Добірка наукової літератури з теми "Dose Computation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dose Computation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dose Computation"

1

Knöös, T. "3D dose computation algorithms." Journal of Physics: Conference Series 847 (May 2017): 012037. http://dx.doi.org/10.1088/1742-6596/847/1/012037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Battista, J., J. Chen, S. Sawchuk, and G. Hajdok. "Evolution of 3D X-Ray Dose Computation Algorithms." Journal of Physics: Conference Series 2630, no. 1 (November 1, 2023): 012008. http://dx.doi.org/10.1088/1742-6596/2630/1/012008.

Повний текст джерела
Анотація:
Abstract Radiation treatment planning of individual cancer patients relies on the accurate computation of dose distributions in irradiated tissue. Inaccurate dose maps have the potential to mislead clinical decision-making and compromise the balance between effective tumour control and side effects in surrounding normal tissue. In the context of this conference, 3D dosimetry is important for the experimental validation of computed dose distributions. Dose computation methods for external beams of high energy x rays have evolved over the past decade with computer simulation models more closely aligned with the fundamental physics of x-ray scattering and absorption in heterogeneous tissue. In this article, we first present a historical review from a Canadian perspective, followed by an introductory intuitive description of contemporary algorithms used in clinical treatment planning: (1) Convolution-superposition algorithm fundamentally based on the Green’s function method; (2) Stochastic Monte Carlo simulation of x-ray interactions in tissue, and (3) Deterministic numerical solution of a system of Boltzmann transport equations. In principle, all these methods solve the same problem of predicting x-ray scattering and absorption in heterogeneous tissue. However, the mathematical tools differ in their approach and approximations to achieve sufficient speed for routine clinical application. In the conclusion of this article, the evolution of 3D x-ray dose computation is summarized, in terms of accuracy and computational speed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cutanda Henríquez, Francisco, and Silvia Vargas Castrillón. "Confidence intervals in dose volume histogram computation." Medical Physics 37, no. 4 (March 15, 2010): 1545–53. http://dx.doi.org/10.1118/1.3355888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Laub, W., M. Alber, M. Birkner, and F. Nüsslin. "Monte Carlo dose computation for IMRT optimization*." Physics in Medicine and Biology 45, no. 7 (June 26, 2000): 1741–54. http://dx.doi.org/10.1088/0031-9155/45/7/303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tang, Man-Lai, Karim F. Hirji, and Stein E. Vollset. "Exact power computation for dose—response studies." Statistics in Medicine 14, no. 20 (October 30, 1995): 2261–72. http://dx.doi.org/10.1002/sim.4780142009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sandison, G. A., and L. S. Papiez. "Dose computation applications of the electron loss model." Physics in Medicine and Biology 35, no. 7 (July 1, 1990): 979–97. http://dx.doi.org/10.1088/0031-9155/35/7/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mohan, R., C. Chui, and L. Lidofsky. "Differential pencil beam dose computation model for photons." Medical Physics 13, no. 1 (January 1986): 64–73. http://dx.doi.org/10.1118/1.595924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Siebert, Frank-André, Ping Jiang, Rene Baumann, Gunnar Bockelmann, Susann Bohn, Maike Thieben, and Jürgen Dunst. "Dose Computation of Keloids in Brachytherapy: Tg-43 or Model-Based-Dose-Calculation?" Brachytherapy 15 (May 2016): S149. http://dx.doi.org/10.1016/j.brachy.2016.04.262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dray, Nicolas, Nicolas Mary, Cédric Dossat, Jefferson Bourgoin, and Nathalie Chatry. "An overview of last decade’s developments in RayXpert®, a 3D Monte Carlo code." EPJ Nuclear Sciences & Technologies 10 (2024): 10. http://dx.doi.org/10.1051/epjn/2024013.

Повний текст джерела
Анотація:
This article provides an overview of the developments made over the last 10 years within RayXpert®, a CAD-based geometry 3D Monte Carlo software developed by TRAD – Tests & Radiations. The main features of RayXpert® are its 3D Monte Carlo engine and its CAD-based geometry. It is also possible to import STEP file, automatically detect overlaps, and perform parallel Monte Carlo computations. During the last 10 years, numerous new features were added to the software: TTB approximation, dose and flux mapping, computation resumption, radioactive decay computation, script support, MPI computation, advanced convergence indicators, etc. New features such as advanced biasing or neutron-induced activation simulation are under development. This article presents the past and future functionalities of RayXpert®.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Panitsa, E., J. C. Rosenwald, and C. Kappas. "Developing a dose-volume histogram computation program for brachytherapy." Physics in Medicine and Biology 43, no. 8 (August 1, 1998): 2109–21. http://dx.doi.org/10.1088/0031-9155/43/8/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Dose Computation"

1

Jung, Haejae. "Algorithms for external beam dose computation." [Florida] : State University System of Florida, 2000. http://etd.fcla.edu/etd/uf/2000/ane5955/etd.pdf.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Florida, 2000.
Title from first page of PDF file. Document formatted into pages; contains xii, 143 p.; also contains graphics. Vita. Includes bibliographical references (p. 140-142).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fox, Timothy Harold. "Computation and optimization of dose distributions for rotational stereotactic radiosurgery." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/32843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Inacio, Eloïse. "Méthodes numériques en imagerie médicale pour l'évaluation de dose per-opératoire en ablation par électroporation." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0474.

Повний текст джерела
Анотація:
Alors que l’espérance de vie augmente, le cancer est devenu l’une des principales causes de décès dans le monde. Parmi les cancers les plus difficiles à traiter figurent les tumeurs profondes, qui sont compliquées à soigner en raison de leur emplacement près de structures vitales dans des organes tels que le foie ou le pancréas. Une méthode prometteuse pour traiter ces tumeurs est l’ablation par électroporation, qui utilise des champs électriques pour créer des pores dans les membranes des cellules tumorales. Lorsqu’ils sont appliqués à haute intensité, cela entraîne une électroporation irréversible, conduisant à la mort des cellules sans endommager les structures avoisinantes. Cependant, l’électroporation nécessite une planification précise et une adaptation en temps réel en raison de sa complexité. Cela implique des outils numériques pour analyser les images médicales et estimer la zone de traitement. L’objectif de ce travail est de fournir de tels outils permettant d’analyser les images médicales afin d’estimer, pendant l’opération, la zone de traitement, de manière à ce que le radiologue interventionnel puisse adapter son approche. Plus précisément, nous abordons la localisation des électrodes en introduisant l’apprentissage profond dans le programme existant, ainsi que le recalage des multiples images capturées durant l’intervention avec des conditions aux limites auto-adaptatives innovantes. Ces deux tâches de vision par ordinateur sont cruciales pour une estimation précise du champ électrique et doivent être résolues en quasi-temps réel pour être praticables en contexte clinique. Ces avancées dans la vision par ordinateur et le traitement d’images permettent une estimation plus précise du champ électrique et améliorent l’efficacité globale de la procédure, conduisant à de meilleurs résultats pour les patients atteints de tumeurs profondes
As life expectancy rises, cancer has tragically become one of the world’s leading causes of death. Among the most challenging cancers are deep-seated tumors, which are difficult to treat due to their location in vital organs like the liver or the pancreas. A promising method to tackle these tumors is electroporation ablation, which uses electric fields to create pores in the cell membranes of tumor cells. When applied with high intensity, this results in irreversible electroporation, leading to cell death without damaging nearby structures. However, electroporation requires precise planning and real-time adaptation due to its complexity. This involves numerical tools to analyze medical images and estimate the treatment area. The aim of this work is to provide such tools, analysing medical images, to per-operatively estimate the treatment area so that the interventional radiologists may adapt their approach as they are performing the procedure. More specifically, we tackle the localisation of the electrode by introducing deep learning in the existing pipeline, and the registration of the multiple scans captured during the intervention with novel auto-adaptive boundary conditions. Both computer vision tasks are crucial for a precise estimation of the electric field and need to be solved in near real time to be practical in clinical settings. These advancements in computer vision and image processing contribute to more accurate electric field estimation and improve the overall effectiveness of the procedure, leading to better patient outcomes for those battling deep-seated cancers
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vautrin, Mathias. "Planification de traitement en radiothérapie stéréotaxique par rayonnement synchrotron. Développement et validation d'un module de calcul de dose par simulations Monte Carlo." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00641325.

Повний текст джерела
Анотація:
La radiothérapie stéréotaxique par rayonnement synchrotron (SSRT) est une technique innovanteutilisant un faisceau synchrotron de rayons X monochromatiques entre 50 et 100 keV. Une augmentationde dose par prise de contraste est obtenue localement par effet photoélectrique sur unélément lourd injecté dans le volume cible (tumeur cérébrale). Des essais cliniques de SSRT sont encours de préparation à l'ESRF (établissement européen de rayonnement synchrotron). Un systèmede planification de traitement (TPS) est nécessaire pour le calcul de l'énergie déposée au patient(dose) pendant le traitement. Une version dédiée du TPS ISOgray a donc été développée. Ce travaildécrit l'adaptation du TPS réalisée, particulièrement au niveau du module de simulation virtuelleet de dosimétrie. Pour un calcul de dose, le TPS utilise une simulation Monte Carlo spécifique desphotons polarisés et de basse énergie. Les simulations sont réalisées depuis la source synchrotron,à travers toute la géométrie de la ligne de lumière modélisée et dans le patient. Pour ce calcul, desmatériaux spécifiques ont été notamment ajoutés pour la modélisation voxélisée du patient, afin deprendre en compte la présence d'iode dans certains tissus. Le processus de calcul Monte Carlo a étéoptimisé en vitesse et précision. De plus, un calcul des doses absolues et des temps d'irradiation,particulier à la SSRT, a été ajouté au TPS. Grâce à des mesures de rendements, profils de dose, etdoses absolues, réalisées à l'ESRF en cuve à eau et en fantôme solide avec ou sans couche d'os, lecalcul de dose du TPS a été validé pour la SSRT.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nygren, Nelly. "Optimization of the Gamma Knife Treatment Room Design." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300904.

Повний текст джерела
Анотація:
Radiation shielding is a central part of the design of treatment rooms for radiation therapy systems. The dose levels that medical staff and members of the public can be exposed to outside the treatment rooms are regulated by authorities and influence the required wall thicknesses and possible locations for the systems. Several standard methods exist for performing shielding calculations, but they are not well adapted to the stereotactic radiosurgery system Leksell Gamma Knife because of its self-shielding properties. The built-in shielding makes the leakage radiation anisotropic and generally have lower energy than the primary radiation from the Gamma Knife's cobalt sources. Oversimplifications made in the standard shielding calculation methods regarding the field can lead to excessively thick shielding and limit the number of suitable locations for the system.  In this thesis project, a simulation-based dose calculation algorithm was developed, that uses Monte Carlo-generated data in two steps. The algorithm uses a phase space to accurately describe the radiation field around the Gamma Knife. Information about individual photons in the field is then combined with a generated library of data describing the resulting dose outside a wall depending on the wall thickness and the photon energy. The dose calculation algorithm is fast enough to be integrated into optimization processes, in which the algorithm is used iteratively while varying room design parameters. Demonstrated in this report is a case with a room of fixed size, in which the Gamma Knife's position and the walls' thicknesses are varied, with the aim to find the room design resulting in the minimum wall thicknesses needed to achieve acceptable dose levels outside. The results in this thesis indicate that the dose calculation algorithm performs well and could likely be used in more complex optimizations with more design variables and more advanced design goals.
Strålsäkerhet är en viktig aspekt vid uppförandet av behandlingsrum för strål-terapisystem. Strålningsnivåerna som sjukvårdspersonal och allmänheten kan exponeras för utanför behandlingsrummet regleras av myndigheter och påverkar vilken väggtjocklek som behövs och vilka platser som är lämpliga att placera systemen på. Flertalet metoder för strålskyddsberäkning existerar, men de är inte väl anpassade till det stereotaktiska radiokirurgiska systemet Leksell Gamma Knife, eftersom det har ett inbyggt strålskydd. Det inbyggda strålskyddet gör att strålfältet runt Gamma Knife är anisotropt och generellt har lägre energi än primärstrålningen från systemets koboltkällor. Förenklingar som görs rörande strålfältet i flera existerande metoder för strålskyddsberäkning kan leda till att överdrivet tjocka strålskydd används eller begränsa antalet lämpliga platser att placera systemet på. I detta projekt utvecklades en dosberäkningsalgoritm, som i två steg använder data genererad genom Monte Carlo-simuleringar. Algoritmen använder ett fasrum för att detaljerat beskriva strålfältet runt Gamma Knife. Information om enskilda fotoner i fältet används sen i kombination med ett genererat bibliotek av data som beskriver det dosbidrag som en foton bidrar med utanför behandlingsrummet, baserat på fotonens energi och väggarnas tjocklek. Dosberäkningsalgoritmen är snabb nog att integreras i optimeringsprocesser där den används iterativt samtidigt som rumsdesignparametrar varieras. I denna rapport demonstreras ett fall med ett rum av bestämd storlek, där positionen av Gamma Knife i rummet och väggarnas tjocklekar varieras. Optimeringens syfte i exemplet är att hitta den rumsdesign som med de minsta väggtjocklekarna resulterar i acceptabla strålningsnivåer utanför rummet. Resultaten tyder på att dosberäkningsalgoritmen sannolikt kan användas i mer komplexa optimeringar med fler designvariabler och mer avancerade designmål.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Morén, Björn. "Mathematical Modelling of Dose Planning in High Dose-Rate Brachytherapy." Licentiate thesis, Linköpings universitet, Optimeringslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-154966.

Повний текст джерела
Анотація:
Cancer is a widespread type of diseases that each year affects millions of people. It is mainly treated by chemotherapy, surgery or radiation therapy, or a combination of them. One modality of radiation therapy is high dose-rate brachytherapy, used in treatment of for example prostate cancer and gynecologic cancer. Brachytherapy is an invasive treatment in which catheters (hollow needles) or applicators are used to place the highly active radiation source close to or within a tumour. The treatment planning problem, which can be modelled as a mathematical optimization problem, is the topic of this thesis. The treatment planning includes decisions on how many catheters to use and where to place them as well as the dwell times for the radiation source. There are multiple aims with the treatment and these are primarily to give the tumour a radiation dose that is sufficiently high and to give the surrounding healthy tissue and organs (organs at risk) a dose that is sufficiently low. Because these aims are in conflict, modelling the treatment planning gives optimization problems which essentially are multiobjective. To evaluate treatment plans, a concept called dosimetric indices is commonly used and they constitute an essential part of the clinical treatment guidelines. For the tumour, the portion of the volume that receives at least a specified dose is of interest while for an organ at risk it is rather the portion of the volume that receives at most a specified dose. The dosimetric indices are derived from the dose-volume histogram, which for each dose level shows the corresponding dosimetric index. Dose-volume histograms are commonly used to visualise the three-dimensional dose distribution. The research focus of this thesis is mathematical modelling of the treatment planning and properties of optimization models explicitly including dosimetric indices, which the clinical treatment guidelines are based on. Modelling dosimetric indices explicitly yields mixedinteger programs which are computationally demanding to solve. The computing time of the treatment planning is of clinical relevance as the planning is typically conducted while the patient is under anaesthesia. Research topics in this thesis include both studying properties of models, extending and improving models, and developing new optimization models to be able to take more aspects into account in the treatment planning. There are several advantages of using mathematical optimization for treatment planning in comparison to manual planning. First, the treatment planning phase can be shortened compared to the time consuming manual planning. Secondly, also the quality of treatment plans can be improved by using optimization models and algorithms, for example by considering more of the clinically relevant aspects. Finally, with the use of optimization algorithms the requirements of experience and skill level for the planners are lower. This thesis summary contains a literature review over optimization models for treatment planning, including the catheter placement problem. How optimization models consider the multiobjective nature of the treatment planning problem is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aspradakis, Maria M. "A study to assess and improve dose computations in photon beam therapy." Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/21334.

Повний текст джерела
Анотація:
This thesis is concerned with the calculation of dose at a point for megavoltage photon therapy. The review of dose calculation algorithms provides a comprehensive and critical analysis of the models developed to date. Emphasis is given to the dimensionality of density information utilised by these algorithms in relation to their capability of producing accurate dose information in three dimensions. Two applications of the Monte Carlo method to radiotherapy have been studied. Namely, the generation of energy deposition kernels (EDK) and the use of the method as a benchmarking tool. EDKs represent the fractional energy deposited around a single photon interaction site. Dose distributions in homogeneous and heterogenous media were calculated in absolute units of absorbed dose per incident photon fluence (Gy . cm2). Both applications were carried out using the EGS4 code system. A superposition model was developed from the dose deposition point of view. Dose at a point was obtained from knowledge of the total energy released per unit mass in the medium (TERMA) and the EDK. Effective energy spectrum information was used to calculate dose for clinical beams. The performance of this model was verified in homogenous and heterogeneous media against both Monte Carlo generated and measured data. The necessity for computation speed is addressed. As a trade off between accuracy and speed, a method was developed which reduces the calculation time required to obtain a true three dimensional dose matrix.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

OLIVEIRA, JUNIOR Wilson Rosa de. "Turing´s analysis of computation and artificial neural network." Universidade Federal de Pernambuco, 2004. https://repositorio.ufpe.br/handle/123456789/1970.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-12T15:53:32Z (GMT). No. of bitstreams: 2 arquivo5203_1.pdf: 2427628 bytes, checksum: b7e101175fb8c6dac688a04de83a3303 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2004
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Inspirado por uma sugestão de McCulloch e Pitts em seu trabalho pioneiro, uma simulação de Máquinas de Turing (MT) por Redes Neurais Artifiais (RNAs) apresentada. Diferente dos trabalhos anteriores, tal simulação está de acordo com a interpretação correta da análise de Turing sobre computação; é compatvel com as abordagens correntes para análise da cognição como um processo interativo agente-ambiente; e é fisicamente realizável uma vez que não se usa pesos nas conexãos com precisão ilimitada. Uma descrição completa de uma implementação de uma MT universal em uma RNA recorrente do tipo sigmóide é dada. A fita, um recurso infinito, é deixada fora da codificação como uma caracterstica externa não-intrínsica. A rede resultante é chamada de Máquina de Turing Neural. O modelo clássico de computação Máquina de Turing = Fita + Autômato de Estados Finito (AEF) é trocado pelo modelo de computação neural Máquina de Turing Neural (MTN) = Fita + Rede Neural Artifial (RNA) Argumentos para plausabilidade física e cognitiva desta abordagem são fornecidos e as consequências matemáticas são investigadas. E bastante conhecido na comunidade de neurocomputação teórica, que um AEF arbitrário não pode ser implementado em uma RNA quando ruído ou limite de precisão é considerado: sob estas condições, sistemas analógicos em geral, e RNA em particular, são computacionalmente equivalentes aos Autômatos Definidos uma classe muita restrita de AEF. Entre as principais contribuições da abordagem proposta é a definição de um novo modelo de máquina, Máquina de Turing Definida(MTD), que surge quando ruído é levado em consideração. Este resultado reflete na segunda equação descrita acima se tornando MTN com ruíıdo (MTN) = Fita + RNA com ruído(RNA) com a equação correspondente Máquina de Turing Definida = Fita + Autômatos Finitos Definidos (AFD) A investigação de capacidades computacionais das Máquinas de Turing Definida é uma outra contribuição importante da Tese. É provado que elas computam a classe das funções elementares (Brainerd & Landweber, 1974) da Teoria da Recursão
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Palit, Robin. "Computational Tools and Methods for Objective Assessment of Image Quality in X-Ray CT and SPECT." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/268492.

Повний текст джерела
Анотація:
Computational tools of use in the objective assessment of image quality for tomography systems were developed for computer processing units (CPU) and graphics processing units (GPU) in the image quality lab at the University of Arizona. Fast analytic x-ray projection code called IQCT was created to compute the mean projection image for cone beam multi-slice helical computed tomography (CT) scanners. IQCT was optimized to take advantage of the massively parallel architecture of GPUs. CPU code for computing single photon emission computed tomography (SPECT) projection images was written calling upon previous research in the image quality lab. IQCT and the SPECT modeling code were used to simulate data for multimodality SPECT/CT observer studies. The purpose of these observer studies was to assess the benefit in image quality of using attenuation information from a CT measurement in myocardial SPECT imaging. The observer chosen for these studies was the scanning linear observer. The tasks for the observer were localization of a signal and estimation of the signal radius. For the localization study, area under the localization receiver operating characteristic curve (A(LROC)) was computed as A(LROC)^Meas = 0.89332 ± 0.00474 and A(LROC)^No = 0.89408 ± 0.00475, where "Meas" implies the use of attenuation information from the CT measurement, and "No" indicates the absence of attenuation information. For the estimation study, area under the estimation receiver operating characteristic curve (A(EROC)) was quantified as A(EROC)^Meas = 0.55926 ± 0.00731 and A(EROC)^No = 0.56167 ± 0.00731. Based on these results, it was concluded that the use of CT information did not improve the scanning linear observer's ability to perform the stated myocardial SPECT tasks. The risk to the patient of the CT measurement was quantified in terms of excess effective dose as 2.37 mSv for males and 3.38 mSv for females.Another image quality tool generated within this body of work was a singular value decomposition (SVD) algorithm to reduce the dimension of the eigenvalue problem for tomography systems with rotational symmetry. Agreement in the results of this reduced dimension SVD algorithm and those of a standard SVD algorithm are shown for a toy problem. The use of SVD toward image quality metrics such as the measurement and null space are also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moura, Augusto Fontan. "A computational study of the airflow at the intake region of scramjet engines." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2973.

Повний текст джерела
Анотація:
This work is part of the research and development, at the Institute for Advanced Studies (IEAv), of the first Brazilian hypersonic vehicle prototype, the 14-X airplane. As this vehicle will be propelled by scramjet (supersonic combustion ramjet) engines, this work presents detailed two-dimensional CFD analyses of the airflow in the intake system of such engines based on the 14-XB scramjet geometry and the expected flight conditions. The main objective is to study the airflow in the intake of the 14-XB at nominal flight condition and also for some off-design flight conditions and geometry using numerical methods and models available in the Fluent code. Off-design values of the vehicle velocity, angle of attack and altitude as well as of the angle of the inlet compression ramp and the number of inlet compression ramps were chosen to show how these changes impact the overall intake airflow. In this study are presented results for the airflow in the entire intake system and of specific flow variables at the engine combustor entrance, as well as calculation results of some intake performance parameters. Both, wall temperature and free stream flow turbulence effects on the intake airflow have also been analyzed. Investigation of viscous flow modeling and of the effects of temperature-dependent air properties has also been performed. Inviscid flow calculations have been performed to serve as a comparison basis for the viscous flow effects and as preliminary information of the airflow. A model validation analysis of the k-kl-? and Transition SST transition models has shown that both models can calculate BL and shock wave interactions (SWBLI) quite well, although, the k-kl-? is better to calculate the separation region whereas the Transition SST is superior to predict the reattachment point. Wall temperature has shown to affect quite significantly SWBLI while viscous flow modeling has shown to have an important impact on the intake airflow with some degradation of the intake system performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Dose Computation"

1

D, Sawant Pramilla, and Bhabha Atomic Research Centre, eds. Manual on internal dose computation and reporting. Mumbai: Bhabha Atomic Research Centre, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. Defense Nuclear Agency, ed. FIIDOS--a computer code for the computation of fallout inhalation and ingestion dose to organs: Computer user's guide. Washington, D.C: Defense Nuclear Agency, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

1957-, Jackson Thomas L., and Joslin R. D. 1963-, eds. Theory and computation in hydrodynamic stability. Cambridge: Cambridge University Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1934-, Jameson Antony, Caughey D. A, and Hafez M. M, eds. Frontiers of computational fluid dynamics 1994. Chichester: Wiley, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1940-, Jäger W., Rannacher Rolf, and Warnatz J, eds. Reactive flows, diffusion and transport: From experiments via mathematical modeling to numerical simulation and optimization : final report of SFB (Collaborative Research Center) 359. Berlin: Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chakrabarti, Anirban. Grid computing security. Berlin: Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tuncer, Cebeci, ed. Computational fluid dynamics for engineers: From panel to Navier-Stokes methods with computer programs. Long Beach, Calif: Horizons Pub. Inc., 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Battista, Jerry. Introduction to Megavoltage X-Ray Dose Computation Algorithms. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Introduction to Megavoltage X-Ray Dose Computation Algorithms. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Battista, Jerry. Introduction to Megavoltage X-Ray Dose Computation Algorithms. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Dose Computation"

1

Rosenwald, J. C. "Framework for Computation of Patient Dose Distribution." In Handbook of Radiotherapy Physics, Vol1:557—Vol1:564. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201493-33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Do, Synho, Janne J. Näppi, and Hiroyuki Yoshida. "Iterative Reconstruction for Ultra-Low-Dose Laxative-Free CT Colonography." In Abdominal Imaging. Computation and Clinical Applications, 99–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41083-3_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laub, W., M. Alber, M. Birkner, and F. Nüsslin. "IMRT with Monte Carlo dose computation: what is the benefit?" In The Use of Computers in Radiation Therapy, 423–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59758-9_160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nahum, Alan, and J. C. Rosenwald. "Monte-Carlo and Grid-Based-Deterministic Models for Patient Dose Computation." In Handbook of Radiotherapy Physics, Vol1:603—Vol1:628. 2nd ed. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429201493-36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abdennhader, Nabil, Mohamed Ben Belgacem, Raphaël Couturier, David Laiymani, Sébastien Miquée, Marko Niinimaki, and Marc Sauget. "Gridification of a Radiotherapy Dose Computation Application with the XtremWeb-CH Environment." In Advances in Grid and Pervasive Computing, 188–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20754-9_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Chang-Won, Jong-Hyo Kim, Hyunna Lee, Jeongjin Lee, Se-Hyung Kim, Zepa Yang, and Yeong-Gil Shin. "Application of Synthetic Sinogram Based Low-Dose CT Simulation and Fold-Preserving Electronic Cleansing Technique for CT Colonography." In Abdominal Imaging. Computation and Clinical Applications, 89–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41083-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

To, Karen CY, and K. Scott Brimble. "Factors Affecting Peritoneal Dialysis Dose." In Studies in Computational Intelligence, 1477–535. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27558-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uhlin, Fredrik, and Ivo Fridolin. "Optical Monitoring of Dialysis Dose." In Studies in Computational Intelligence, 867–928. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27558-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salvador, Ricardo, Dennis Q. Truong, Marom Bikson, Alexander Opitz, Jacek Dmochowski, and Pedro C. Miranda. "Role of Computational Modeling for Dose Determination." In Practical Guide to Transcranial Direct Current Stimulation, 233–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95948-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bruda, Stefan D., and Mary Sarah Ruth Wilkin. "Emergence in Context-Free Parallel Communicating Grammar Systems: What Does and Does not Make a Grammar System More Expressive Than Its Parts." In Emergent Computation, 171–213. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46376-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dose Computation"

1

Tani, A. A., J. M. Norberto, M. R. da Silva, and A. Durand-Petiteville. "Automated computation of cutting paths for unit-dose repackaging of pharmaceutical blister packs." In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 1678–83. IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuhn, Alexander, Benjamin Kutz, Tobias Günther, and Andreas Rumpf. "Numerical Examination of a Model Rotor in Brownout Conditions." In Vertical Flight Society 70th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2014. http://dx.doi.org/10.4050/f-0070-2014-9437.

Повний текст джерела
Анотація:
In the present study a flow simulation of a rotor hovering in ground effect was performed and compared to an experimental study from literature. Different reconstruction schemes in the finite volume flow solver were employed, leading to a computation of second and fifth order accuracy in space. The higher order computation was also performed on different grids with six and 23 million grid cells. The integral simulation values were compared to the experimental results and other literature, showing good agreement. Further on, the vortex conservation of the several schemes was compared. The higher order computation yields a much longer vortex preservation and a much better shape approximation, especially with a fine spatial resolution of the computational domain. Moreover, brownout simulations were done in a one-way coupled post processing mode of the flow computation. The results show that a good preservation of the vortices is crucial for a following brownout simulation, which leads to the necessity of a fine resolution and high order computations. The influence of the particle size was examined, leading to the finding that especially amix of big and small particles in the sediment bed may lead to severe brownout conditions, when flying near the ground. The blade tip vortices are interacting with the sediment and are one of the main drivers of particle entrainment in brownout conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yu, Wei, Xiaolin Wang, Nan Qin, Hongchi Zhou, Runze Xu, Jiafu Gao, and Yalun Wang. "Low-dose CT image processing based on controllable residual U-shaped network." In 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699581.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barbour, Robert, David Corne, and John McCall. "Accelerated optimisation of chemotherapy dose schedules using fitness inheritance." In 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2010. http://dx.doi.org/10.1109/cec.2010.5586118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Dongmei, Yiwen Liang, Chengyu Tan, Hongbin Dong, and Xinmin Yang. "Pathogen dose based natural killer cell algorithm for classification." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Witten, Matthew, and Owen Clancey. "An evolutionary algorithm for optimization of affine transformation parameters for dose matrix warping in patient-specific quality assurance of radiotherapy dose distributions." In 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2012. http://dx.doi.org/10.1109/cec.2012.6256139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tao, Yanyun, Yuzhen Zhang, and Bin Jiang. "Evolutionary learning-based modeling for warfarin dose prediction in Chinese." In GECCO '17: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3067695.3082492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Connor, Mark, and Michael O'Neill. "Optimizing the parameters of a physical exercise dose-response model." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459494.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Witten, Matthew, and Owen Clancey. "Residual dose deviation differential histogram analysis using evolutionary-optimized transform parameters for dose distribution warping in patient-specific quality assurance in external beam radiation therapy." In 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017. http://dx.doi.org/10.1109/cec.2017.7969506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Qi, Heli Gong, Liye Liu, Yushou Song, Qinjian Cao, Jinlong Yong, and Jiawen Hu. "Research on Monte Carlo-Neutron Point Kernel Integration Method Coupling Calculation Method of Neutron Radiation Field." In 2024 31st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/icone31-135218.

Повний текст джерела
Анотація:
Abstract Nuclear-powered icebreakers are the future development direction of icebreakers. Due to the fact that icebreakers operate far away from land, the emergency rescue response after a nuclear accident is long and difficult. Therefore, rapid and accurate calculation of the neutron dose in the reactor radiation field is crucial for emergency response to nuclear accidents. This paper coupled the point kernel integration with the Monte Carlo method, and developed a coupled calculation program based on the coupling method. And on the basis that the point kernel program can realize neutron dose calculation, a point kernel program that can be run in parallel was designed to speed up the operation. A single-body source scenario was firstly designed to validate the coupling program. Compared with the results of the Geant4 toolkit, the relative deviations of the coupling program for the calculation of neutron dose are 5%, and the computation time was saved by nearly 90%, which indicates that the coupling calculation program is more efficient in the computation. A computational analysis of the radiation field in the reactor compartment has been carried out on the example of the Russian nuclear-powered icebreaker Arktika. The results show that the coupled computational method takes 10% of the computation time of the Geant4 toolkit under the same computational conditions, and the maximum relative deviation of the computational results does not exceed 20%, which demonstrates the applicability of the coupled calculation method in the complex radiation field in the reactor compartment of the nuclear-powered icebreaker.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Dose Computation"

1

Breazeal, N. L., K. R. Davis, R. A. Watson, D. S. Vickers, and M. S. Ford. Simulation-based computation of dose to humans in radiological environments. Office of Scientific and Technical Information (OSTI), March 1996. http://dx.doi.org/10.2172/206637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dudley A, III Egbert, John H. Case Stephen D. Stiver, and Raine David. FIIDOS--A Computer Code for the Computation of Fallout Inhalation and Ingestion Dose to Organs Computer User's Guide (Revision 4). Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada469466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rittmann, P. D. Emergency Doses (ED) - Revision 3: A calculator code for environmental dose computations. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6040411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Scott, Bobby, R., Ph.D. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/812039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marcath, Matthew, Douglas Mayo, Joshua Spencer, Tucker McClanahan, and Lucas Hetrick. Evaluation of Attila and MCNP computational methods for dose and exposure estimation. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1821360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Author, Not Given. DOE National Laboratories' Computational Facilities - Research Workshop Report. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1601798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Peñaloza, Rafael, and Anni-Yasmin Turhan. Completion-based computation of least common subsumers with limited role-depth for EL and Prob-EL⁰¹. Technische Universität Dresden, 2010. http://dx.doi.org/10.25368/2022.175.

Повний текст джерела
Анотація:
The least common subsumer (lcs) w.r.t general EL-TBoxes does not need to exists in general due to cyclic axioms. In this report we present an algorithm for computing role-depth bounded EL-lcs based on the completion algorithm for EL. We extend this computation algorithm to a recently introduced probabilistic variant of EL: Prob-EL⁰¹.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Napier, B. A. Computational model design specification for Phase 1 of the Hanford Environmental Dose Reconstruction Project. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5582525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wallace, Susan S. DOE EPSCoR Initiative in Structural and computational Biology/Bioinformatics. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/924036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

None, None. DOE Computational Science Graduate Fellowship (CSGF) Grant 2019 Cohort. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2229639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії