Добірка наукової літератури з теми "Double charge exchange reaction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Double charge exchange reaction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Double charge exchange reaction"

1

Auerbach, N. "The pion double charge exchange reaction." Nuclear Physics A 527 (May 1991): 443–50. http://dx.doi.org/10.1016/0375-9474(91)90136-t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lubian, J., J. L. Ferreira, R. Linares, F. Cappuzzello, M. Cavallaro, and D. Carbone. "The role of the transfer of nucleons in driving double charge exchange reactions." Journal of Physics: Conference Series 2340, no. 1 (September 1, 2022): 012035. http://dx.doi.org/10.1088/1742-6596/2340/1/012035.

Повний текст джерела
Анотація:
Abstract Transfer is an excellent tool to get insights into the short-range correlations on nucleons in a nuclear state. Within the context of direct reactions, the double charge exchange reactions have recently gained attention once their matrix elements might be associated with the double-beta decay rates. This class of reaction can occur from two completely distinctive mechanisms. They can take place by nucleons exchange or driven by mesons exchange between the projectile and target nuclei. Once the double charge exchange driven by multi-nucleon or mesons exchanges can compete with each other, it is crucial to analyze the contribution of the multi-nucleon transfer in this type of reaction to verify its relevance on the measured cross sections.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

NIEVES, J., E. OSET, S. HIRENZAKI, H. TOKI, and M. J. VICENTE-VACAS. "PION DOUBLE CHARGE EXCHANGE REACTIONS LEADING TO DOUBLE PIONIC ATOMS." Modern Physics Letters A 07, no. 32 (October 20, 1992): 2991–98. http://dx.doi.org/10.1142/s0217732392002366.

Повний текст джерела
Анотація:
We study theoretically pion double charge exchange reactions leading to double pionic atoms. The reaction cross-sections with two pions in the deeper bound pionic orbits in 208Pb are calculated with realistic pionic atom wave functions and distortion effects. The cross-sections are found to be d2σ/dEdΩ~10−3−10−4 µ b/srMeV , which are only a small fraction of the double charge exchange background.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kezerashvili, R. Ya. "Meson exchange currents in pion double charge exchange reaction." Nuclear Physics A 790, no. 1-4 (June 2007): 336c—339c. http://dx.doi.org/10.1016/j.nuclphysa.2007.03.061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baer, H. W., M. J. Leitch, C. S. Mishra, Z. Weinfeld, E. Piasetzky, J. R. Comfort, J. Tinsley, and D. H. Wright. "Pion double-charge-exchange reaction onCa44at 50 MeV." Physical Review C 43, no. 3 (March 1, 1991): 1458–61. http://dx.doi.org/10.1103/physrevc.43.1458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vergados, J. D. "Pion double-charge-exchange reaction: Shell model formalism." Physical Review C 44, no. 1 (July 1, 1991): 276–84. http://dx.doi.org/10.1103/physrevc.44.276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wei-Hsing, Ma, Wang Ying-Ca, Cai Chong-Hai, and Yu Zi-Qiang. "Mechanisms on Non-Analog Double Charge Exchange Reaction." Communications in Theoretical Physics 4, no. 4 (July 1985): 437–46. http://dx.doi.org/10.1088/0253-6102/4/4/437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lenske, Horst. "Heavy Ion Charge Exchange Reactions as Probes for Beta–Decay." EPJ Web of Conferences 223 (2019): 01031. http://dx.doi.org/10.1051/epjconf/201922301031.

Повний текст джерела
Анотація:
Peripheral heavy ion single and double charge reactions are described by fully quantum mechanical distorted wave methods. A special class of nuclear double charge exchange (DCE) reactions proceeding as a one-step reaction through a two-body process are shown to proceed by nuclear matrix elements of a diagrammatic structure as found also in 0ν2ß decay. These hadronic Majorana-type DCE reactions (MDCE) have to be distinguished from second order DCE reactions, given by double single charge exchange (DSCE) processes, resembling 2ν2ß decay. The theoretical concepts of MDCE are discussed. First results show that ion-ion DCE reactions are the ideal testing grounds for investigations of rare second order nuclear processes, giving insight into nuclear in-medium two-body correlation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Oset, E., M. Khankhasayev, J. Nieves, H. Sarafian, and M. J. Vicente-Vacas. "Absorption contribution to the pion double-charge-exchange reaction." Physical Review C 46, no. 6 (December 1, 1992): 2406–14. http://dx.doi.org/10.1103/physrevc.46.2406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lenske, Horst, Jessica Bellone, Maria Colonna, and Danilo Gambacurta. "Nuclear Matrix Elements for Heavy Ion Sequential Double Charge Exchange Reactions." Universe 7, no. 4 (April 13, 2021): 98. http://dx.doi.org/10.3390/universe7040098.

Повний текст джерела
Анотація:
The theoretical approach to a sequential heavy ion double charge exchange reaction is presented. A brief introduction into the formal theory of second-order nuclear reactions and their application to Double Single Charge Exchange (DSCE) reactions by distorted wave theory is given, thereby completing the theoretical background to our recent work. Formally, the DSCE reaction amplitudes are shown to be separable into superpositions of distortion factors, accounting for initial and final state ion–ion interactions, and nuclear matrix elements. A broad space is given to the construction of nuclear DSCE response functions on the basis of polarization propagator theory. The nuclear response tensors resemble the nuclear matrix elements of 2νββ decay in structure but contain in general a considerable more complex multipole and spin structure. The QRPA theory is used to derive explicit expressions for nuclear matrix elements (NMEs). The differences between the NME of the first and the second interaction vertexes in a DSCE reaction is elucidated. Reduction schemes for the transition form factors are discussed by investigating the closure approximation and the momentum structure of form factors. DSCE unit strength cross sections are derived.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Double charge exchange reaction"

1

Hessey, Nigel P. "The pion double charge exchange reaction on ¹⁸O at 50 MeV." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24682.

Повний текст джерела
Анотація:
This thesis discusses the pion double charge exchange (DCX) reaction ¹⁸0(π⁺,π⁻)¹⁸Ne at 50 MeV. Transitions to the ground state of ¹⁸Ne, which is the double-isobaric-analogue state (DIAS) of ¹⁸0, have been isolated. The differential cross sections for DIAS transitions have been measured at 6 scattering angles from 18.2° to 122.6°. The experiment was performed at TRIUMF in December 1984 using the QQD low energy pion spectrometer [26]. The differential cross section angular distribution is forward peaked, falling from 4.7±0.5 μb/sr at 0° (by extrapolation) to 0.61±0.11 μb/sr at 122.6°. The total (angle-integrated) cross section is 16.2±1.2 μb. DCX measurements are expected to give information on nuclear structure that is hard to obtain by other reactions. This information includes short range correlations and neutron-proton density differences. However, before such information can be extracted the mechanism for DCX must be understood. The aim of this experiment was to provide more data to test the various theories of the DCX mechanisms. The implications of the results for several theories of DCX are discussed. The forward peaking of DCX angular distributions at 50 MeV was unexpected. 50 MeV single charge exchange (SCX) angular distributions are forward dipped e.g. [14], a result of the cancellation of the 0° s and p wave scattering amplitudes for the reaction p(π⁺,π⁰)n. Early DCX calculations were based on the simple sequential mechanism. This assumes DCX proceeds via 2 successive SCX reactions, with the isobaric analogue as the intermediate state. These calculations predicted forward dipping and small cross sections for DCX [13,15]. The data shows this mechanism is an over-simplification. The standard model for π-nucleus scattering is the optical potential. Johnson and Siciliano are developimg a potential with which to calculate elastic, SCX and DCX cross sections [48,38,22]. They include second, order terms, important in DCX because the reaction must involve scattering by at least two nucleons. By using a general form for the optical potential they include contributions from excited intermediate states. Miller has suggested the forward peaking is due to the presence of six-quark clusters in the nucleus [16]. His model reproduces the data for 50 MeV DCX on ¹⁸0 and ¹⁴C at forward angles. Karapiperis and Kobayashi have used the Δ-hole model to calculate elastic, SCX and DCX cross sections [19]. They obtain fair agreement with data for a range of nuclei and energies. Jennings et al. [22] are developing a model in which short range correlations produce the forward peaking. This work is at an early stage. More DCX measurements are needed to choose between the various models. Measurements at 50 MeV are particularly valuable because the simple sequential mechanism is small, allowing other mechanisms to be observed. Further data such as excitation functions below 80 MeV and angular distributions for other nuclei are needed.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MAGANA, VSEVOLODOVNA RUSLAN IDELFONSO. "Transfer reactions, neutrinoless double beta decay and double charge exchange." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/930766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bondì, Mariangela. "Heavy-ion double charge exchange reactions as tools for 0bb decays. The 40Ca(18O,18Ne)40Ar reaction at 270 MeV by using MAGNEX." Doctoral thesis, Università di Catania, 2015. http://hdl.handle.net/10761/3759.

Повний текст джерела
Анотація:
This study is inserted in a research line that aims to access the Nuclear Matrix Element (NME) involved in the half-life of the 0 bb decay, by measuring the cross sections of heavy-ion induced Double Charge Exchange (DCE) reactions with high accuracy. The basic point is that the initial and nal state of both 0 bb decay and DCE processes are the same. In addition, both processes pass through the same intermediate state and the transition operators have a similar mathematical structure. This work shows for the rst time experimental data on heavy-ion DCE reaction in a wide range of transferred momenta, with an acceptable statistical signi cance and good angular and energy resolution. In particular (18O,18Ne) reaction at 270 MeV incident energy on 40Ca target was investigated. In order to estimate the contribution of the concurrent channels the 40Ca(18O,18F)40K single charge exchange intermediate channel and the competing processes 40Ca(18O,20Ne)38Ar two-proton transfer and 40Ca(18O,16O)42Ca two-neutron transfer were also studied. The experiment was performed at Laboratori Nazionali del Sud (LNSINFN) in Catania using a 270 MeV energy 18O Cyclotron beam impinging on a 279 g/cm2 thick 40Ca target. The ejectiles were momentum analysed by the MAGNEX large acceptance magnetic spectrometer and detected by its focal plane detector. The energy spectra and angular distributions have been extracted. The data analysis of experimental results have established that the transition to 40Args: is dominated by the direct processes. Finally, an innovative technique to infer on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction was proposed. The main assumption are that the DCE reaction is a twostep charge exchange and a surface localized process. The model adopted to describe the cross section of the DCE reaction consists in a generalization of the well-established factorization of the single charge-exchange cross section, valid under certain hypothesis, discussed in the thesis. Therefore, the cross section could be factorized in a nuclear structure term, containing the matrix elements, and a nuclear reaction one (unit cross section). Despite the used approximations, the extracted strength and nuclear matrix elements are reasonable within +-50%, signalling that the main physics content has been kept.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bellone, Jessica Ilaria. "Determination of the link between heavy ion charge exchange reactions and single and double beta decay matrix elements." Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4119.

Повний текст джерела
Анотація:
We performed theoretical studies on Heavy ion charge exchange reactions, at low energies, focusing on the interplay between nuclear structure and reaction dynamics. Such studies allow also to enlight the existence of a relation between Heavy ion double charge exchange (HIDCE) cross section at forward scattering angles and double beta ($\beta\beta$) decay nuclear matrix element (NME) of the target or projectile nucleus considered. HIDCE reactions can be described as a sequence of two single charge changing processes, which can be correlated or not, thus mimicking $0\nu\beta\beta$ and $2\nu\beta\beta$ decays, respectively. The dominance of the former mechanism would allow to gain information on $0\nu\beta\beta$ NME, thus in turn allowing to determine neutrino Majorana mass with a significant accuracy, if such weak decay were observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

PINNA, FEDERICO. "Study and Production of Special Targets for DCE Reactions with 0vbb-Decay Final States in the NUMEN Experiment." Doctoral thesis, Politecnico di Torino, 2019. http://hdl.handle.net/11583/2729322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

CAPIROSSI, VITTORIA. "Study of the characteristics of the NUMEN Project targets to optimize the energy resolution in the measurements of the Double Charge Exchange reactions cross section." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2897010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Müllers, Andreas [Verfasser]. "Production of antihydrogen via double charge exchange / Andreas Müllers." Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/1033733016/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kabutz, Rudolf T. "The (p, n) charge-exchange reaction on ⁹⁰Zr at intermediate energies." Master's thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/17385.

Повний текст джерела
Анотація:
Bibliography: p. 67-69.
Using the Time-of-Flight facility at the National Accelerator Centre at Faure, the (p, n) charge-exchange reaction has been studied at intermediate energies of 120, 160 and 200 MeV, and at angles of 0°, 2° and 4°. In this work the data collected for the ⁹⁰Zr target will be presented. The influence on the data from slow neutrons due to previous pulses is discussed and the best manner of removing them from the spectra is recommended. It is shown how the background cosmic rays can be utilised to measure the intrinsic resolution of the detectors and to obtain an estimate of the neutron energy threshold. The differential cross-sections for the states corresponding to Fermi and Gamow-Teller transitions were extracted from the time spectra. The sum of the strength of all the discrete Gamow-Teller states was determined and compared to the Ikeda Sum Rule. It was found that only 50% of the sum could be accounted for in the discrete states. An overview of the theory that has been developed to extract Gamow-Teller strengths from the (p, n) cross-sections is given. Some of the theoretical models that have been used to describe the ⁹⁰Zr(p, n)⁹⁰ Nb reaction and account for the missing Gamow-Teller strength are briefly discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fong, Wilson. "Inclusive pion double charge exchange in light p-shell nuclei at intermediate energies." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/26854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Latacz, Barbara Maria. "Study of the antihydrogen atom and ion production via charge exchange reaction on positronium." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS266/document.

Повний текст джерела
Анотація:
Le but principal de la collaboration GBAR est de mesurer le comportement d'atomes d'antihydrogène sous l'effet de la gravité terrestre. Ceci est fait en mesurant la chute libre classique d'atomes d'antihydrogène, qui est un test direct du principe d'équivalence faible pour l'antimatière. La première étape de l'expérience est de produire des ions d'antihydrogène et de les amener dans un piège de Paul, où ils peuvent être refroidis à une température de l'ordre du μK en utilisant la technique du refroidissement sympathique avec des ions Be⁺ eux-mêmes mis dans leur état fondamental par la technique Raman à bande latérale. Une température de l'ordre du μK correspond à une vitesse de la particule de l'ordre de 1 m/s. Une fois cette vitesse atteinte, l'ion antihydrogène peut être neutralisé et commence sa chute. Ceci permet une précision de 1 % sur la mesure de l’accélération gravitationnelle g pour l’antimatière avec environ 1500 événements. Cependant, pour mesurer la chute libre, il faut d'abord produire l'ion antihydrogène. Celui-ci est formé dans les réactions d'échange de charge entre des antiprotons et des antihydrogènes avec du positronium. Positronium et atomes d'antihydrogène peut se trouver soit à l’état fondamental, soit dans un état excité. Une étude expérimentale de la mesure de la section efficace de ces deux réactions est décrite dans cette thèse. La production de l'atome d'antihydrogène ainsi que de l'ion se passe à l’intérieur d'une cavité. La formation d'un antihydrogène ion lors d'une interaction entre faisceaux requiert environ 5x10⁶ antiprotons/paquet et quelques 10¹¹ Ps/cm⁻³ de densité de positronium à l’intérieur d'une cavité. Celle-ci est produite par un faisceau contenant 5x10¹⁰ positrons par paquet. La production de faisceaux aussi intenses avec les propriétés requises est en soi un challenge. Le développement de la source de positrons de GBAR est décrite. Celle-ci est basée sur un accélérateur linéaire à électrons de 9 MeV. Le faisceau d’électrons est incident sur une cible de tungstène où les positrons sont créés par rayonnement de freinage (gammas) et création de paires. Une partie des positrons ainsi créés diffusent à nouveau dans un modérateur de tungstène en réduisant leur énergie à environ 3 eV. Ces particules sont re-accélérées à une énergie d'environ 53 eV. Aujourd'hui, le flux mesuré de positrons est au niveau de 6x10⁷ e⁺/s, soit quelques fois. Puis la thèse comporte une courte description des préparatifs pour les faisceaux d'antiprotons ou de protons, terminée par un chapitre sur le taux de production attendu d'atomes et d'ions d'antihydrogène. En aval de la réaction, les faisceaux d'antiprotons, d'atomes et d'ions d'antihydrogène sont guidés vers leur système de détection. Ceux-ci ont été conçus de façon à permettre la détection d'un à plusieurs milliers d'atomes d'antihydrogène, un seul ion antihydrogène et tous les 5x10⁶ antiprotons. Ceci est particulièrement difficile parce que l'annihilation des antiprotons crée beaucoup de particules secondaires qui peuvent perturber la mesure d'un atome ou ion. La majeure partie de la thèse consiste en la description des bruits de fond attendus pour la détection des atomes et ions d'antihydrogène. De plus, le système de détection permet de mesurer les sections efficaces pour les réactions symétriques de production d'atomes et d'ions hydrogèene par échange de charge entre protons et positronium. La partie production d’antihydrogène ions de l’expérience a été complètement installée au CERN en 2018. Les premiers tests avec des antiprotons provenant du décélérateur ELENA ont été effectués. Actuellement, l’expérience est testée avec des positrons et des protons, de façon à former des atomes et ions hydrogène. Une optimisation de la production de ces ions de matière aidera à se préparer pour la prochaine période de faisceau d'antiprotons en 2021
The main goal of the GBAR collaboration is to measure the Gravitational Behaviour of Antihydrogen at Rest. It is done by measuring the classical free fall of neutral antihydrogen, which is a direct test of the weak equivalence principle for antimatter. The first step of the experiment is to produce the antihydrogen ion and catch it in a Paul trap, where it can be cooled to μK temperature using ground state Raman sideband sympathetic cooling. The μK temperature corresponds to particle velocity in the order of 1 m/s. Once such velocity is reached, the antihydrogen ion can be neutralised and starts to fall. This allows reaching 1 % precision on the measurement of the gravitational acceleration g for antimatter with about 1500 events. Later, it would be possible to reach 10⁻⁵ - 10⁻⁶ precision by measuring the gravitational quantum states of cold antihydrogen. However, in order to measure the free fall, firstly the antihydrogen ion has to be produced. It is formed in the charge exchange reactions between antiproton/antihydrogen and positronium. Positronium and antihydrogen atoms can be either in a ground state or in an excited state. An experimental study of the cross section measurement for these two reactions is described in the presented thesis. The antihydrogen atom and ion production takes place in a cavity. The formation of one antihydrogen ion in one beam crossing requires about 5x10⁶ antiprotons/bunch and a few 10¹¹ Ps/cm⁻³ positronium density inside the cavity, which is produced with a beam containing 5x10¹⁰ positrons per bunch. The production of such intense beams with required properties is a challenging task. First, the development of the positron source is described. The GBAR positron source is based on a 9 MeV linear electron accelerator. The relatively low energy was chosen to avoid activation of the environment. The electron beam is incident on a tungsten target where positrons are created from Bremsstrahlung radiation (gammas) through the pair creation process. Some of the created positrons undergo a further diffusion in the tungsten moderator reducing their energy to about 3 eV. The particles are re-accelerated to about 53 eV energy and are adiabatically transported to the next stage of the experiment. Presently, the measured positron flux is at the level of 6x10⁷ e⁺/s, which is a few times higher than intensities reached with radioactive sources. Then, the thesis features a short description of the antiproton/proton beam preparations, finalised with a chapter about the expected antihydrogen atom and ion production yield. After the reaction, antiproton, antihydrogen atom, and ion beams are guided to the detection system. It is made to allow for detection from 1 to a few thousand antihydrogen atoms, a single antihydrogen ion and all 5x10⁶ antiprotons. It is especially challenging because antiproton annihilation creates a lot of secondary particles which may disturb measurements of single antihydrogen atoms and ions. The main part of the Thesis is the description of the expected background for the antihydrogen atom and ion detection. Additionally, the detection system allows measuring the cross sections for the symmetric reactions of a hydrogen atom and ion production through charge exchange between protons and positronium. The antihydrogen ion production part of the experiment was fully installed at CERN in 2018. The first tests with antiprotons from the ELENA decelerator were done. Currently, the experiment is being commissioned with positrons and protons, in order to perform the hydrogen atom and ion formation. The optimisation of the ion production with matter will help to be fully prepared for the next antiproton beam time in 2021
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Double charge exchange reaction"

1

1941-, Ulstrup Jens, ed. Electron transfer in chemistry and biology: An introduction to the theory. Chichester: Wiley, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

J, Mattay, and Baumgarten M, eds. Electron transfer. Berlin: Springer-Verlag, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

R, Gibbs William, and Leitch M. J, eds. Second LAMPF International Workshop on Pion-Nucleus Double Charge Exchange: August 9-11, 1989, Los Alamos, USA. Singapore: World Scientific, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Helmut, Sigel, and Sigel Astrid, eds. Electron transfer reactions in metalloproteins. New York: M. Dekker, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Charge transfer in physics, chemistry, and biology: Physical mechanisms of elementary processes and an introduction to the theory. Luxembourg: Gordon and Breach Publishers, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Zhiyu. Electron transfer and structural studies in bacterial photosynthetic reaction centers. 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Delgado, Angel V., and Silvia Ahualli. Charge and Energy Storage in Electrical Double Layers. Elsevier Science & Technology Books, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Delgado, Angel V., and Silvia Ahualli. Charge and Energy Storage in Electrical Double Layers. Elsevier Science & Technology, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ulstrup, Jens, and Alexander M. Kuznetsov. Electron Transfer in Chemistry and Biology: An Introduction to the Theory (Wiley Series in Theoretical Chemistry). Wiley, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

(Editor), M. Baumgarten, ed. Electron Transfer: Volume 1. Springer, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Double charge exchange reaction"

1

Šimkovic, F., and A. Faessler. "Description of Low-Energy Pion Double Charge Exchange Reactions." In Mesons and Light Nuclei ’95, 231–35. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-9453-9_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bellone, Jessica I., S. Burrello, Maria Colonna, Horst Lenske, and José A. Lay Valera. "First Steps Towards An Understanding of the Relation Between Heavy Ion Double Charge Exchange Nuclear Reactions and Double Beta Decays." In Springer Proceedings in Physics, 123–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22204-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fong, W., J. L. Matthews, M. L. Dowell, E. R. Kinney, S. A. Wood, P. A. M. Gram, G. A. Rebka, and D. A. Roberts. "Pion Double Charge Exchange in p-shell Nuclei." In Mesons and Light Nuclei ’95, 187–91. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-9453-9_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Clement, Heinz. "Nucleon-Nucleon Correlations in the Pionic Double Charge Exchange." In Correlations and Clustering Phenomena in Subatomic Physics, 79–98. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4684-1366-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abramov, B. M., S. A. Bulychjov, I. A. Dukhovskoi, A. I. Khanov, Y. S. Krestnikov, A. P. Krutenkova, V. V. Kulikov, et al. "Inclusive Pion Double Charge Exchange on Light Nuclei above 0.5 GeV." In Mesons and Light Nuclei ’95, 237–40. Vienna: Springer Vienna, 1995. http://dx.doi.org/10.1007/978-3-7091-9453-9_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bilger, R., H. Clement, K. Föhl, K. Heitlinger, G. J. Wagner, C. Joram, W. Kluge, et al. "Signature of a Narrow πNN-Resonance in the Energy Dependence of the Pionic Double Charge Exchange." In Few-Body Problems in Physics ’93, 208–12. Vienna: Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-9352-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Momota, S., M. Mihara, D. Nishimura, M. Fukuda, Y. Kamisho, M. Wakabayashi, K. Matsuta, et al. "Momentum dependence of spin polarization for beta emitting nuclei produced through charge exchange reaction at intermediate energy." In HFI / NQI 2012, 53–58. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-6479-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Agnello, M., A. Ahmidouch, J. Arvieux, R. Bertini, R. Birsa, F. Bradamante, T. Bressani, et al. "Measurement of Spin Transfer Parameters in the $$\bar p$$ p→ $$\bar n$$ n Charge-Exchange Reaction at LEAR." In Spin and Isospin in Nuclear Interactions, 155–60. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3834-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SUBRAMANIAN, M. A., A. P. RAMIREZ, and G. H. KWEI. "COLOSSAL MAGNETORESISTANCE WITHOUT DOUBLE-EXCHANGE: PYROCHLORES." In Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, 207–16. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789812816795_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bethke, Craig M. "Surface Complexation." In Geochemical Reaction Modeling. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195094756.003.0012.

Повний текст джерела
Анотація:
An important consideration in constructing certain types of geochemical models, especially those applied to environmental problems, is to account for the sorption of ions from solution onto mineral surfaces. Metal oxides and aluminosilicate minerals, as well as other phases, can sorb electrolytes strongly because of their high reactivities and large surface areas (e.g., Davis and Kent, 1990). When a fluid comes in contact with minerals such as iron or aluminum oxides and zeolites, sorption may significantly diminish the mobility of dissolved components in solution, especially those present in minor amounts. Sorption, for example, may retard the spread of radionuclides near a radioactive waste repository or the migration of contaminants away from a polluting landfill. In acid mine drainages, ferric oxide sorbs heavy metals from surface water, helping limit their downstream movement (see Chapter 23). A geochemical model useful in investigating such cases must provide an accurate assessment of the effects of surface reactions. Many of the sorption theories now in use are too simplistic to be incorporated into a geochemical model intended for general use. To be useful in modeling electrolyte sorption, a theory must account for the electrical charge on the mineral surface and provide for mass balance on the sorbing sites. In addition, an internally consistent and sufficiently broad database of sorption reactions must accompany the theory. The Freundlich and Langmuir theories, which use distribution coefficients Kd to set the ratios of sorbed to dissolved ions, are applied widely in groundwater studies (Domenico and Schwartz, 1990) and used with considerable success to describe sorption of uncharged organic molecules (Adamson, 1976). The models, however, do not account for the electrical state of the surface, which varies sharply with pH, ionic strength, and solution composition. Freundlich theory prescribes no concept of mass balance, so that a surface might be predicted to sorb from solution without limit. Both theories require that distribution coefficients be determined experimentally for individual fluid and rock compositions, and hence both theories lack generality. Ion exchange theory (Stumm and Morgan, 1981; Sposito, 1989) suffers from similar limitations. Surface complexation models, on the other hand, account explicitly for the electrical state of the sorbing surface (e.g., Adamson, 1976; Stumm, 1992).
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Double charge exchange reaction"

1

REN, YONG-JIAN, LU GUO, BAO-XI SUN, CAI-WAN SHEN та EN-GUANG ZHAO. "π NUCLEAR DOUBLE CHARGE EXCHANGE REACTION AND NUCLEON CORRELATION". У Proceedings of the International Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810380_0028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Double charge exchange reactions and neutrinoless double beta decay." In WORKSHOP ON CALCULATION OF DOUBLE-BETA-DECAY MATRIX ELEMENTS (MEDEX’19). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Frekers, D., Osvaldo Civitarese, Ivan Stekl та Jouni Suhonen. "Charge-exchange reactions and nuclear matrix elements for ββ decay". У WORKSHOP ON CIRCULATION OF DOUBLE-BETA-DECAY MATRIX. AIP, 2009. http://dx.doi.org/10.1063/1.3266101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Takaki, Motonobu, Hiroaki Matsubara, Tomohiro Uesaka, Nori Aoi, Masanori Dozono, Takashi Hashimoto, Takahiro Kawabata, et al. "Heavy-Ion Double-Charge Exchange Study via a12C(18O,18Ne)12Be Reaction." In Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014). Journal of the Physical Society of Japan, 2015. http://dx.doi.org/10.7566/jpscp.6.020038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fujioka, Hiroyuki, Tomokazu Fukuda, Toru Harada, Emiko Hiyama, Kenta Itahashi, Shunsuke Kanatsuki, Tomofumi Nagae, Takuya Nanamura, and Takahiro Nishi. "Search for Tetraneutron by Pion Double Charge Exchange Reaction at J-PARC." In Proceedings of the 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016). Journal of the Physical Society of Japan, 2017. http://dx.doi.org/10.7566/jpscp.13.020058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bleszynski, E., M. Bleszynski, and R. J. Glauber. "Nucleon-nucleon correlations detected via pion double-charge-exchange reactions." In AIP Conference Proceedings Volume 163. AIP, 1987. http://dx.doi.org/10.1063/1.36906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

TAKAHISA, K., H. AKIMUNE, H. EJIRI, H. FUJIMURA, M. FUJIWARA, K. HARA, H. HASIMOTO, et al. "THE NUCLEAR RESPONSES FOR DOUBLE BETA NEUTRINOS AND DOUBLE SPIN ISOSPIN RESONANCES BY USING OF DOUBLE CHARGE EXCHANGE HEAVY ION REACTION." In Origin of Matter and Evolution of Galaxies 2003 - The International Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702739_0062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kisamori, Keiichi, Susumu Shimoura, Hiroyuki Miya, Marlene Assie, Hidetada Baba, Tatsuo Baba, Didier Beaumel, et al. "Missing-Mass Spectroscopy of the 4-Neutron System by Exothermic Double-Charge Exchange Reaction 4He(8He,8Be)4n." In Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014). Journal of the Physical Society of Japan, 2015. http://dx.doi.org/10.7566/jpscp.6.030075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Agodi, C., F. Cappuzzello, D. L. Bonanno, D. G. Bongiovanni, V. Branchina, L. Calabretta, A. Calanna та ін. "NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination". У RECENT DEVELOPMENTS IN NONLINEAR ACOUSTICS: 20th International Symposium on Nonlinear Acoustics including the 2nd International Sonic Boom Forum. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4934890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pate, S. F., W. Fong, M. T. Harvey, J. L. Matthews, H. T. Park, L. L. Vidos, V. V. Zelevinsky та ін. "Two-nucleon processes in pion-induced double charge exchange in 4He: A coincidence measurement of the 4He(π+,π− p)3p reaction". У The 14th international conference of few-body problems in physics. AIP, 1995. http://dx.doi.org/10.1063/1.48148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Double charge exchange reaction"

1

Gilman, R. A. Systematics of pion double charge exchange. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/6248183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ginocchio, J. N. Pion double charge exchange and nuclear structure. Office of Scientific and Technical Information (OSTI), January 1987. http://dx.doi.org/10.2172/5954669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bao, W., J. D. Axe, C. H. Chen, S. W. Cheong, P. Schiffer, and M. Roy. From double exchange to superexchange in charge ordering perovskite manganites. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/307963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Seidl, P. A. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56. Office of Scientific and Technical Information (OSTI), February 1985. http://dx.doi.org/10.2172/5885340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kaita, R., W. W. Heidbrink, G. W. Hammett, A. A. Chan, A. C. England, H. W. Hendel, S. S. Medley, E. Nieschmidt, A. L. Roquemore, and S. D. Scott. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5793231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dietrich, F. Expressions for Form Factors for Inelastic Scattering and Charge Exchange in Plane-Wave, Distorted-Wave, and Coupled-Channels Reaction Formalisms. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/898022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії