Добірка наукової літератури з теми "Dose Computation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dose Computation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dose Computation"
Knöös, T. "3D dose computation algorithms." Journal of Physics: Conference Series 847 (May 2017): 012037. http://dx.doi.org/10.1088/1742-6596/847/1/012037.
Повний текст джерелаBattista, J., J. Chen, S. Sawchuk, and G. Hajdok. "Evolution of 3D X-Ray Dose Computation Algorithms." Journal of Physics: Conference Series 2630, no. 1 (November 1, 2023): 012008. http://dx.doi.org/10.1088/1742-6596/2630/1/012008.
Повний текст джерелаCutanda Henríquez, Francisco, and Silvia Vargas Castrillón. "Confidence intervals in dose volume histogram computation." Medical Physics 37, no. 4 (March 15, 2010): 1545–53. http://dx.doi.org/10.1118/1.3355888.
Повний текст джерелаLaub, W., M. Alber, M. Birkner, and F. Nüsslin. "Monte Carlo dose computation for IMRT optimization*." Physics in Medicine and Biology 45, no. 7 (June 26, 2000): 1741–54. http://dx.doi.org/10.1088/0031-9155/45/7/303.
Повний текст джерелаTang, Man-Lai, Karim F. Hirji, and Stein E. Vollset. "Exact power computation for dose—response studies." Statistics in Medicine 14, no. 20 (October 30, 1995): 2261–72. http://dx.doi.org/10.1002/sim.4780142009.
Повний текст джерелаSandison, G. A., and L. S. Papiez. "Dose computation applications of the electron loss model." Physics in Medicine and Biology 35, no. 7 (July 1, 1990): 979–97. http://dx.doi.org/10.1088/0031-9155/35/7/013.
Повний текст джерелаMohan, R., C. Chui, and L. Lidofsky. "Differential pencil beam dose computation model for photons." Medical Physics 13, no. 1 (January 1986): 64–73. http://dx.doi.org/10.1118/1.595924.
Повний текст джерелаSiebert, Frank-André, Ping Jiang, Rene Baumann, Gunnar Bockelmann, Susann Bohn, Maike Thieben, and Jürgen Dunst. "Dose Computation of Keloids in Brachytherapy: Tg-43 or Model-Based-Dose-Calculation?" Brachytherapy 15 (May 2016): S149. http://dx.doi.org/10.1016/j.brachy.2016.04.262.
Повний текст джерелаDray, Nicolas, Nicolas Mary, Cédric Dossat, Jefferson Bourgoin, and Nathalie Chatry. "An overview of last decade’s developments in RayXpert®, a 3D Monte Carlo code." EPJ Nuclear Sciences & Technologies 10 (2024): 10. http://dx.doi.org/10.1051/epjn/2024013.
Повний текст джерелаPanitsa, E., J. C. Rosenwald, and C. Kappas. "Developing a dose-volume histogram computation program for brachytherapy." Physics in Medicine and Biology 43, no. 8 (August 1, 1998): 2109–21. http://dx.doi.org/10.1088/0031-9155/43/8/009.
Повний текст джерелаДисертації з теми "Dose Computation"
Jung, Haejae. "Algorithms for external beam dose computation." [Florida] : State University System of Florida, 2000. http://etd.fcla.edu/etd/uf/2000/ane5955/etd.pdf.
Повний текст джерелаTitle from first page of PDF file. Document formatted into pages; contains xii, 143 p.; also contains graphics. Vita. Includes bibliographical references (p. 140-142).
Fox, Timothy Harold. "Computation and optimization of dose distributions for rotational stereotactic radiosurgery." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/32843.
Повний текст джерелаInacio, Eloïse. "Méthodes numériques en imagerie médicale pour l'évaluation de dose per-opératoire en ablation par électroporation." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0474.
Повний текст джерелаAs life expectancy rises, cancer has tragically become one of the world’s leading causes of death. Among the most challenging cancers are deep-seated tumors, which are difficult to treat due to their location in vital organs like the liver or the pancreas. A promising method to tackle these tumors is electroporation ablation, which uses electric fields to create pores in the cell membranes of tumor cells. When applied with high intensity, this results in irreversible electroporation, leading to cell death without damaging nearby structures. However, electroporation requires precise planning and real-time adaptation due to its complexity. This involves numerical tools to analyze medical images and estimate the treatment area. The aim of this work is to provide such tools, analysing medical images, to per-operatively estimate the treatment area so that the interventional radiologists may adapt their approach as they are performing the procedure. More specifically, we tackle the localisation of the electrode by introducing deep learning in the existing pipeline, and the registration of the multiple scans captured during the intervention with novel auto-adaptive boundary conditions. Both computer vision tasks are crucial for a precise estimation of the electric field and need to be solved in near real time to be practical in clinical settings. These advancements in computer vision and image processing contribute to more accurate electric field estimation and improve the overall effectiveness of the procedure, leading to better patient outcomes for those battling deep-seated cancers
Vautrin, Mathias. "Planification de traitement en radiothérapie stéréotaxique par rayonnement synchrotron. Développement et validation d'un module de calcul de dose par simulations Monte Carlo." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00641325.
Повний текст джерелаNygren, Nelly. "Optimization of the Gamma Knife Treatment Room Design." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300904.
Повний текст джерелаStrålsäkerhet är en viktig aspekt vid uppförandet av behandlingsrum för strål-terapisystem. Strålningsnivåerna som sjukvårdspersonal och allmänheten kan exponeras för utanför behandlingsrummet regleras av myndigheter och påverkar vilken väggtjocklek som behövs och vilka platser som är lämpliga att placera systemen på. Flertalet metoder för strålskyddsberäkning existerar, men de är inte väl anpassade till det stereotaktiska radiokirurgiska systemet Leksell Gamma Knife, eftersom det har ett inbyggt strålskydd. Det inbyggda strålskyddet gör att strålfältet runt Gamma Knife är anisotropt och generellt har lägre energi än primärstrålningen från systemets koboltkällor. Förenklingar som görs rörande strålfältet i flera existerande metoder för strålskyddsberäkning kan leda till att överdrivet tjocka strålskydd används eller begränsa antalet lämpliga platser att placera systemet på. I detta projekt utvecklades en dosberäkningsalgoritm, som i två steg använder data genererad genom Monte Carlo-simuleringar. Algoritmen använder ett fasrum för att detaljerat beskriva strålfältet runt Gamma Knife. Information om enskilda fotoner i fältet används sen i kombination med ett genererat bibliotek av data som beskriver det dosbidrag som en foton bidrar med utanför behandlingsrummet, baserat på fotonens energi och väggarnas tjocklek. Dosberäkningsalgoritmen är snabb nog att integreras i optimeringsprocesser där den används iterativt samtidigt som rumsdesignparametrar varieras. I denna rapport demonstreras ett fall med ett rum av bestämd storlek, där positionen av Gamma Knife i rummet och väggarnas tjocklekar varieras. Optimeringens syfte i exemplet är att hitta den rumsdesign som med de minsta väggtjocklekarna resulterar i acceptabla strålningsnivåer utanför rummet. Resultaten tyder på att dosberäkningsalgoritmen sannolikt kan användas i mer komplexa optimeringar med fler designvariabler och mer avancerade designmål.
Morén, Björn. "Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy." Licentiate thesis, Linköpings universitet, Optimeringslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154966.
Повний текст джерелаAspradakis, Maria M. "A study to assess and improve dose computations in photon beam therapy." Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/21334.
Повний текст джерелаOLIVEIRA, JUNIOR Wilson Rosa de. "Turing´s analysis of computation and artificial neural network." Universidade Federal de Pernambuco, 2004. https://repositorio.ufpe.br/handle/123456789/1970.
Повний текст джерелаConselho Nacional de Desenvolvimento Científico e Tecnológico
Inspirado por uma sugestão de McCulloch e Pitts em seu trabalho pioneiro, uma simulação de Máquinas de Turing (MT) por Redes Neurais Artifiais (RNAs) apresentada. Diferente dos trabalhos anteriores, tal simulação está de acordo com a interpretação correta da análise de Turing sobre computação; é compatvel com as abordagens correntes para análise da cognição como um processo interativo agente-ambiente; e é fisicamente realizável uma vez que não se usa pesos nas conexãos com precisão ilimitada. Uma descrição completa de uma implementação de uma MT universal em uma RNA recorrente do tipo sigmóide é dada. A fita, um recurso infinito, é deixada fora da codificação como uma caracterstica externa não-intrínsica. A rede resultante é chamada de Máquina de Turing Neural. O modelo clássico de computação Máquina de Turing = Fita + Autômato de Estados Finito (AEF) é trocado pelo modelo de computação neural Máquina de Turing Neural (MTN) = Fita + Rede Neural Artifial (RNA) Argumentos para plausabilidade física e cognitiva desta abordagem são fornecidos e as consequências matemáticas são investigadas. E bastante conhecido na comunidade de neurocomputação teórica, que um AEF arbitrário não pode ser implementado em uma RNA quando ruído ou limite de precisão é considerado: sob estas condições, sistemas analógicos em geral, e RNA em particular, são computacionalmente equivalentes aos Autômatos Definidos uma classe muita restrita de AEF. Entre as principais contribuições da abordagem proposta é a definição de um novo modelo de máquina, Máquina de Turing Definida(MTD), que surge quando ruído é levado em consideração. Este resultado reflete na segunda equação descrita acima se tornando MTN com ruíıdo (MTN) = Fita + RNA com ruído(RNA) com a equação correspondente Máquina de Turing Definida = Fita + Autômatos Finitos Definidos (AFD) A investigação de capacidades computacionais das Máquinas de Turing Definida é uma outra contribuição importante da Tese. É provado que elas computam a classe das funções elementares (Brainerd & Landweber, 1974) da Teoria da Recursão
Palit, Robin. "Computational Tools and Methods for Objective Assessment of Image Quality in X-Ray CT and SPECT." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/268492.
Повний текст джерелаMoura, Augusto Fontan. "A computational study of the airflow at the intake region of scramjet engines." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2973.
Повний текст джерелаКниги з теми "Dose Computation"
D, Sawant Pramilla, and Bhabha Atomic Research Centre, eds. Manual on internal dose computation and reporting. Mumbai: Bhabha Atomic Research Centre, 1999.
Знайти повний текст джерелаUnited States. Defense Nuclear Agency, ed. FIIDOS--a computer code for the computation of fallout inhalation and ingestion dose to organs: Computer user's guide. Washington, D.C: Defense Nuclear Agency, 1985.
Знайти повний текст джерела1957-, Jackson Thomas L., and Joslin R. D. 1963-, eds. Theory and computation in hydrodynamic stability. Cambridge: Cambridge University Press, 2003.
Знайти повний текст джерела1934-, Jameson Antony, Caughey D. A, and Hafez M. M, eds. Frontiers of computational fluid dynamics 1994. Chichester: Wiley, 1994.
Знайти повний текст джерела1940-, Jäger W., Rannacher Rolf, and Warnatz J, eds. Reactive flows, diffusion and transport: From experiments via mathematical modeling to numerical simulation and optimization : final report of SFB (Collaborative Research Center) 359. Berlin: Springer, 2007.
Знайти повний текст джерелаChakrabarti, Anirban. Grid computing security. Berlin: Springer, 2010.
Знайти повний текст джерелаTuncer, Cebeci, ed. Computational fluid dynamics for engineers: From panel to Navier-Stokes methods with computer programs. Long Beach, Calif: Horizons Pub. Inc., 2005.
Знайти повний текст джерелаBattista, Jerry. Introduction to Megavoltage X-Ray Dose Computation Algorithms. Taylor & Francis Group, 2019.
Знайти повний текст джерелаIntroduction to Megavoltage X-Ray Dose Computation Algorithms. Taylor & Francis Group, 2019.
Знайти повний текст джерелаBattista, Jerry. Introduction to Megavoltage X-Ray Dose Computation Algorithms. Taylor & Francis Group, 2019.
Знайти повний текст джерелаЧастини книг з теми "Dose Computation"
Rosenwald, J. C. "Framework for Computation of Patient Dose Distribution." In Handbook of Radiotherapy Physics, Vol1:557—Vol1:564. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201493-33.
Повний текст джерелаDo, Synho, Janne J. Näppi, and Hiroyuki Yoshida. "Iterative Reconstruction for Ultra-Low-Dose Laxative-Free CT Colonography." In Abdominal Imaging. Computation and Clinical Applications, 99–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41083-3_12.
Повний текст джерелаLaub, W., M. Alber, M. Birkner, and F. Nüsslin. "IMRT with Monte Carlo dose computation: what is the benefit?" In The Use of Computers in Radiation Therapy, 423–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59758-9_160.
Повний текст джерелаNahum, Alan, and J. C. Rosenwald. "Monte-Carlo and Grid-Based-Deterministic Models for Patient Dose Computation." In Handbook of Radiotherapy Physics, Vol1:603—Vol1:628. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201493-36.
Повний текст джерелаAbdennhader, Nabil, Mohamed Ben Belgacem, Raphaël Couturier, David Laiymani, Sébastien Miquée, Marko Niinimaki, and Marc Sauget. "Gridification of a Radiotherapy Dose Computation Application with the XtremWeb-CH Environment." In Advances in Grid and Pervasive Computing, 188–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20754-9_20.
Повний текст джерелаKim, Chang-Won, Jong-Hyo Kim, Hyunna Lee, Jeongjin Lee, Se-Hyung Kim, Zepa Yang, and Yeong-Gil Shin. "Application of Synthetic Sinogram Based Low-Dose CT Simulation and Fold-Preserving Electronic Cleansing Technique for CT Colonography." In Abdominal Imaging. Computation and Clinical Applications, 89–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41083-3_11.
Повний текст джерелаTo, Karen CY, and K. Scott Brimble. "Factors Affecting Peritoneal Dialysis Dose." In Studies in Computational Intelligence, 1477–535. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27558-6_15.
Повний текст джерелаUhlin, Fredrik, and Ivo Fridolin. "Optical Monitoring of Dialysis Dose." In Studies in Computational Intelligence, 867–928. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27558-6_3.
Повний текст джерелаSalvador, Ricardo, Dennis Q. Truong, Marom Bikson, Alexander Opitz, Jacek Dmochowski, and Pedro C. Miranda. "Role of Computational Modeling for Dose Determination." In Practical Guide to Transcranial Direct Current Stimulation, 233–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95948-1_9.
Повний текст джерелаBruda, Stefan D., and Mary Sarah Ruth Wilkin. "Emergence in Context-Free Parallel Communicating Grammar Systems: What Does and Does not Make a Grammar System More Expressive Than Its Parts." In Emergent Computation, 171–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46376-6_8.
Повний текст джерелаТези доповідей конференцій з теми "Dose Computation"
Tani, A. A., J. M. Norberto, M. R. da Silva, and A. Durand-Petiteville. "Automated computation of cutting paths for unit-dose repackaging of pharmaceutical blister packs." In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 1678–83. IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711355.
Повний текст джерелаKuhn, Alexander, Benjamin Kutz, Tobias Günther, and Andreas Rumpf. "Numerical Examination of a Model Rotor in Brownout Conditions." In Vertical Flight Society 70th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9437.
Повний текст джерелаYu, Wei, Xiaolin Wang, Nan Qin, Hongchi Zhou, Runze Xu, Jiafu Gao, and Yalun Wang. "Low-dose CT image processing based on controllable residual U-shaped network." In 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699581.
Повний текст джерелаBarbour, Robert, David Corne, and John McCall. "Accelerated optimisation of chemotherapy dose schedules using fitness inheritance." In 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010. http://dx.doi.org/10.1109/cec.2010.5586118.
Повний текст джерелаWang, Dongmei, Yiwen Liang, Chengyu Tan, Hongbin Dong, and Xinmin Yang. "Pathogen dose based natural killer cell algorithm for classification." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459434.
Повний текст джерелаWitten, Matthew, and Owen Clancey. "An evolutionary algorithm for optimization of affine transformation parameters for dose matrix warping in patient-specific quality assurance of radiotherapy dose distributions." In 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6256139.
Повний текст джерелаTao, Yanyun, Yuzhen Zhang, and Bin Jiang. "Evolutionary learning-based modeling for warfarin dose prediction in Chinese." In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3067695.3082492.
Повний текст джерелаConnor, Mark, and Michael O'Neill. "Optimizing the parameters of a physical exercise dose-response model." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459494.
Повний текст джерелаWitten, Matthew, and Owen Clancey. "Residual dose deviation differential histogram analysis using evolutionary-optimized transform parameters for dose distribution warping in patient-specific quality assurance in external beam radiation therapy." In 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017. http://dx.doi.org/10.1109/cec.2017.7969506.
Повний текст джерелаZhang, Qi, Heli Gong, Liye Liu, Yushou Song, Qinjian Cao, Jinlong Yong, and Jiawen Hu. "Research on Monte Carlo-Neutron Point Kernel Integration Method Coupling Calculation Method of Neutron Radiation Field." In 2024 31st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/icone31-135218.
Повний текст джерелаЗвіти організацій з теми "Dose Computation"
Breazeal, N. L., K. R. Davis, R. A. Watson, D. S. Vickers, and M. S. Ford. Simulation-based computation of dose to humans in radiological environments. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/206637.
Повний текст джерелаDudley A, III Egbert, John H. Case Stephen D. Stiver, and Raine David. FIIDOS--A Computer Code for the Computation of Fallout Inhalation and Ingestion Dose to Organs Computer User's Guide (Revision 4). Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada469466.
Повний текст джерелаRittmann, P. D. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6040411.
Повний текст джерелаScott, Bobby, R., Ph.D. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/812039.
Повний текст джерелаMarcath, Matthew, Douglas Mayo, Joshua Spencer, Tucker McClanahan, and Lucas Hetrick. Evaluation of Attila and MCNP computational methods for dose and exposure estimation. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821360.
Повний текст джерелаAuthor, Not Given. DOE National Laboratories' Computational Facilities - Research Workshop Report. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1601798.
Повний текст джерелаPeñaloza, Rafael, and Anni-Yasmin Turhan. Completion-based computation of least common subsumers with limited role-depth for EL and Prob-EL⁰¹. Technische Universität Dresden, 2010. http://dx.doi.org/10.25368/2022.175.
Повний текст джерелаNapier, B. A. Computational model design specification for Phase 1 of the Hanford Environmental Dose Reconstruction Project. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5582525.
Повний текст джерелаWallace, Susan S. DOE EPSCoR Initiative in Structural and computational Biology/Bioinformatics. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/924036.
Повний текст джерелаNone, None. DOE Computational Science Graduate Fellowship (CSGF) Grant 2019 Cohort. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2229639.
Повний текст джерела