19, no. 1 (April 1, 2015): 66–83. http://dx.doi.org/10.3846/1648715x.2015.1004656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper examines the dynamics of return and dynamic volatility across the Malaysian and pan-Asian countries’ listed property companies market over the period January 1998 to August 2012. Listed property companies’ portfolios have the potential to offer high returns and low risks for long-term investments for individuals as well as institutional investors. As such, it is important to assess the return and volatility level of the Malaysian listed property companies market in the dynamic region of pan-Asian countries. This paper uses ARCH and GARCH models to empirically examine the dynamic volatility of listed property companies in 12 pan-Asian countries. The findings revealed that for the past 14-years Malaysia experienced moderately high volatility levels in term of investment in listed property companies. This study will contribute significantly to the empirical literature on the volatility dynamics of the Malaysian property market in international real estate portfolios. In particular, the findings from the study will be useful for international investors to better understand the potential portfolio implications of investing in the Malaysian real estate market.
3

Irie, Seiichi, Kennedy Greg, Zoran Ren, and Shigeru Itoh. "Dynamic Property of Aluminum Foam." International Journal of Multiphysics 4, no. 2 (July 2010): 103–11. http://dx.doi.org/10.1260/1750-9548.4.2.103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yunus, Nafeesa. "Dynamic interactions among property types." Journal of Property Investment & Finance 31, no. 2 (March 2013): 135–59. http://dx.doi.org/10.1108/14635781311305372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Evans, Peter, and Craig Plumb. "Shop property‐a dynamic market." Property Management 3, no. 4 (April 1985): 32–39. http://dx.doi.org/10.1108/eb006607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wetton, R. E., G. Foster, and P. J. Corish. "Elastomer microstructure/dynamic property correlations." Polymer Testing 10, no. 3 (1991): 175–88. http://dx.doi.org/10.1016/0142-9418(91)90030-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jiang, Zeng-rong, Peng-fei Duan, Xing-lin Guo, and Ding Hua. "Improvement of FEM’s dynamic property." Applied Mathematics and Mechanics 31, no. 11 (November 2010): 1337–46. http://dx.doi.org/10.1007/s10483-010-1366-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Song, Chun Yan, Yong Liang Gui, and Bin Sheng Hu. "Conveying Property of Injection Pulverized Coal into Blast Furnace." Applied Mechanics and Materials 303-306 (February 2013): 2577–80. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.2577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The dynamic characteristic parameter of conveying property of pulverized coal is described with the conveying mass of pulverized coal in unit time. The conveying process of pulverized coal is studied by means of the pulverized coal’s conveying property testing equipment developed by ourselves. Results show that the conveying property of bituminous coal is better than anthracitic coal. If the improvement of conveying property of pulverized coal is considered purely, the size of pulverized coal can properly be reduced and the proportion of anthracitic coal can properly be decreased. The water content of pulverized coal can be controlled from 1% to 2%.
9

Chen, Tongxin, Kate Bowers, and Tao Cheng. "Applying Dynamic Human Activity to Disentangle Property Crime Patterns in London during the Pandemic: An Empirical Analysis Using Geo-Tagged Big Data." ISPRS International Journal of Geo-Information 12, no. 12 (December 6, 2023): 488. http://dx.doi.org/10.3390/ijgi12120488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study aimed to evaluate the relationships between different groups of explanatory variables (i.e., dynamic human activity variables, static variables of social disorganisation and crime generators, and combinations of both sets of variables) and property crime patterns across neighbourhood areas of London during the pandemic (from 2020 to 2021). Using the dynamic human activity variables sensed from mobile phone GPS big data sets, three types of ‘Least Absolute Shrinkage and Selection Operator’ (LASSO) regression models (i.e., static, dynamic, and static and dynamic) differentiated into explanatory variable groups were developed for seven types of property crime. Then, the geographically weighted regression (GWR) model was used to reveal the spatial associations between distinct explanatory variables and the specific type of crime. The findings demonstrated that human activity dynamics impose a substantially stronger influence on specific types of property crimes than other static variables. In terms of crime type, theft obtained particularly high relationships with dynamic human activity compared to other property crimes. Further analysis revealed important nuances in the spatial associations between property crimes and human activity across different contexts during the pandemic. The result provides support for crime risk prediction that considers the impact of dynamic human activity variables and their varying influences in distinct situations.
10

Kartopoltsev, V. M., and A. V. Kartopoltsev. "Dynamic property control of bridge girders." Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture 24, no. 4 (August 26, 2022): 188–98. http://dx.doi.org/10.31675/1607-1859-2022-24-4-188-198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The dynamic properties of bridge girders depend on the design solutions, namely the replacement of the roadway slab by the orthotropic, deviation from standard solutions in the formation of longitudinal schemes, and the use of a new type of supports causing the dissipation of vibration energy and gyropendulum effect.The control for dynamic properties with regard to multifactorial defects, is characterized by ignoring the shock dampers of vehicles moving on the roadway. In this case, it is advisable to control the dynamic properties with regard to the energy dissipation of oscillatory processes within the internal and external strain boundaries, each of which can be functionally solved by the dependencies between the parameters of static and dynamic conditions of elasticity and plasticity. Long experience in diagnosing bridges under varying conditions of moving load allows identifying critical moments and limiting values of dynamic properties, at which the integrity of the span-vehicle system is violated. The difference in the operation of the system elements is complicated by the influence of a wide range of dynamic impacts, whose nature is opposite to the mechanical impact of vibra-tion dampers such as all-round moving supports. In this case, the criterion for the dynamic property control are anti-phase vibrations of the girder and supports and their stiffness ratio. Based on the results, the dynamic property control includes the identification of the critical speed of the moving load based on various forms of energy of the deformed state of the structure, including resonance; conditions of the energy dissipation of the vibration process of the span-vehicle system; new parameters and requirements for bridge structures with controlled dynamic properties adequate to those of numerical simulation of bridge girders of 40 to 60 or 80 m and longer; optimization and modernization of bridge vibration-based diagnostics.

Дисертації з теми "Dynamic property":

1

Xia, Yunkai. "Dynamic property evaluation of frother." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S.)--West Virginia University, 2000.
Title from document title page. Document formatted into pages; contains x, 89 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 62-64).
2

Tsui, King Yuen. "Experimental characterizations of the dynamic property changes in aged sands /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202007%20TSUI.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

LAZOR, DANIEL R. Jr. "CONSIDERATIONS FOR USING THE DYNAMIC INERTIA METHOD IN ESTIMATING RIGID BODY INERTIA PROPERTY." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1093047356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Spitzner, Matthew James. "Response of tin whiskers to dynamic input mathematical modeling and experimental property measurement /." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1464391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Boonpratatong, Amaraporn. "Motion prediction and dynamic stability analysis of human walking : the effect of leg property." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/motion-prediction-and-dynamic-stability-analysis-of-human-walking-the-effect-of-leg-property(f36922af-1231-4dac-a92f-a16cbed8d701).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective of this thesis is to develop and validate a computational framework based on mathematical models for the motion prediction and dynamic stability quantification of human walking, which can differentiate the dynamic stability of human walking with different mechanical properties of the leg. Firstly, a large measurement database of human walking motion was created. It contains walking measurement data of 8 subjects on 3 self-selected walking speeds, which 10 trials were recorded at each walking speed. The motion of whole-body centre of mass and the leg were calculated from the kinetic-kinematic measurement data. The fundamentals of leg property have been presented, and the parameters of leg property were extracted from the measurement data of human walking where the effects of walking speed and condition of foot-ground contact were investigated. Three different leg property definitions comprising linear axial elastic leg property, nonlinear axial elastic leg property and linear axial-tangential elastic leg property were used to extracted leg property parameters. The concept of posture-dependent leg property has been proposed, and the leg property parameters were extracted from the measurement data of human walking motion where the effects of walking speed and condition of foot-ground contact were also investigated. The compliant leg model with axial elastic property (CAE) was used for the dynamic stability analysis of human walking with linear and nonlinear axial elastic leg property. The compliant leg model with axial and tangential elastic property (CATE) was used for that with linear axial-tangential elastic leg property. The posture - dependent elastic leg model (PDE) was used for that with posture-dependent leg property. It was found that, with linear axial elastic leg property, the global stability of human walking improves with the bigger touchdown contact angle. The average leg property obtained from the measurement data of all participants allows the maximum global stability of human walking. With nonlinear axial elastic leg property, the global stability decreases with the stronger nonlinearity of leg stiffness. The incorporation of the tangential elasticity improves the global stability and shifts the stable walking velocity close to that of human walking at self-selected low speed (1.1-1.25 m/s).By the PDE model, the human walking motions were better predicted than by the CATE model. The effective range of walking prediction was enlarged to 1.12 – 1.8 m/s. However, represented by PDE model, only 1-2 walking steps can be achieved. In addition, the profiles of mechanical energies represented by the PDE model are different from that of the orbital stable walking represented by CATE model. Finally, the minimal requirements of the human walking measurements and the flexibility of simple walking models with deliberate leg property definitions allow the computational framework to be applicable in the dynamic stability analysis of the walking motion with a wide variety of mechanical property of the leg.
6

Duning, Madeline Marie. "Processing-Structure-Property Relationships of a Polymer-Templated Cholesteric Liquid Crystal Exhibiting Dynamic Selective Reflection." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354899969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Carsí, Rosique Marta. "Molecular mobility. Structure-property relationship of polymeric materials." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/59460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
[EN] The present work examines the influence of the chemical structure of polymers on thermal, mechanical and dielectric behavior. The experimental techniques used for the purpose are differential scanning calorimetry, dynamo-mechanical analysis and dielectric spectroscopy. Additionally, in order to confirm the results obtained using the above methods, other techniques such as ray diffraction have also been employed. Chapters 1 and 2 contain the introduction and the objectives, respectively. Chapter 3 briefly describes the experimental techniques used. Chapter 4 contains the findings of the comparative analysis of the response to electrical noise fields for three poly(benzyl methacrylates) with different structures. The analysis was carried out under a wide range of frequencies and temperatures on three poly(benzyl methacrylates) containing two dimethoxy groups in positions 2,5-, 2,3- and 3,4-. The results show that the position of the dimethoxy groups on the aromatic ring has a significant effect on the molecular dynamics of poly(benzyl methacrylate). The spectra obtained were of high complexity and therefore, in order to perform a better analysis, numerical methods for time-frequency transformation including the use of parametric regularization techniques were used. We studied the effect of this structural change on the secondary relaxation processes and relaxation process , relating to the glass transition. We also analyzed the effect of the dimethoxy group position on the formation of nanodomains, in which the side chains are predominant, and on the conduction processes of the materials tested. In Chapter 5, the conductivity of rubbery liquids was studied by analyzing poly(2,3-dimethoxybenzyl methacrylate), which exhibits its own particular behavior. The chapter analyzes the principle of time-temperature superposition, employing different interrelated variables. Chapter 6 focuses on how the presence of crosslinking affects the molecular mobility of polymethacrylates containing aliphatic alcohol ether residues. In this case, the effect of crosslinking on the secondary and primary relaxation processes was analyzed. The creation of nanodomains in the side chains as a result of the presence of crosslinking was also studied.
[ES] En este trabajo se presenta un estudio de la influencia de la estructura química de los polímeros en su comportamiento térmico, mecánico y dieléctrico. Las técnicas experimentales empleadas para ello han sido la calorimetría diferencial de barrido, el análisis dinamo-mecánico y la espectroscopia dieléctrica. Adicionalmente, se han empleado otras técnicas como la difracción de rayos, con objeto de corroborar los resultados obtenidos por las primeras. En los Capítulos 1 y 2 se recoge la introducción y los objetivos, respectivamente. El Capítulo 3 presenta una breve descripción de las técnicas experimentales empleadas. En el Capítulo 4 se recogen los resultados obtenidos en el análisis comparativo de la respuesta a campos de perturbación eléctrica en un amplio rango de frecuencias y temperaturas para tres polimetacrilatos de bencilo con dos grupos dimetoxi en posiciones 2,5-, 2,3- y 3,4-. Los resultados obtenidos señalan el importante efecto de la posición de los grupos dimetoxi en el anillo aromático, sobre la dinámica molecular del polimetacrilato de bencilo. Los espectros obtenidos fueron muy complejos, por ello en orden a llevar a cabo un mejor análisis se emplearon métodos numéricos para la transformación tiempo-frecuencia que incluyeron el uso de técnicas de regularización paramétrica. Se ha estudiado el efecto que dicho cambio estructural ejerce tanto sobre los procesos de relajación secundaria como sobre el proceso de relajación α, relacionado con la transición vítrea. Así mismo, se ha analizado el efecto de la posición de los grupos dimetoxi en la formación de iii nanodominios en los que predominan las cadenas laterales, y su efecto en los procesos de conducción de los materiales analizados. En el Capítulo 5 se recoge el estudio de la conductividad de líquidos gomosos tomando como modelo el poli (metacrilato de 2,3-dimetoxibencilo), por su peculiar comportamiento. En este capítulo se ha realizado un análisis del principio de superposición tiempo-temperatura, empleando para ello diferentes variables relacionadas entre sí. En el Capítulo 6 se recoge el efecto de la presencia de entrecruzante en la movilidad molecular de polimetacrilatos que contienen residuos de éteres de alcoholes alifáticos. En este caso, se ha analizado el efecto de la presencia de entrecruzante tanto en los procesos de relajación secundarios, como en el proceso de relajación principal. También se llevó a cabo un análisis del efecto que la presencia de entrecruzante tiene sobre la creación de nanodominios gobernados por las cadenas laterales.
[CAT] En aquest treball es presenta un estudi de la influència de l'estructura química dels polímers en el seu comportament tèrmic, mecànic i dielèctric. Les tècniques experimentals utilitzades han sigut la calorimetria diferencial de rastreig, l'anàlisi dinamo-mecànic i l'espectroscòpia dielèctrica. Addicionalment, s'han empleat altres tècniques com la difracció de rajos X a fi de corroborar els resultats obtinguts per les primeres. En els Capítols 1 i 2 s'arreplega la introducció i els objectius, respectivament. Al Capítol 3 es presenta una breu descripció de les tècniques experimentals emprades. En el Capítol 4 es recull els resultats obtinguts en l'anàlisi comparativa de la resposta a camps de pertorbació elèctrica en un ampli rang de freqüències i temperatures de tres polimetacrilats de benzil amb dos grups metoxi en posicions 2,5-, 2,3- i 3,4-. Els resultats obtinguts assenyalen l'important efecte de la posició dels grups metoxi en l'anell aromàtic, sobre la dinàmica molecular del polimetacrilat de benzil. Els espectres obtinguts van ser molt complexos, per aquesta raó per a dur a terme un millor anàlisi es van emprar mètodes numèrics per a la transformació temps-freqüència que van incloure l'ús de tècniques de regularització paramètrica. S'ha estudiat l'efecte que el dit canvi estructural exerceix tant sobre els processos de relaxació secundària com sobre el procés de relaxació , relacionat amb la transició vítria. Així mateix, s'ha analitzat l'efecte de la posició dels grups metoxi en la formació de nanodominis en els que predominen les cadenes laterals, i el seu efecte en els processos de conducció dels materials analitzats. En el Capítol 5 s'arreplega l'estudi de la conductivitat de líquids gomosos prenent com a model el poli-(metacrilat de 2,3-dimetoxibencilo), pel seu peculiar comportament. En aquest capítol s'ha realitzat un anàlisi del principi de superposició temps-temperatura, emprant per a això diferents variables relacionades entre sí. En el Capítol 6 s'arreplega l'efecte de la presència d'entrecreuat en la mobilitat molecular de polimetacrilats que contenen residus d'èters d'alcohols alifàtics. En aquest cas, s'ha analitzat l'efecte de la presència d'entrecreuat tant en els processos de relaxació secundaris, com en el procés de relaxació principal. També es va dur a terme un anàlisi de l'efecte que la presència d'entrecreuat químic té sobre la creació de nanodominis governats per les cadenes laterals.
Carsí Rosique, M. (2015). Molecular mobility. Structure-property relationship of polymeric materials [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59460
TESIS
Premiado
8

Pu, Ming. "Pricing in the actuarial market." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180097795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Polat, Onur. "Dynamic Complex Hedging And Portfolio Optimization In Additive Markets." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610441/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, the geometric Additive market models are considered. In general, these market models are incomplete, that means: the perfect replication of derivatives, in the usual sense, is not possible. In this study, it is shown that the market can be completed by new artificial assets which are called &ldquo
power-jump assets&rdquo
based on the power-jump processes of the underlying Additive process. Then, the hedging portfolio for claims whose payoff function depends on the prices of the stock and the power-jump assets at maturity is derived. In addition to the previous completion strategy, it is also shown that, using a static hedging formula, the market can also be completed by considering portfolios with a continuum of call options with different strikes and the same maturity. What is more, the portfolio optimization problem is considered in the enlarged market. The optimization problem consists of choosing an optimal portfolio in such a way that the largest expected utility of the terminal wealth is obtained. For particular choices of the equivalent martingale measure, it is shown that the optimal portfolio consists only of bonds and stocks.
10

Schmolke, Willi [Verfasser]. "Structure–Property Relationships in Polymer Systems: From Functional Microgels to Dynamic Polymer Solutions and Melts / Willi Schmolke." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2020. http://d-nb.info/1224896394/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dynamic property":

1

Williams, Cyril L. Structure-Property Relationships under Extreme Dynamic Environments. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-031-79725-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gollin, Michael A. Driving innovation: Intellectual property strategies for a dynamic world. Cambridge [England]: Cambridge University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Weiping. Dynamic cities and creative clusters. [Washington, D.C: World Bank, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Syd, Howell, ed. Real options: Evaluating corporate investment opportunities in a dynamic world. London: Financial Times Prentice Hall, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tesar, Delbert. Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance. Austin, Tex: Dept. of Mechanical Engineering, University of Texas at Austin, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

yuan), Zhongguo yi shu ren lei xue guo ji xue shu yan tao hui (2011 Yuxi shi fan xue. Yi shu huo tai chuan cheng yu wen hua gong xiang: Dynamic Heritage of Art and Cultural Sharing. 8th ed. Beijing Shi: Xue yuan chu ban she, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kramer, Alan. Dynamic of destruction: Culture and mass killing in the First World War. Oxford: Oxford University Press, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Langan, Anny. Management of an educational property portfolio and capital programme under dynamic circumstances: Royal Borough of Kensington and Chelsea. London: Polytechnic of East London, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

McCain, William D. Petroleum reservoir fluid property correlations. Tulsa, Okla: PennWell Corp., 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schiller, Russell. Dynamics of property location. New York: Taylor & Francis, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dynamic property":

1

Onak, Krzysztof, and Ronitt Rubinfeld. "Dynamic Approximate Vertex Cover and Maximum Matching." In Property Testing, 341–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16367-8_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aon, M. A., and S. Cortassa. "Rhythms as a fundamental property of biological systems." In Dynamic Biological Organization, 73–103. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parker, David. "Income approach to valuation—dynamic." In Introduction to Property Valuation in Australia, 190–216. London: Routledge, 2023. http://dx.doi.org/10.1201/9781003397922-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borrione, Dominique, Katell Morin-Allory, and Yann Oddos. "Property-Based Dynamic Verification and Test." In Design Technology for Heterogeneous Embedded Systems, 157–76. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1125-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bucholz, Ren. "4 Dynamic Fair Dealing with Orphan Works: Lessons from “Real” Property." In Dynamic Fair Dealing, 82–89. Toronto: University of Toronto Press, 2014. http://dx.doi.org/10.3138/9781442665613-005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kopelowitz, Tsvi. "The Property Suffix Tree with Dynamic Properties." In Combinatorial Pattern Matching, 63–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13509-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Weinong W. "Dynamic Material Property Characterization with Kolsky Bars." In Dynamic Behavior of Materials, Volume 1, 1–6. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8228-5_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Byer, Amanda. "Placing Property in the Landscape." In Palgrave Socio-Legal Studies, 7–16. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31994-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractTo explain property’s origins in place or landscape, this chapter draws on legal, historical, geographical, etymological and archaeological research to reconstruct how people understood land before property. The chapter relies on two main sources: Kenneth Olwig’s cultural geographical research on early landscapes in pre-feudal Scandinavia and Sub-Roman/pre-enclosure Britain illustrates the relationship between land, law and people; and Nicole Graham’s etymological analysis linking property not to ownership but to proximity affirms that a specific location to which someone belonged generated relations relevant to identity, community and a sustainable way of life. Land was communal, dynamic and characterised by attachment, the polar opposite of property’s defining characteristics today (individual, exclusive and alienable).
9

Vaupel, Kai, Tim Londershausen, and Eberhard Schmidt. "Property Function to Compute the Dustiness of Powders." In Dynamic Flowsheet Simulation of Solids Processes, 413–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Clemhout, S., and H. Wan. "Common-Property Exploitations under Risks of Resource Extinctions." In Dynamic Games and Applications in Economics, 267–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61636-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dynamic property":

1

Burch, Michael. "Property-Driven Dynamic Call Graph Exploration." In VINCI '18: The 11th International Symposium on Visual Information Communication and Interaction. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3231622.3231630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Yufeng, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. "Regular Property Guided Dynamic Symbolic Execution." In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE). IEEE, 2015. http://dx.doi.org/10.1109/icse.2015.80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bonato, Marco, Giuseppe Di Guglielmo, Masahiro Fujita, Franco Fummi, and Graziano Pravadelli. "Dynamic property mining for embedded software." In the eighth IEEE/ACM/IFIP international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2380445.2380479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Malburg, Jan, Tino Flenker, and Gorschwin Fey. "Property mining using dynamic dependency graphs." In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2017. http://dx.doi.org/10.1109/aspdac.2017.7858327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Peranandam, P. M., R. J. Weiss, J. Ruf, T. Kropf, and W. Rosenstiel. "Dynamic guiding of bounded property checking." In Proceedings. Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat. No.04EX940). IEEE, 2004. http://dx.doi.org/10.1109/hldvt.2004.1431223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Ruitao, and Aristide Dogariu. "An Invariance Property of Dynamic Media in Diffusive Cavities." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fth4d.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We expand Cauchy’s theorem and demonstrate an invariance property for dynamic media. We demonstrate that details of scattering processes do not affect the relationship between measured correlation times and the intrinsic time-scale of medium’s dynamics.
7

Guneysu, Tim, Bodo Moller, and Christof Paar. "Dynamic Intellectual Property Protection for Reconfigurable Devices." In 2007 International Conference on Field-Programmable Technology. IEEE, 2007. http://dx.doi.org/10.1109/fpt.2007.4439246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Neves, Miguel, Bradley Huffaker, Kirill Levchenko, and Marinho Barcellos. "Dynamic Property Enforcement in Programmable Data Planes." In 2019 IFIP Networking Conference (IFIP Networking). IEEE, 2019. http://dx.doi.org/10.23919/ifipnetworking.2019.8816830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Neves, Miguel, Bradley Huffaker, Kirill Levchenko, and Marinho Barcellos. "Dynamic property enforcement in programmable data planes." In 2019 IFIP Networking Conference (IFIP Networking). IEEE, 2019. http://dx.doi.org/10.23919/ifipnetworking46909.2019.8999458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bonniwell, Jennifer L., Susan C. Schneider, and Edwin E. Yaz. "H∞-Property of the Continuous-Time Extended Kalman Filter." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work elucidates another theoretical property of the ubiquitous extended Kalman filter by analyzing the energy gain of the continuous-time extended Kalman filter used as a nonlinear observer in the presence of finite-energy disturbances. The analysis provides a bound on the ratio of estimation error energy to disturbance energy, which shows that the extended Kalman filter inherently has the H∞-property along with being the locally optimal minimum variance estimator. A special case of this result is also shown to be the H2-property of the extended Kalman filter.

Звіти організацій з теми "Dynamic property":

1

Coate, Stephen. Property Taxation, Zoning, and Efficiency: A Dynamic Analysis. Cambridge, MA: National Bureau of Economic Research, June 2011. http://dx.doi.org/10.3386/w17145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, R. C. Investigation of nonlinear dynamic soil property at the Savannah River Site. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Burchell, Timothy. AGC-1 irradiation induced property changes analysis report: Dynamic Elastic Modulus. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1999109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Clayton, John, Daniel Casem, and Jeffrey Lloyd. Finite Element Modeling for Constitutive Property Determination from Instrumented Dynamic Spherical Indentation. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, April 2023. http://dx.doi.org/10.21236/ad1200256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tsur, Yacov, David Zilberman, Uri Shani, Amos Zemel, and David Sunding. Dynamic intraseasonal irrigation management under water scarcity, water quality, irrigation technology and environmental constraints. United States Department of Agriculture, March 2007. http://dx.doi.org/10.32747/2007.7696507.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this project we studied optimal use and adoption of sophisticated irrigation technologies. The stated objectives in the original proposal were to develop a conceptual framework for analyzing intra-season timing of water application rates with implications for crop and irrigation technology selection. We proposed to base the analysis on an intra-seasonal, dynamic, agro-economic model of plants' water demand, paying special attention to contamination of groundwater and soil in intensively cultivated areas that increasingly rely on water of lesser quality. The framework developed in the project integrates (i) a bio-physical model of water flow in the vadose zone and water uptake by plants and yield response with (ii) a dynamic management model to determine the optimal intra-season irrigation policy. It consists of a dynamic optimization model to determine irrigation rates at each point of time during the growing season and aggregation relating harvested yield with accumulated water input. The detailed dynamic approach provides a description of yield production processes at the plant’s level, and serves to determine intra-season irrigation decisions. Data derived from extensive field experiments were used to calibrate the model's parameters. We use the framework to establish the substitution between irrigation technology (capital) and water inputs; this is an important property of irrigation water productivity that has been overlooked in the literature. Another important feature investigated is the possibility to substitute fresh and saline water with a minimal productivity loss. The effects of soil properties and crop characteristics on optimal technology adoption have also been studied. We find that sandy soil, with low water holding capacity, is more conducive to adoption of sophisticated drip irrigation, as compared to heavier soils in which drainage losses are significantly smaller.
6

Groeneveld, Andrew, and C. Crane. Advanced cementitious materials for blast protection. Engineer Research and Development Center (U.S.), April 2023. http://dx.doi.org/10.21079/11681/46893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Advanced cementitious materials, commonly referred to as ultra-high performance concretes (UHPCs), are developing rapidly and show promise for civil infrastructure and protective construction applications. Structures exposed to blasts experience strain rates on the order of 102 s-1 or more. While a great deal of research has been published on the durability and the static properties of UHPC, there is less information on its dynamic properties. The purpose of this report is to (1) compile existing dynamic property data—including compressive strength, tensile strength, elastic modulus, and energy absorption—for six proprietary and research UHPCs and (2) implement a single-degree-of-freedom (SDOF) model for axisymmetric UHPC panels under blast loading as a means of comparing the UHPCs. Although simplified, the model allows identification of key material properties and promising materials for physical testing. Model results indicate that tensile strength has the greatest effect on panel deflection, with unit weight and elastic modulus having a moderate effect. CEMTECmultiscale® deflected least in the simulation. Lafarge Ductal®, a commonly available UHPC in North America, performed in the middle of the five UHPCs considered.
7

Pazaitis, Alex, Chris Giotitsas, Leandros Savvides, and Vasilis Kostakis. Do Patents Spur Innovation for Society? Lessons from 3D Printing. Mέta | Centre for Postcapitalist Civilisation, 2021. http://dx.doi.org/10.55405/mwp7en.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Effective appropriation of new technology has long been considered essential for innovation. Yet, the role of patents and other Intellectual Property tools has been questioned, both for rewarding innovators and serving societal needs. Simultaneously, there is ample empirical evidence of technological advance accelerating under conditions of loose appropriability, for example, when patents expire and cases of innovations based on shared technology and diverse motivations. This paper explores the case of the 3D printing technology, which appears to have found successful commercialization and dynamic market growth after key patents expired. We analyze the role of commons-based peer production practices in forging synergies among different factors and effectuating an alternative innovation pathway and the challenges and contradictions in the process. Finally, we critically assess recent developments of 3D printing technology and draw lessons for innovation policy by incorporating aspects of emerging commons-based innovation paradigms.
8

Yu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang, and Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present Any-Precision Deep Neural Networks (Any- Precision DNNs), which are trained with a new method that empowers learned DNNs to be flexible in any numerical precision during inference. The same model in runtime can be flexibly and directly set to different bit-width, by trun- cating the least significant bits, to support dynamic speed and accuracy trade-off. When all layers are set to low- bits, we show that the model achieved accuracy compara- ble to dedicated models trained at the same precision. This nice property facilitates flexible deployment of deep learn- ing models in real-world applications, where in practice trade-offs between model accuracy and runtime efficiency are often sought. Previous literature presents solutions to train models at each individual fixed efficiency/accuracy trade-off point. But how to produce a model flexible in runtime precision is largely unexplored. When the demand of efficiency/accuracy trade-off varies from time to time or even dynamically changes in runtime, it is infeasible to re-train models accordingly, and the storage budget may forbid keeping multiple models. Our proposed framework achieves this flexibility without performance degradation. More importantly, we demonstrate that this achievement is agnostic to model architectures. We experimentally validated our method with different deep network backbones (AlexNet-small, Resnet-20, Resnet-50) on different datasets (SVHN, Cifar-10, ImageNet) and observed consistent results.
9

Inglefield, P. T., and A. A. Jones. Chain Dynamics and Structure Property Relation in High Impact Strength Polycarbonate Plastic. Fort Belvoir, VA: Defense Technical Information Center, January 1985. http://dx.doi.org/10.21236/ada152011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Banomyong, Ruth. Supply Chain Dynamics in Asia. Inter-American Development Bank, July 2009. http://dx.doi.org/10.18235/0011303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Supply chain management in Asia is a relatively novel topic but a key challenge for all Asian based manufacturers and traders when trying to integrate into the "global market". The purpose of the paper is to describe key supply chain issues faced in Asia. These issues are related to supply chain security that forces Asian firms to comply with numerous requirements as well as the importance of a properly managed supply chain in enhancing firms' competitiveness. The critical role played by Asian based logistics providers in facilitating supply chain integration is explored. Logistics providers must be able to design effective and efficient supply chains for the clients. A case study is presented to illustrate how supply chain dynamics affects supplier selection. This paper was presented at The Fifth LAEBA Annual Meeting, Singapore, July 15th, 2009.

До бібліографії