Добірка наукової літератури з теми "DNA triplex"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "DNA triplex".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "DNA triplex"

1

Gorab, Eduardo. "Triple-Helical DNA in Drosophila Heterochromatin." Cells 7, no. 12 (November 23, 2018): 227. http://dx.doi.org/10.3390/cells7120227.

Повний текст джерела
Анотація:
Polynucleotide chains obeying Watson-Crick pairing are apt to form non-canonical complexes such as triple-helical nucleic acids. From early characterization in vitro, their occurrence in vivo has been strengthened by increasing evidence, although most remain circumstantial particularly for triplex DNA. Here, different approaches were employed to specify triple-stranded DNA sequences in the Drosophila melanogaster chromosomes. Antibodies to triplex nucleic acids, previously characterized, bind to centromeric regions of mitotic chromosomes and also to the polytene section 59E of mutant strains carrying the brown dominant allele, indicating that AAGAG tandem satellite repeats are triplex-forming sequences. The satellite probe hybridized to AAGAG-containing regions omitting chromosomal DNA denaturation, as expected, for the intra-molecular triplex DNA formation model in which single-stranded DNA coexists with triplexes. In addition, Thiazole Orange, previously described as capable of reproducing results obtained by antibodies to triple-helical DNA, binds to AAGAG repeats in situ thus validating both detection methods. Unusual phenotype and nuclear structure exhibited by Drosophila correlate with the non-canonical conformation of tandem satellite arrays. From the approaches that lead to the identification of triple-helical DNA in chromosomes, facilities particularly provided by Thiazole Orange use may broaden the investigation on the occurrence of triplex DNA in eukaryotic genomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vasquez, Karen M., and Peter M. Glazer. "Triplex-forming oligonucleotides: principles and applications." Quarterly Reviews of Biophysics 35, no. 1 (February 2002): 89–107. http://dx.doi.org/10.1017/s0033583502003773.

Повний текст джерела
Анотація:
1. Triple-helical nucleic acids 891.1 History 891.2 Use of oligomers in triplex formation 902. Modes of triplex formation 902.1 Intermolecular triplexes 902.2 Intramolecular triplexes (H-DNA) 922.3 R-DNA (recombination DNA) 922.4 PNA (peptide nucleic acids) 933. Triplex structural models 933.1 YR-Y triplexes 943.2 GT-A base triplets 943.3 TC-G base triplets 943.4 TA-T and C+G-C base triplets 943.5 RR-Y triplexes 944. Modifications of TFOs 954.1 Backbone modification of oligonucleotides 954.2 Modification of the ribose in oligonucleotides 964.3 Base modification of oligonucleotides 975. Gene targeting and modification via triplex technology 985.1 Transcription and replication inhibition 995.2 TFO-directed mutagenesis 995.3 TFO-induced recombination 1005.4 Future challenges in triplex-directed genome modification 1006. References 101The first description of triple-helical nucleic acids was by Felsenfeld and Rich in 1957 (Felsenfeld et al. 1957). While studying the binding characteristics of polyribonucleotides by fiber diffraction studies, they determined that polyuridylic acid [poly(U)] and polyadenylic acid [poly(A)] strands were capable of forming a stable complex of poly(U) and poly(A) in a 2:1 ratio. It was therefore concluded that the nucleic acids must be capable of forming a helical three-stranded structure. The formation of the three-stranded complex was preferred over duplex formation in the presence of divalent cations (e.g. 10 mm MgCl2). The reaction was quite specific, since the (U-A) molecule did not react with polycytidylic acid [(poly(C)], polyadenylic acid or polyinosinic acid [(poly(I)] (Felsenfeld et al. 1957). It was later found that poly(dT-dC) and poly(dG-dA) also have the capacity to form triple-stranded structures (Howard & Miles, 1964; Michelson & Monny, 1967). Other triple helical combinations of polynucleotide strands were identified from X-ray fiber-diffraction studies including, (A)n.2(I)n and (A)n.2(T)n (Arnott & Selsing, 1974). X-ray diffraction patterns of triple-stranded fibers of poly(A).2poly(U) and poly(dA).2poly(dT) showed an A-form conformation of the Watson–Crick strands. The third strand was bound in a parallel orientation to the purine strand by Hoogsteen hydrogen bonds (Hoogsteen, 1959; Arnott & Selsing, 1974). In 1968, the first potential biological role of these structures was identified by Morgan & Wells (1968). Using an in vitro assay, they found that transcription by E. coli RNA polymerase was inhibited by an RNA third strand. Thus, the recent developments identifying the potential of triplex formation for gene regulation and genome modification came more than 20 years after this first study of transcription inhibition by triplex formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BROWN, Philip M., Amelia DRABBLE, and Keith R. FOX. "Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment." Biochemical Journal 314, no. 2 (March 1, 1996): 427–32. http://dx.doi.org/10.1042/bj3140427.

Повний текст джерела
Анотація:
We have used DNase I footprinting to examine the effect of a triplex-binding ligand on the formation of parallel intermolecular DNA triple helices at a mixed sequence target site contained within a natural DNA fragment (tyrT). In the presence of 10 μM ligand (N-[2-(dimethylamino)ethyl]-2-(2-naphthyl)quinolin-4-ylamine), the binding of CTCTTTTTGCTT (12G) to the sequence GAGAAAAATGAA (generating a complex containing 8×T·AT, 1×G·TA and 3×C+·GC triplets) was enhanced 3-fold at pH 5.5. When the oligonucleotide CTCTTTTTTCTT (12T) was substituted for 12G (replacing G·TA with T·TA) there was a large reduction in affinity for the target sequence. However, this was stabilized by about 300-fold in the presence of the ligand, requiring a similar concentration to produce a footprint as 12G in the absence of the ligand. When the sequence of the target site was altered to GAGAAAAAAGAA, generating an uninterrupted run of purines [tyrT(46A)], the binding of 12T (generating a complex containing 9×T·AT, and 3×C+·GC triplets) was enhanced 3-fold by 10 μM of the triplex-binding ligand. However, although the binding of 12G to this sequence, generating a complex containing a G·AT triplet, was much weaker, this too was stabilized by about 30-fold by the ligand, requiring a similar concentration as the perfect matched oligonucleotide (12T) in the absence of the ligand. A secondary, less stable footprint was also observed in these fragments when using either 12T or 12G, which was evident only in the presence of the triplex-binding ligand. This site, which contained a number of triplet mismatches, appears to be related to the formation of four or five central T·AT triplets. This reduction in the stringency of oligonucleotide binding by the triplex-binding ligand promotes the formation of complexes at non-targeted regions but may also have the potential for enabling recognition at sites that contain regions where there are no specific triplet matches.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SHIMIZU, Mitsuhiro, Heisaburo SHINDO, and Ushiho MATSUMOTO. "Triplex DNA." Seibutsu Butsuri 33, no. 2 (1993): 68–73. http://dx.doi.org/10.2142/biophys.33.68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Macaya, RF, DE Gilbert, S. Malek, JS Sinsheimer, and J. Feigon. "Structure and stability of X.G.C mismatches in the third strand of intramolecular triplexes." Science 254, no. 5029 (October 11, 1991): 270–74. http://dx.doi.org/10.1126/science.254.5029.270.

Повний текст джерела
Анотація:
Intramolecular DNA triplexes that contain eight base triplets formed from the folding of a single DNA strand tolerate a single X.G.C mismatch in the third strand at acidic pH. The structure and relative stability of all four triplets that are possible involving a G.C Watson-Crick base pair were determined with one- and two-dimensional proton nuclear magnetic resonance techniques. Triplexes containing A.G.C, G.G.C, or T.G.C triplets were less stable than the corresponding parent molecule containing a C.G.C triplet. However, all mismatched bases formed specific hydrogen bonds in the major groove of the double helix. The relative effect of these mismatches on the stability of the triplex differs from the effect assayed (under different conditions) by two-dimensional gel electrophoresis and DNA cleavage with oligonucleotide EDTA.Fe(II).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BROWN, Philip M., and Keith R. FOX. "Nucleosome core particles inhibit DNA triple helix formation." Biochemical Journal 319, no. 2 (October 15, 1996): 607–11. http://dx.doi.org/10.1042/bj3190607.

Повний текст джерела
Анотація:
We have used DNase I footprinting to examine the formation of DNA triple helices at target sites on DNA fragments that have been reconstituted with nucleosome core particles. We show that a 12 bp homopurine target site, located 45 bp from the end of the 160 bp tyrT(46A) fragment, cannot be targeted with either parallel (CT-containing) or antiparallel (GT-containing) triplex-forming oligonucleotides when reconstituted on to nucleosome core particles. Binding is not facilitated by the presence of a triplex-binding ligand. However, both parallel and antiparallel triplexes could be formed on a truncated DNA fragment in which the target site was located closer to the end of the DNA fragment. We suggest that intermolecular DNA triplexes can only be formed on those DNA regions that are less tightly associated with the protein core.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Campbell, Meghan A., Tracey McGregor Mason, and Paul S. Miller. "Interactions of platinum(II)-derivatized triplex-forming oligonucleotides with DNA." Canadian Journal of Chemistry 85, no. 4 (April 1, 2007): 241–48. http://dx.doi.org/10.1139/v07-016.

Повний текст джерела
Анотація:
Polypyrimidine oligonucleotides can bind to tracts of contiguous purines in double-stranded DNA to form triple-stranded complexes. The stability of the triplex is reduced significantly if the target purine tract is interrupted by a single pyrimidine. Previous studies have shown that incorporation of an N4-aminoalkylcytosine into the triplex-forming oligonucleotide (TFO), opposite a single CG interruption, facilitates triplex formation. Examination of molecular models suggested that further modification of the amino group of the aminoalkyl arm might enable adduct formation with the N7 of the guanine of the CG interruption. To test this, we prepared 2′-deoxyribo-and 2′-O-methylribo-TFOs that contained cytosine (C), N4-(2-aminoethyl)cytosine (ae-C), or diethylenetriamineplatinum(II) (DPt-C) or cis-aquodiammineplatinum(II) (cPt-C) derivatives of N4-(2-aminoethyl)cytosine, positioned opposite a CG interruption of a polypurine tract found in the pol gene of HIV-1 proviral DNA. Although the C- and ae-C-derivatized deoxyribo-TFOs formed triplexes of modest stability and the DPt-C-modified TFO failed to form a triplex, the C- and ae-C-derivatized 2′-O-methylribo-TFOs formed remarkably stable triplexes (Tm = 57 °C). The DPt-C- and cPt-C-modified 2′-O-methylribo-TFOs also formed triplexes, although their stabilities were reduced (Tm = 33 °C), suggesting that the tethered platinum group may interfere sterically with TFO binding. Consistent with this hypothesis was the observation that triplex stability was restored (Tm = 57 °C) when the diethylenetriamineplatinum(II) group was tethered to the 5′-end of the 2′-O-methylribo-TFO via a 2-aminoethylcarbamate linkage. Taken together, these results suggest that 2′-O-methylribo-TFOs may be particularly useful in targeting purine tracts in DNA that have CG interruptions, and that further modification with platinum derivatives could lead to the design of TFOs that are capable of covalent binding to their target, thus increasing the effectiveness of the TFO.Key words: triplex-forming oligonucleotide, TFO, cisplatin, interrupted polypurine tract.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Matveishina, Elena, Ivan Antonov, and Yulia A. Medvedeva. "Practical Guidance in Genome-Wide RNA:DNA Triple Helix Prediction." International Journal of Molecular Sciences 21, no. 3 (January 28, 2020): 830. http://dx.doi.org/10.3390/ijms21030830.

Повний текст джерела
Анотація:
Long noncoding RNAs (lncRNAs) play a key role in many cellular processes including chromatin regulation. To modify chromatin, lncRNAs often interact with DNA in a sequence-specific manner forming RNA:DNA triple helices. Computational tools for triple helix search do not always provide genome-wide predictions of sufficient quality. Here, we used four human lncRNAs (MEG3, DACOR1, TERC and HOTAIR) and their experimentally determined binding regions for evaluating triplex parameters that provide the highest prediction accuracy. Additionally, we combined triplex prediction with the lncRNA secondary structure and demonstrated that considering only single-stranded fragments of lncRNA can further improve DNA-RNA triplexes prediction.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fox, Keith R., and Tom Brown. "An extra dimension in nucleic acid sequence recognition." Quarterly Reviews of Biophysics 38, no. 4 (November 2005): 311–20. http://dx.doi.org/10.1017/s0033583506004197.

Повний текст джерела
Анотація:
Introduction 312Triple helices in DNA 312Chemically modified TFOs 313Further development 316Recognition of GC base pairs 316Recognition of TA base pairs 316Recognition of AT base pairs 317Recognition of CG base pairs 317RNA triplexes 317Kinetics of triplex formation 318Practical applications of triplexes 318Conclusions 319References 319Watson–Crick base pairing is a natural molecular recognition process that has been exploited in molecular biology and universally adopted in many fields. An additional mode of nucleic acid sequence recognition that could be used in combination with normal base pairing would add an exta dimension to nucleic acid interactions and open up many new applications. In principle the triplex approach could provide this if developed to recognize any DNA sequence. To this end modified nucleosides have been incorporated into triple-helix-forming oligonucleotides (TFOs) and used to recognize mixed sequence DNA with high selectivity and affinity at neutral pH. Continuing developments are directed towards improving TFO affinity at high pH and increasing triplex association kinetics. A number of applications of triplexes are currently being explored.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lestienne, Patrick P. "Priming DNA Replication from Triple Helix Oligonucleotides: Possible Threestranded DNA in DNA Polymerases." Molecular Biology International 2011 (September 14, 2011): 1–9. http://dx.doi.org/10.4061/2011/562849.

Повний текст джерела
Анотація:
Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "DNA triplex"

1

Sayoh, Ibrahim. "Factors affecting DNA Triplex formation." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/403876/.

Повний текст джерела
Анотація:
Triplex-forming oligonucleotides (TFOs) can be used to target DNA in a sequence-specific fashion, and have a number of potential therapeutic and biotechnological applications. TFOs bind within the DNA major groove where they form sequence-specific contacts with exposed groups on the target duplex. Pyrimidine-rich TFOs bind parallel to the target purine strand forming C+.GC and T.AT triplets and usually require conditions of low pH, which are needed for protonation of the third strand cytosines. In contrast, purine-rich TFOs bind antiparallel to the target and form triplexes containing G.GC and A.AT triplets. DNase I footprinting studies with parallel triplexes often reveal enhanced cleavage at the triplex-duplex junction at the 3’-end of the duplex purine strand. This study systematically investigated how this enhanced cleavage is affected by the nature of the base pairs that flank the TFO-binding site. For this we have used the well-characterised TFO-binding site in the tyrT(43-59) fragment and have changed the base at the 3’-end of the homopurine strand from cytosine to each of the other three bases in turn. In each case the footprints were accompanied by enhanced DNase I cleavage at the 3’-triplex-duplex junction on the purine strand, which is thought to be due to local structural changes that render the DNA to be more susceptible to cleavage by the enzyme. The enhancements were generally greater for flanking pyrimidines than purines. Similar experiments investigated the effect of changing the terminal triplet from T.AT to C+.GC, again flanked by each base in turn. Although there were no significant differences in the concentration dependence of the footprints, fluorescence melting experiments showed that triplexes flanked by G and A are more stable than those flanked by C and T. We also used diethylpyrocabonate (DEPC) to probe the reactivity of adenines at the triplex-duplex junction and find that some, but not all, sequence combinations generate enhanced reactivity, suggesting that triplex formation has altered the stacking pattern of adenines on the 3’-side of the TFO binding site. For antiparallel triplex formation, DNase I enhancements were also observed at a number of bands beyond the 5’-end of each TFO’s binding site. This is also attributed to the TFO-induced DNA structural changes that increase the accessibility of the enzyme to the target site. The results of concentration dependence of the footprints are similar to the parallel ones though fragment AC with 17-mer-G TFO had a much lower C50.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ashley, Carolyn. "The role of triplex DNA in the cell." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0018/NQ43508.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dosanjh, Harvinder Singh. "Biophysical studies of triplex and quadruplex DNA systems." Thesis, Institute of Cancer Research (University Of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mayer, Alain. "Synthesis and triplex forming properties of pyrrolidino-DNA /." [S.l.] : [s.n.], 2005. http://www.zb.unibe.ch/download/eldiss/05mayer_a.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Richards, Sally. "Inhibition of oncogene expression by the formation of Triplex DNA." Thesis, Institute of Cancer Research (University Of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vadhia, Sunil Jayantilal. "The effect of modified nucleosides on DNA duplex and triplex stability." Thesis, University of Southampton, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.484953.

Повний текст джерела
Анотація:
To date, the single most effective method of improving base pairing affinity and binding of PCR primers, fluorescent probes and triplex forming oligonucleotides (TFO) ',h,';I,,+ destabilising mismatch base pairs has been the incorporation of modified nucleoside into these oligonucleotide structures. As a consequence, significant improvements have been made in the areas of human identity testing, forensic science analysis, pharmacogenetics/pharmacogenomics and anti-gene therapy. In an effort to improve the stability of these DNA duplexes and DNA triplexes further, we have synthesised and incorporated a series of cytosine, 7-deaza adenine, thymine and 3Hfuro-[ 2, 3-d] pyrimidin-2-one base analogues. By using a combination of UV melting analysis and fluorescence melting experiments, we have demonstrated that each of the base analogues gives a significantly higher base pairing affinity and binding selectivity when compared to their corresponding natural base. In addition, we have also incorporated these base analogues into PCR primers (7-deaza adenine) and fluorescent probe sequences (cytosine, 7-deaza adenine, thymine and 3H-furo-[2, 3-d] pyrimidin-2-one). Results from peR experiments show that the 7-deaza adenine base analogue does not adversely the functioning of Taq polymerase during amplification and therefore at the very least behaves similarly to adenine within a PCR primer sequence. In addition, all of the tLUlJre~jCel1tly labelled base analogues (cytosine, 7-deaza adenine, thymine and 3H-furo-[2, pyrimidin-2-one) show a significantly higher level ofbase pairing affinity and binding selectivity a complementary target sequence over a mismatched sequence.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Veach, Darren R. "SYNTHESIS AND EVALUATION OF 2,2-DIARYL-2,3-DIHYDROPHENANTHRO-[9,10-b]-1,4-DIOXIN PHOTONUCLEASES." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin991653071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Read, Martin. "Molecular modelling and crystallographic studies of quadruplex and triplex DNA drug complexes." Thesis, Institute of Cancer Research (University Of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325536.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Keppler, Melanie Dawn. "Strategies for increasing the stability of triple helical DNA." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weiser, Michal. "Akcelerace algoritmů pro hledání triplexů v DNA sekvencích." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236435.

Повний текст джерела
Анотація:
Triplex forms of DNA act as main factors of some important cell functions. However, their positions within genome and their effect on cell functions are not known well. Triplex search algorithms often don't consider many of triplexs features and the possibility of occurrence of errors. In the other hand the complexity of full featured algorithms is extremely high. This paper shows the way to speed up the algorithm that considers all known triplex features. Parallel aproach allows due to CUDA technology acceleration up to 50.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "DNA triplex"

1

N, Potaman Vladimir, ed. Triple-helical nucleic acids. New York: Spinger, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Blake, M. C., R. L. Bruhn, E. L. Miller, E. M. Moores, S. B. Smithson, and R. C. Speed. C-1 Mendocino Triple Junction to North American Craton. Edited by Andrew Griscom, D. P. Hill, C. A. Hurich, D. L. Jones, A. H. Lachenbruch, D. S. McCulloch, K. D. Nelson, et al. U.S.A: Geological Society of America, 1989. http://dx.doi.org/10.1130/dnag-cot-c-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Soyfer, Valery N. Triple-Helical Nucleic Acids. Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Soyfer, Valery N., and Vladimir N. Potaman. Triple Helical Nucleic Acids. Springer, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Soyfer, Valery N., and Vladimir N. Potaman. Triple-Helical Nucleic Acids. Springer London, Limited, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Carmon, Haggai. Triple Identity (Dan Gordon Thrillers). Leisure Books, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hogeland, Jane S. Design of B-form specific DNA binding oligonucleotide analogues: Investigations of novel recognition moieties for triple helix formation. 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hogeland, Jane S. Design of B-form specific DNA binding oligonucleotide analogues: Investigations of novel recognition moieties for triple helix formation. 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Annacchino, Anthony Peter. Associative ion-molecule reactions and ion trapping with a triple quadrupole mass spectrometer. 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Carmon, Haggai. Triple Identity: A Dan Gordon Intelligence Thriller. Steerforth Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "DNA triplex"

1

Pu, Fang, and Jinsong Ren. "Structure and Stabilization of CGC+Triplex DNA." In DNA in Supramolecular Chemistry and Nanotechnology, 329–52. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118696880.ch5.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Maldonado, Rodrigo, and Gernot Längst. "Analyzing RNA–DNA Triplex Formation in Chromatin." In Methods in Molecular Biology, 247–54. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0680-3_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fox, Keith R., Tom Brown, and David A. Rusling. "Chapter 1. DNA Recognition by Parallel Triplex Formation." In DNA-targeting Molecules as Therapeutic Agents, 1–32. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788012928-00001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Idili, Andrea, and Francesco Ricci. "Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures." In DNA Nanotechnology, 79–100. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8582-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ganesh, Krishna N., Vaijayanti A. Kumar, and Dinesh A. Barawkar. "Synthetic Control of DNA Triplex Structure through Chemical Modifications." In Perspectives in Supramolecular Chemistry, 263–327. Chichester, UK: John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470511473.ch6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Burrell, Matthew R., Nicolas P. Burton, and Anthony Maxwell. "A High-Throughput Assay for DNA Topoisomerases and Other Enzymes, Based on DNA Triplex Formation." In Methods in Molecular Biology, 257–66. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-418-0_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Reza, Faisal, and Peter M. Glazer. "Therapeutic Genome Mutagenesis Using Synthetic Donor DNA and Triplex-Forming Molecules." In Chromosomal Mutagenesis, 39–73. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1862-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Postepska-Igielska, Anna, Alena Blank-Giwojna, and Ingrid Grummt. "Analysis of RNA–DNA Triplex Structures In Vitro and In Vivo." In Methods in Molecular Biology, 229–46. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0680-3_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baird, M. L., L. Perlee, J. Neuweiler, L. Galbreath, and I. Balazs. "Use of a PCR Triplex System for DNA Typing of Forensic Samples." In 16th Congress of the International Society for Forensic Haemogenetics (Internationale Gesellschaft für forensische Hämogenetik e.V.), Santiago de Compostela, 12–16 September 1995, 167–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80029-0_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Luhui, Yue Wang, Mengyang Hu, Sunfan Xi, Meng Cheng, and Yafei Dong. "Graphene Oxide-triplex Structure Based DNA Nanoswitches as a Programmable Tetracycline-Responsive Fluorescent Biosensor." In Communications in Computer and Information Science, 371–79. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1256-6_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "DNA triplex"

1

Tsai, Tsung-Lin, Kao-Shu Chuang, Jih-Ru Hwu, Chen-Sheng Yeh, Wu-Chou Su, and Dar-Bin Shieh. "Photoactive Compound-Triplex-Forming Oligonucleotide Linked Gold Nanoparticle as an Artificial Gene Specific DNA Cleaver Assembly." In 2008 8th IEEE Conference on Nanotechnology (NANO). IEEE, 2008. http://dx.doi.org/10.1109/nano.2008.263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nyerges, Levente, László Puskás, Gyula Tasi, Botond Penke, and Sándor Bottka. "Quantum chemical design of new hydrogen-bond forming heterocyclic molecules suitable for the synthesis of sequence-specific DNA triplex." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mori, Yasuhiro, Hidehiro Oana, Haruyuki Atomi, Tadayuki Imanaka, and Masao Washizu. "Visualization of an oriC region on an isolated single whole-genome DNA with triplex forming PNA probe using fluorescence microscopy." In 2007 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, 2007. http://dx.doi.org/10.1109/mhs.2007.4420830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nelson, Laura D., Heiko Mannsperger, Christian Bender, Daniel Buergy, Patryk Kambakamba, Giridhar Mudduluru, Dennis P. Hughes, Michael W. Van Dyke, and Heike Allgayer. "Abstract 4566: Triplex DNA-binding proteins in resected normal and tumor tissues from colorectal cancer patients: Biological and clinical relevance." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Laughton, C. A., and S. Neidle. "DNA Triple Helices a Molecular Dynamics Study." In Advances in biomolecular simulations. AIP, 1991. http://dx.doi.org/10.1063/1.41360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alexander, BM, K. Sprott, X. Wang, AD D'Andrea, SJ Schnitt, LC Collins, DT Weaver, and JE Garber. "DNA repair protein biomarkers in triple negative breast cancer." In CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-1064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Jing, Zhi-xiang Yin, and Kai-feng Huang. "The Working Operation Problem on Triple-stranded DNA Structure Model." In 2009 WRI Global Congress on Intelligent Systems. IEEE, 2009. http://dx.doi.org/10.1109/gcis.2009.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xu, Chao, Muhsin Ameen, Pinaki Pal, and Sibendu Som. "Direct Numerical Simulation of Partial Fuel Stratification Assisted Lean Premixed Combustion for Assessment of Hybrid G-Equation/Well-Stirred Reactor Model." In ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icef2021-67835.

Повний текст джерела
Анотація:
Abstract Partial fuel stratification (PFS) is a promising fuel injection strategy to stabilize lean premixed combustion in spark-ignition (SI) engines. PFS creates a locally stratified mixture by injecting a fraction of the fuel, just before spark timing, into the engine cylinder containing homogeneous lean fuel/air mixture. This locally stratified mixture, when ignited, results in complex flame structure and propagation modes similar to partially premixed flames, and allows for faster and more stable flame propagation than a homogeneous lean mixture. This study focuses on understanding the detailed flame structures associated with PFS-assisted lean premixed combustion. First, a two-dimensional direct numerical simulation (DNS) is performed using detailed fuel chemistry, experimental pressure trace, and realistic initial conditions mapped from a prior engine large-eddy simulation (LES), replicating practical lean SI operating conditions. DNS results suggest that conventional triple flame structures are prevalent during the initial stage of flame kernel growth. Both premixed and non-premixed combustion modes are present with the premixed mode contributing dominantly to the total heat release. Detailed analysis reveals the effects of flame stretch and fuel pyrolysis on the flame displacement speed. Based on the DNS findings, the accuracy of a hybrid G-equation/well-stirred reactor (WSR) combustion model is assessed for PFS-assisted lean operation in the LES context. The G-equation model qualitatively captures the premixed branches of the triple flame, while the WSR model predicts the non-premixed branch of the triple flame. Finally, potential needs for improvements to the hybrid G-equation/WSR modeling approach are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maki, August H., T. V. Alfredson, and M. J. Waring. "Photoexcited triplet state provides a quantitative measure of intercalating drug-DNA binding energies." In OE/LASE '92, edited by Joseph R. Lakowicz. SPIE, 1992. http://dx.doi.org/10.1117/12.58241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mani, Chinnadurai, Jonnalagadda Shirisha, Awasthi Sanjay, Manne Upender, and Palle Komaraiah. "Abstract A092: DNA repair proficiency predicts disparities in triple negative breast cancer outcomes." In Abstracts: Twelfth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; September 20-23, 2019; San Francisco, CA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7755.disp19-a092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "DNA triplex"

1

Koshlap, Karl M., Paul Gillespie, Peter B. Dervan, and Juli Feigon. The Nonnatural Deoxyribonucleoside D3 Incorporated in an Intramolecular DNA Triplex Binds Sequence Specifically by Intercalation. Fort Belvoir, VA: Defense Technical Information Center, June 1993. http://dx.doi.org/10.21236/ada265580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Beal, P. A., and P. B. Dervan. Recognition of Double Helical DNA by Alternate Strand Triple Helix Formation. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada251499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dervan, Peter B. Molecular Recognition of DNA. Synthesis of Novel Bases for Triple Helix Formation. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada278902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Griffin, L. C., L. L. Kiessling, and P. B. Dervan. Recognition of All Four Base Pairs of Duplex DNA by Triple Helix Formation. Design of Pyrimidine Specific Bases. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada237360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії