Добірка наукової літератури з теми "Dynamic composites"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamic composites".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dynamic composites"

1

Xu, Shan Qing, Dong Ruan, Jason Miller, Igor Sbarski, and Ajay Kapoor. "Dynamic Response of Polymer Based Shear Stiffening Composite." Key Engineering Materials 626 (August 2014): 323–28. http://dx.doi.org/10.4028/www.scientific.net/kem.626.323.

Повний текст джерела
Анотація:
In this paper, the uniaxial dynamic compressive response and rheological properties of a newly developed commercially available polymer based shear stiffening (PSS) composite is experimentally studied at different crushing velocities. The results showed that the compressive stress of PSS composites increases with the rising strain rates. Comparing the stress-strain curves of PSS composites and neoprene at the same strain rate, it was found that the compressive stress of PSS composite increased gradually with strain, while the compressive stress of neoprene increased sharply with strain. The uniaxial dynamic mechanical analyses of PSS composites showed that storage modulus of PSS composite increased with the increase of sweep frequency. The rheological study of PSS composites showed that the storage modulus of PSS composite significantly increased when the angular frequency was higher than a critical value, e.g., 100 rad/s, demonstrating evident shear stiffening properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Idriss, M., and A. El Mahi. "Dynamic characteristics of sandwich composite with debonding." Journal of Thermoplastic Composite Materials 32, no. 9 (August 27, 2018): 1204–23. http://dx.doi.org/10.1177/0892705718797162.

Повний текст джерела
Анотація:
The article presents the results of experimental and finite element analyses of the flexural vibration behavior sandwich composite with different debonding ratios. Sandwich composite consists of two thin skins composed of E-glass fiber and epoxy resin bonded to lightweight and weaker core material of PVC foams. Experimental tests using the impulse technique were performed on the sandwich constituents and sandwich composites with different debonding lengths. The modal dynamic characteristics of sandwich composite were measured and discussed for each debonding ratio. A finite element modeling was used to determine the natural frequencies, modal shapes, and stress and strain fields for each element of sandwich composites for each debonding ratio. The modal strain energy approach was used to determine the contribution of energies dissipated of the core and the skins in the total dissipated energy and the global damping of the different sandwich composites. The results obtained by this approach are compared with those obtained experimentally.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Yi, Youwei Zhang, Haiwei Dong, Wenjie Cheng, Chaoming Shi, and Jiangying Chen. "Dynamic Response of Electro-Mechanical Properties of Cement-Based Piezoelectric Composites." Applied Sciences 11, no. 24 (December 15, 2021): 11925. http://dx.doi.org/10.3390/app112411925.

Повний текст джерела
Анотація:
By employing ordinary Portland cement as a matrix and PZT-5H piezoelectric ceramic as the functional body, 1-3 and 2-2 cement-based piezoelectric composites were prepared. Quasi-static compression tests were performed along with dynamic impact loading tests to study the electro-mechanical response characteristics of 1-3 and 2-2 cement-based piezoelectric composites. The research results show that both composites exhibit strain rate effects under quasi-static compression and dynamic impact loading since they are strain-rate sensitive materials. The sensitivity of the two composites has a non-linear mutation point: in the quasi-static state, the sensitivity of 1-3 and 2-2 composites is 157 and 169 pC/N, respectively; in the dynamic state, the respective sensitivity is 323 and 296 pC/N. Although the sensitivity difference is not significant, the linear range of the 2-2 composite is 24.8% and 61.3% larger than that of the 1-3 composite under quasi-static compression and dynamic impact loading, respectively. Accordingly, the 2-2 composite exhibits certain advantages as a sensor material, irrespective of whether it is subjected to quasi-static or dynamic loading.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ismail Topcu, Ismail Topcu, Burcu Nilg n. etiner Burcu Nilg n etiner, and Arif N. G. ll o. lu and zkan G. lsoy Arif N G ll o lu and zkan G lsoy. "Investigation of Creep Behavior of CNT Reinforced Ti6Al4V Under Dynamic Loads." Journal of the chemical society of pakistan 42, no. 1 (2020): 70. http://dx.doi.org/10.52568/000618.

Повний текст джерела
Анотація:
This study investigates the effects of addition of Carbon nanotube (CNT) at different volume ratios (0.5- 5%) into Ti6Al4V matrix by mechanical alloying in terms of the density, microstructure, hardness and creep under dynamic load. As a result of the good bonding of carbon nanotubes powders with the main matrix, Ti-6Al-4V/CNT composites have experienced change both in microstructure and mechanical properties (such as hardness, density) and, correspondingly, qualitatively creep behaviour of Ti-6Al - 4V matrix alloy has been improved compared to the lean one. The density of CNT reinforced Ti6Al4V composites sintered at 1300and#176;C for 3h decreases with increasing CNT content. The hardness tests indicated that the hardness of composites increased with CNT addition. In addition, although creep strain is decreased continually with CNT content until 5%, creep life increased with increasing CNT content until 4% of CNT but decreased above 4%. After sintering at 1300 and#176;C under vacuum for 3 hours the density of the composite material reached to a level of 98.5 %, the microhardness to 538 HV and the creep behaviour was improved. The characterization of Ti6Al4V / CNT composites after mechanical alloying was carried out using scanning electron microscopy (SEM), energy dispersive x-rays spectroscopy (EDS) analysis and X-ray diffraction (XRD) methods. Although Ti–6Al–4V alloys are used as biomaterial, this study aimed at using MWCNTs containing Ti-6Al-4V composites at high temperature applications. Because MWCNTs reinforced Ti-6Al-4V composites are cheaper and have lower weight than the other materials used in this kind of applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ismail Topcu, Ismail Topcu, Burcu Nilg n. etiner Burcu Nilg n etiner, and Arif N. G. ll o. lu and zkan G. lsoy Arif N G ll o lu and zkan G lsoy. "Investigation of Creep Behavior of CNT Reinforced Ti6Al4V Under Dynamic Loads." Journal of the chemical society of pakistan 42, no. 1 (2020): 70. http://dx.doi.org/10.52568/000618/jcsp/42.01.2020.

Повний текст джерела
Анотація:
This study investigates the effects of addition of Carbon nanotube (CNT) at different volume ratios (0.5- 5%) into Ti6Al4V matrix by mechanical alloying in terms of the density, microstructure, hardness and creep under dynamic load. As a result of the good bonding of carbon nanotubes powders with the main matrix, Ti-6Al-4V/CNT composites have experienced change both in microstructure and mechanical properties (such as hardness, density) and, correspondingly, qualitatively creep behaviour of Ti-6Al - 4V matrix alloy has been improved compared to the lean one. The density of CNT reinforced Ti6Al4V composites sintered at 1300and#176;C for 3h decreases with increasing CNT content. The hardness tests indicated that the hardness of composites increased with CNT addition. In addition, although creep strain is decreased continually with CNT content until 5%, creep life increased with increasing CNT content until 4% of CNT but decreased above 4%. After sintering at 1300 and#176;C under vacuum for 3 hours the density of the composite material reached to a level of 98.5 %, the microhardness to 538 HV and the creep behaviour was improved. The characterization of Ti6Al4V / CNT composites after mechanical alloying was carried out using scanning electron microscopy (SEM), energy dispersive x-rays spectroscopy (EDS) analysis and X-ray diffraction (XRD) methods. Although Ti–6Al–4V alloys are used as biomaterial, this study aimed at using MWCNTs containing Ti-6Al-4V composites at high temperature applications. Because MWCNTs reinforced Ti-6Al-4V composites are cheaper and have lower weight than the other materials used in this kind of applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Srivastava, V. K. "Dynamic Fracture Toughness Behaviour of CFRP-Foam-CFRP Sandwich Composite and Particles Filled Hybrid Glass Fiber Cloth, Graphene Nanoplates Coated Glass Fiber Strand Composite Materials under Low Impact Velocity." Journal of Materials Science Research 11, no. 1 (May 23, 2022): 70. http://dx.doi.org/10.5539/jmsr.v11n1p70.

Повний текст джерела
Анотація:
The main objective of the present study is to investigate the dynamic fracture toughness behaviors of CFRP-Foam-CFRP sandwich composite of V-notched through -thickness, surface, and un-notched specimens under Izod, and Charpy impact tests.  The sandwich composite structures are made of cross-plied carbon fiber reinforced plastic (CFRP) composite faces with polyurethane foam core. CFRP composites are used to combine the upper face and the lower face through the core in stitched sandwich structures. Compressive strength of weight drop impact perforated and un-perforated sandwich composite specimens are measured from a universal testing machine. Also, particles (Al2O3, CNTs, and cement) filled glass fiber cloth and graphene nanoplates coated glass fiber strands reinforced polymer hybrid composite are fabricated for V-notched, un-notched Izod impact and Charpy impact tests. The results show that weight drop impact energy is lower than the Izod impact energy but higher than the Charpy impact energy, whereas the dynamic fracture toughness of Izod impact energy is more than the Charpy and weight drop impact energy due to geometry of impactor and sandwich specimen. However energy and dynamic fracture toughness of Al2O3, CNTs, and Cement filled un-notched hybrid composites higher than the notched hybrid composites under Izod Impact. The dynamic fracture toughness and energy of CNTs filled hybrid composites is higher than the sandwich composites, Al2O3, and Cement filled hybrid composites under Charpy Impact.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Anjum, Q., N. Nasir, S. A. Cheema, M. Imran, A. R. Rahman, Z. Tanveer, N. Amin, and Y. N. Anjam. "Multiscale modeling investigation into the thermal conductivity dynamics of graphene-silver nano-composites: a molecular dynamic study." Digest Journal of Nanomaterials and Biostructures 17, no. 2 (April 2022): 557–68. http://dx.doi.org/10.15251/djnb.2022.172.557.

Повний текст джерела
Анотація:
This research primarily aims at the in-depth exploration of thermal conductivity dynamics of Graphene-Silver (C-Ag) nano-composites on various parametric fronts. The parametric settings and resultant experimental states are mimicked by the rigorous launch of molecular dynamic (MD) simulations with Green-Kubo multiscale modeling approach. The enumeration of thermal conductivity of C-Ag nano-composites is instigated along with three orientations that is C-Ag (1 0 0), C-Ag (1 1 0) and C-Ag (1 1 1). Further, the conductive subtleties are expounded with respect to numerous factors of practical concerns such as, temperature, length of composite, composite width and number of Ag layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bourne, N. K., S. Parry, D. Townsend, P. J. Withers, C. Soutis, and C. Frias. "Dynamic damage in carbon-fibre composites." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2071 (July 13, 2016): 20160018. http://dx.doi.org/10.1098/rsta.2016.0018.

Повний текст джерела
Анотація:
The Taylor test is used to determine damage evolution in carbon-fibre composites across a range of strain rates. The hierarchy of damage across the scales is key in determining the suite of operating mechanisms and high-speed diagnostics are used to determine states during dynamic loading. Experiments record the test response as a function of the orientation of the cylinder cut from the engineered multi-ply composite with high-speed photography and post-mortem target examination. The ensuing damage occurs during the shock compression phase but three other tensile loading modes operate during the test and these are explored. Experiment has shown that ply orientations respond to two components of release; longitudinal and radial as well as the hoop stresses generated in inelastic flow at the impact surface. The test is a discriminant not only of damage thresholds but of local failure modes and their kinetics. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Monte Vidal, Dielly Cavalcanti da Silva, Heitor L. Ornaghi, Felipe Gustavo Ornaghi, Francisco Maciel Monticeli, Herman Jacobus Cornelis Voorwald, and Maria Odila Hilário Cioffi. "Effect of different stacking sequences on hybrid carbon/glass/epoxy composites laminate: Thermal, dynamic mechanical and long-term behavior." Journal of Composite Materials 54, no. 6 (August 6, 2019): 731–43. http://dx.doi.org/10.1177/0021998319868512.

Повний текст джерела
Анотація:
In the present study, different stacking sequences on hybrid carbon/glass/epoxy composites laminate were examined in relation to thermal, dynamic mechanical and long-term behavior. A positive hybrid effect was found for both hybrid composites (interleaved-Hybrid 1 and in block-Hybrid 2) showing that in some cases hybrid composites can properly replace carbon or glass composites. The composite containing all glass fiber in the middle (Hybrid 2) presented similar thermal behavior when compared to glass fiber composite. All hybrid composites presented higher storage modulus when compared to glass composite. Dynamic mechanical analysis showed that both hybrids can satisfactorily perform the requirement in a wide temperature range. The long-term prediction was successfully applied for all composites, showing to be highly temperature-dependent. Hence, depending on the application requirement, both hybrids can be used, saving weight and cost.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Liang, Rui-Xiang Bai, and Hao-Ran Chen. "Finite Element Analysis for Interfacial Crack in Piezoelectric Composite under Impact Loading." Advanced Composites Letters 21, no. 1 (January 2012): 096369351202100. http://dx.doi.org/10.1177/096369351202100103.

Повний текст джерела
Анотація:
In this paper, a nonlinear finite element analysis of impact interfacial fracture for a piezoelectric composite is provided. The Newmark method was used to solve the dynamics equation. Virtual crack closure technique is to evaluate the energy release rate of crack tip. Contact elements were set up on crack surface and in the area in contact under impact loading to prevent the penetration between PZT and composite. The response curves of the energy release rate are obtained for piezoelectric composites. Numerical results are provided to show the effect of the piezoelectricity, the applied voltage, the stack sequence of composites and the contact of crack surface on the resulting dynamic energy release rate of piezoelectric composites.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Dynamic composites"

1

Kandan, Karthikeyan. "Dynamic response of polyethylene composites." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gopalan, Sriram. "Quasi-static and dynamic mechanical characterization of reinforced polyurethane foam /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gardham, Louise Marie. "Dynamic mechanical properties of polymer composites." Thesis, University of Leeds, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klintworth, John Wilhelm. "Dynamic crushing of cellular solids." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stewart, Alistair. "Dynamic nanoindentation of various polymer nano-composites." Thesis, University of Ulster, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.593883.

Повний текст джерела
Анотація:
There is a strong rationale for replacing traditional carbon fibre and glass fibre composites with nano-composites as smaller size and higher aspect ratio reinforcement can lead to improved mechanical properties, via improved load transfer from reinforcement to polymer matrix but also increased dissipation of mechanical energy within the material, an advantage for maximising toughness and fatigue resistance. This project focuses on using dynamic nanoindentation to characterise polymer nano-composites made with graphene and carbon nanotubes (CNT), namely, CNT-polymethylmethacrylate (PMMA) composites, CNT-polydymethylsiloxane (PDMS) and graphene-polyamide composites. Melt-processed PMMA nano-composites studied by optical microscopy show a gradual increase in aggregate size for the functionaLized CNT/PMMA composites, the results for the nonfu nctionalised CNT/PMMA composite showing a poorer dispersion of CNT. Thermogravimetric analysis (TGA) also indicates that the functionalized-CNT are better dispersed into the polymer. These results are consistent with those obtained by nanoindentation and Rockwell hardness testing; higher storage modulus, lower loss tangent and higher HR value for the composites made with functionalized-CNT, sign of a better interfacial load transfer. The addition of solvent, the use of tip sonication as well as the e NT aspect ratio were all found to have an influence on the CNT dispersion within in-situ cured CNTIPDMS nano-composites. TGA showed a lowering of the degradation temperature upon CNT addition, indicative of CNT inhibiting the cure process, in accordance with recently reported results. Nanoindentation resu lts indicate that the specimen made with the better dispersed CNT exhibit the larger storage modu lus. Generally, these stiffness values increase at low CNT content and then decrease, possibly because of the effect that CNT have upon the PDMS cross-linking. In these nanocomposites, the loss tangent is large, dominated by the elastomeric matrix and not sensitive to the interfacial energy dissipation. Finally. in situ-polymerised graphene-polyamide nano-composites were investigated. TGA showed that the graphene was oxidised in these composites. Optical microscopy indicates that the fine-dispersion of the reinforcement disappear at higher graphene content. Nanoindentation showed that the storage modulus peaked at low graphene content and then decreased at higher percentages, while tested at a larger scale (mm\ the mechanical properties of these composites only saturates with graphene content. This result may be due to the processing of the high graphene content specimen, made by solvent evaporation, during which aggregates may reform, as observed by optical microscopy. Overall, this investigation has shown that dynamic nanoindentation is a valuable tool for studying the dispersion of reinforcement in polymer nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tirtom, İsmail Güden Mustafa. "Modeling Dynamic Behavior of Metal Matrix Composites/." [s.l.]: [s.n.], 2002. http://library.iyte.edu.tr/tezler/master/malzemebilimivemuh/T000141.rar.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tan, Kian Sing. "Dynamic loading characteristics in metals and composites." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FTan_Kian_Sing.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, December 2009.
Thesis Advisor(s): Kwon, Young. Second Reader: Didoszak, Jarema. "December 2009." Description based on title screen as viewed on January 26, 2010. Author(s) subject terms: Tensile tests, Strain rate effects, Dynamic loading, Failure criterion. Includes bibliographical references (p. 37-38). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Elmore, Jennifer Susan. "Dynamic mechanical analysis of graphite/epoxy composites with varied interphases." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-10312009-020414/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nazhat, Showan Najdat. "Dynamic mechanical characterisation of hydroxyapatite reinforced biomedical composites." Thesis, Queen Mary, University of London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Attwood, Julia Patton. "Static and dynamic properties of polyethylene fibre composites." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dynamic composites"

1

1928-, Sun C. T., and United States. National Aeronautics and Space Administration., eds. Dynamic delamination crack propagation in a graphite/epoxy laminate. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sierakowski, R. L. Dynamic loading and characterization of fiber-reinforced composites. New York: Wiley, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Read, B. E. The determination of dynamic properties of polymers and composites. Michigan: UMI Books on Demand, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

C, Marques Elizabeth R., United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch, Massachusetts Institute of Technology. Dept. of Mechanical Engineering, and Lewis Research Center, eds. Parameterized materials and dynamic response characterizations in unidirectional composites. [Washington, D.C.?]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Babiloglu, Erol. A numerical study of dynamic crack propagation in composites. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Minnetyan, Levon. Progression of damage and fracture in composites under dynamic loading. [Washington, D.C.]: National Aeronautics and Space Administration, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Masters, John E. Standard test methods for textile composites. [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Masters, John E. Standard test methods for textile composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Center, Langley Research, ed. Thermomechanical response of shape memory alloy hybrid composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abrate, Serge. Dynamic Failure of Composite and Sandwich Structures. Dordrecht: Springer Netherlands, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dynamic composites"

1

Mianowski, K. M. "Dynamic Aspects in Fracture Mechanisms." In Brittle Matrix Composites 1, 81–91. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4319-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Babu, R. Rajesh, and Kinsuk Naskar. "Recent Developments on Thermoplastic Elastomers by Dynamic Vulcanization." In Advanced Rubber Composites, 219–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/12_2010_97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Milios, J., V. Kefalas, E. Sideridis, and G. Spathis. "Dynamic Properties of Epoxy Resins." In Handbook of Ceramics and Composites, 137–77. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210085-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Blazynski, T. Z. "Concepts of Dynamic Processing." In Dynamically Consolidated Composites: Manufacture and Properties, 1–8. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2892-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xia, Yiren, and C. Ruiz. "Dynamic Failure Processes in Fibre-Reinforced Composites." In Mechanical Identification of Composites, 213–22. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3658-7_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pshenichnov, Sergey. "Some Dynamic Problems for Layered Composites." In Structural Integrity, 193–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47883-4_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ortelt, M., F. Ruehle, H. Hald, and H. Weihs. "Dynamic Qualification of a New CMC Fastener." In High Temperature Ceramic Matrix Composites, 760–66. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527605622.ch115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coran, A. Y., and R. P. Patel. "Thermoplastic elastomers by blending and dynamic vulcanization." In Polypropylene Structure, blends and composites, 162–201. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0521-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dey, Sudip, Tanmoy Mukhopadhyay, and Sondipon Adhikari. "Stochastic Dynamic Analysis of Laminated Composite Plates." In Uncertainty Quantification in Laminated Composites, 37–66. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | “A science publishers book.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781315155593-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dey, Sudip, Tanmoy Mukhopadhyay, and Sondipon Adhikari. "Stochastic Dynamic Stability Analysis of Composite Laminates." In Uncertainty Quantification in Laminated Composites, 191–219. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2018] | “A science publishers book.”: CRC Press, 2018. http://dx.doi.org/10.1201/9781315155593-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dynamic composites"

1

ALIZADEH, VAHIDREZA, and ALIREZA V. AMIRKHIZI. "Dynamic Response of Filled Elastomers." In American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Whitney, Thomas J., and David Bettinger. "Dynamic Joining of Polymer Composites to Metals." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68818.

Повний текст джерела
Анотація:
Joining polymer matrix composites to metal, such as stainless steel for structural loading, requires the resolution of inherent differences in joining characteristics of each material. The missing element is a material that would be an intermediary between the metal and the composite. The ideal intermediate material would be weldable, as hard as steel, but able to pick up the fiber stress of the composite. Energy absorption through plastic behavior of the joint would also be desired.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BREUNIG, PETER, VINAY DAMODARAN, KIRAN SHAHAPURKAR, SUNIL WADDAR, MRITYUNJAY DODDAMANI, P. JEYARAJ, G. C. MOHAN KUMAR, and PAVANA PRABHAKAR. "Dynamic Impact Behavior of Syntactic Foam Core Sandwich Composites." In American Society for Composites 2018. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/25972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

WHISLER, DANIEL, RAFAEL CONSARNAU, and EZEQUIEL BUENROSTRO. "Dynamic Response and Validation of a Flexible Matrix Composite." In American Society for Composites 2018. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/25999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

CONSARNAU, RAFAEL, TUAN NGUYEN, and DANIEL WHISLER. "Impact Dynamic Behavior of Soft Composites at Low Temperatures." In American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

LAMBERSON, LESLIE, JULIE LOSSIGNOL, and ARIANA PARADISO. "Matrix and Confinement Influence on the Dynamic Behavior of Fiberglass." In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SAFDARI, MASOUD, MOHAMMAD MEHRABADI, SETH PEMBERTON, and ALESSANDRO GONDOLO. "High Fidelity Analysis of Dynamic Stresses in Wind Turbine Blades." In American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ata, T., and D. Coker. "Investigation of Three-Dimensional Dynamic Delamination in Curved Unidirectional CFRP Laminates." In VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

CUTTING, REBECCA A., ANTHONY J. FAVALORO, JOHNATHAN E. GOODSELL, and R. BYRON PIPES. "Determining Elastic Properties from the Dynamic Response of Discontinuous Fiber Composites." In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

BOUSSU, FRANCOIS, CAROLINE CHEVALIER, CHRISTOPHE KERISIT, ANDREAS KLAVZAR, and DANIEL COUTELLIER. "Influent Fabric Parameters on the Energy Absorption During Dynamic Tensile Loadings." In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Dynamic composites"

1

Mason, J. J. Application of Dynamic Fracture Mechanics to Composites. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada351990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Datta, Subhendu K. Dynamic Behavior of Fiber and Particle Reinforced Composites. Fort Belvoir, VA: Defense Technical Information Center, March 1993. http://dx.doi.org/10.21236/ada266905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Waas, A. M. Instrumentation for the Dynamic Response and Failure of Polymer Matrix Composites. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sankar, Bhavani V., and Ghatu Subhash. Failure in Three-Dimensional Woven Composites Subjected to Quasi-Static and Dynamic Indentation. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada605601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wnek, Gary E., and Thomas W. Smith. Block Copolymer Composites: A Bio-Optic Synthetic System for Dynamic Control of Refractive Index. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada434903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ren, Libo, Bazle A. Gama, John W. Gillespie, Yen Jr., and Chian-Fong. Dynamic Punch Shear Behavior of Unidirectional and Plain Weave S-2 Glass/SC15 Composites. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada422660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Spetsieris, N., and D. Edser. Framework for dynamic uncertainty budget evolution for mode I fracture toughness measurements of fibre-reinforced plastic (FRP) composites: a user’s guide to uncertainty budget calculation tool. National Physical Laboratory, June 2022. http://dx.doi.org/10.47120/npl.mat104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tzeng, Jerome T. Dynamic Fracture of Composite Gun Tubes. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada360721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Engblom, John J., and Ozden O. Ochoa. Nonlinear Dynamic Responses of Composite Rotor Blades. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada200145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ostachowicz, W. M., M. Krawczuk, and A. Zak. Dynamics of Cracked Composite Material Structures. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada303895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії