Добірка наукової літератури з теми "DNA thermodynamics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "DNA thermodynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "DNA thermodynamics"

1

SARAI, Akinori. "Thermodynamics of DNA-protein." Seibutsu Butsuri 35, no. 1 (1995): 20–24. http://dx.doi.org/10.2142/biophys.35.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lu, Min, Qiu Guo, Luis A. Marky, Nadrian C. Seeman, and Neville R. Kallenbach. "Thermodynamics of DNA branching." Journal of Molecular Biology 223, no. 3 (February 1992): 781–89. http://dx.doi.org/10.1016/0022-2836(92)90989-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rozikov, U. A. "Thermodynamics of DNA–RNA renaturation." International Journal of Geometric Methods in Modern Physics 18, no. 06 (March 5, 2021): 2150096. http://dx.doi.org/10.1142/s0219887821500961.

Повний текст джерела
Анотація:
We consider a new model which consists of a DNA together with a RNA. Here, we assume that DNA is from a mammal or bird but RNA comes from a virus. To study thermodynamic properties of this model, we use methods of statistical mechanics, namely, the theory of Gibbs measures. We use these measures to describe phases (states) of the DNA–RNA system. Using a Markov chain (corresponding to Gibbs measure) we give conditions (on temperature) of DNA–RNA renaturation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haq, Ihtshamul. "Thermodynamics of drug–DNA interactions." Archives of Biochemistry and Biophysics 403, no. 1 (July 2002): 1–15. http://dx.doi.org/10.1016/s0003-9861(02)00202-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Utsuno, Kuniharu, and Hasan Uludağ. "Thermodynamics of Polyethylenimine-DNA Binding and DNA Condensation." Biophysical Journal 99, no. 1 (July 2010): 201–7. http://dx.doi.org/10.1016/j.bpj.2010.04.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tsuruta, Mitsuki, Yui Sugitani, Naoki Sugimoto, and Daisuke Miyoshi. "Combined Effects of Methylated Cytosine and Molecular Crowding on the Thermodynamic Stability of DNA Duplexes." International Journal of Molecular Sciences 22, no. 2 (January 19, 2021): 947. http://dx.doi.org/10.3390/ijms22020947.

Повний текст джерела
Анотація:
Methylated cytosine within CpG dinucleotides is a key factor for epigenetic gene regulation. It has been revealed that methylated cytosine decreases DNA backbone flexibility and increases the thermal stability of DNA. Although the molecular environment is an important factor for the structure, thermodynamics, and function of biomolecules, there are few reports on the effects of methylated cytosine under a cell-mimicking molecular environment. Here, we systematically investigated the effects of methylated cytosine on the thermodynamics of DNA duplexes under molecular crowding conditions, which is a critical difference between the molecular environment in cells and test tubes. Thermodynamic parameters quantitatively demonstrated that the methylation effect and molecular crowding effect on DNA duplexes are independent and additive, in which the degree of the stabilization is the sum of the methylation effect and molecular crowding effect. Furthermore, the effects of methylation and molecular crowding correlate with the hydration states of DNA duplexes. The stabilization effect of methylation was due to the favorable enthalpic contribution, suggesting that direct interactions of the methyl group with adjacent bases and adjacent methyl groups play a role in determining the flexibility and thermodynamics of DNA duplexes. These results are useful to predict the properties of DNA duplexes with methylation in cell-mimicking conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gutierrez, Hernan Oscar Cortez, Milton Milciades Cortez Gutierrez, Girady Iara Cortez Fuentes Rivera, Liv Jois Cortez Fuentes Rivera, and Deolinda Fuentes Rivera Vallejo. "Dark breather using symmetric Morse, solvent and external potentials for DNA breathing." Eclética Química Journal 43, no. 4 (December 5, 2018): 44. http://dx.doi.org/10.26850/1678-4618eqj.v43.4.2018.p43-48.

Повний текст джерела
Анотація:
We analyze the dynamics and the quantum thermodynamics of DNA in Symmetric-Peyrard-Bishop-Dauxois model (S-PBD) with solvent and external potentials and describe the transient conformational fluctuations using dark breather and the ground state wave function of the associate Schrodinger differential equation. We used the S-PBD, the Floquet theory, quantum thermodynamic and finite difference methods. We show that for lower coupling dark breather is present. We estimate the fluctuations or breathing of DNA. For the S-PBD model we have the stability of dark breather for k<0.004 and mobile breathers with coupling k=0.004. The fluctuations of the dark breather in the S-PBD model is approximately zero with the quantum thermodynamics. The viscous and external potential effect is direct proportional to hydrogen bond stretching.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gutierrez, Hernan Oscar Cortez, Milton Milciades Cortez Gutierrez, Girady Iara Cortez Fuentes Rivera, Liv Jois Cortez Fuentes Rivera, and Deolinda Fuentes Rivera Vallejo. "Dark breather using symmetric Morse, solvent and external potentials for DNA breathing." Eclética Química Journal 43, no. 4 (January 7, 2019): 44. http://dx.doi.org/10.26850/1678-4618eqj.v43.4.2018.p44-49.

Повний текст джерела
Анотація:
We analyze the dynamics and the quantum thermodynamics of DNA in Symmetric-Peyrard-Bishop-Dauxois model (S-PBD) with solvent and external potentials and describe the transient conformational fluctuations using dark breather and the ground state wave function of the associate Schrodinger differential equation. We used the S-PBD, the Floquet theory, quantum thermodynamic and finite difference methods. We show that for lower coupling dark breather is present. We estimate the fluctuations or breathing of DNA. For the S-PBD model we have the stability of dark breather for k<0.004 and mobile breathers with coupling k=0.004. The fluctuations of the dark breather in the S-PBD model is approximately zero with the quantum thermodynamics. The viscous and external potential effect is direct proportional to hydrogen bond stretching.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Petruska, J., M. F. Goodman, M. S. Boosalis, L. C. Sowers, C. Cheong, and I. Tinoco. "Comparison between DNA melting thermodynamics and DNA polymerase fidelity." Proceedings of the National Academy of Sciences 85, no. 17 (September 1, 1988): 6252–56. http://dx.doi.org/10.1073/pnas.85.17.6252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schmitt, Terry J., and Thomas A. Knotts. "Thermodynamics of DNA hybridization on surfaces." Journal of Chemical Physics 134, no. 20 (May 28, 2011): 205105. http://dx.doi.org/10.1063/1.3592557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "DNA thermodynamics"

1

Lee, Se Il. "Statistical thermodynamics of virus assembly." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33900.

Повний текст джерела
Анотація:
Experiments show that MgSO4 salt has a non-monotonic effect as a function of MgSO4 concentration on the ejection of DNA from bacteriophage lambda. There is a concentration, N0, at which the minimum amount of DNA is ejected. At lower or higher concentrations, more DNA is ejected. We propose that this non-monotonic behavior is due to the overcharging of DNA at high concentration of Mg⁺² counterions. As the Mg⁺² concentration increases from zero, the net charge of ejected DNA changes its sign from negative to positive. N0 corresponds to the concentration at which DNA is neutral. Our theory fits experimental data well. The DNA-DNA electrostatic attraction is found to be -0.004 kBT/nucleotide. Simulations of DNA-DNA interaction of a hexagonal DNA bundle support our theory. They also show the non-monotonic DNA-DNA interaction and reentrant behavior of DNA condensation by divalent counterions. Three problems in understanding the capsid assembly for a retrovirus are studied: First, the way in which the viral membrane affects the structure of in vivo assembled HIV-1 capsid is studied. We show that conical and cylindrical capsids have similar energy at high surface tension of the viral membrane, which leads to the various shapes of HIV-1 capsids. Secondly, the problem of RNA genome packaging inside spherical viruses is studied using RNA condensation theory. For weak adsorption strength of capsid protein, most RNA genomes are located at the center of the capsid. For strong adsorption strength, RNA genomes peak near the capsid surface and the amount of RNA packaged is proportional to the capsid area instead its volume. Theory fits experimental data reasonably well. Thirdly, the condensation of RNA molecules by nucleocapsid (NC) protein is studied. The interaction between RNA molecules and NC proteins is important for the reverse transcription of viral RNA which relates to the viral infectivity. For strong adsorption strength of the NC protein, there is a screening effect by RNA molecules around a single NC protein.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Davis, Tina Marie. "Optical properties, conformation, and thermodynamics of DNA oligonucleotides." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schubert, Frank. "Visualization, kinetics, and thermodynamics of DNA-protein interactions." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976174790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dickman, Rebekah. "Thermodynamic Effects of 5' and 3' Single Strand Dangling Ends on Short Duplex DNA." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/94.

Повний текст джерела
Анотація:
Differential scanning calorimetry (DSC) melting analysis was performed on 27 short double stranded DNA duplexes containing 15 to 25 base pairs and short single stranded overhangs from one to 10 bases, on both ends. Molecules have two 5' dangling ends or one 5' and one 3' dangling end. For these molecules the duplex region was incrementally reduced from 25 to 15 base pairs with increased length of the dangling ends from one to 10 bases. A third set of molecules contained 21 base pair duplexes with a four base dangling end on either the 5' or 3' end. Blunt ended duplexes from 15 to 25 base pairs were also examined and served as control duplexes. DSC melting curves were measured in solution containing 85 mM, 300 mM or 1.0 M Na+. From these measurements, thermodynamic parameters for 5' and 3' dangling ends as a function of end length were evaluated. Results showed the 5' ends were slightly stabilizing, and this stability was essentially constant with end length, while the 3' ends were generally destabilizing with increasing length of the end. This finding of lower stability for the 3' ends is consistent with results of published studies that have found 5' dangling ends to be more than or equally as stabilizing as 3' dangling ends. Our finding that 3' dangling ends are actually destabilizing for duplex DNA contrasts with published results. The 3' ends also display a stronger dependence on the [Na+]. In the lower Na+ environment the 3' ends are more destabilizing than at the higher salt environments. Analysis of the thermodynamic parameters of the dangling-ended duplexes as a function [Na+] indicated the 3' dangling end molecules behave differently compared to 5' dangling ended and blunt ended duplexes. The net counterion release per phosphate upon melting the molecules having one 5' and one 3' end was approximately 15% smaller as a function of end length compared to the duplex having two 5' ends. Further analysis of the DSC evaluated thermodynamic transition parameter, ΔHcal, and its relationship to the measured transition temperatures of the DNA molecules, provided an estimate on the excess heat capacity differences, ΔCp, between duplex and melted single strands for the dangling-ended molecules. The analysis revealed the molecules with one 5' and one 3' dangling end had very different ΔCp values compared to the blunt-ended molecule; while the molecules with two 5' ends have ΔCp that are essentially the same as the blunt-ended duplex. These observations are interpreted as differences in the interactions with Na+, solvent and the terminal base pairs of the duplex for the 5' versus 3' dangling ends.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Harris, Sarah Anne. "Theoretical investigations of DNA structure and dynamics." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fakhfakh, Kareem. "Quantifying and modeling the melting thermodynamics of chemically modified duplex DNA." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58855.

Повний текст джерела
Анотація:
Biological reagents that bind a target selectively and with high affinity are widely used as recognition molecules within diagnostic assays and as therapeutics, among other applications. By leveraging their Watson-Crick base pairing ability, short DNA oligonucelotides represent one class of such biological agents that is particularly well suited to analyzing specific elements of the human genome. Such analyses are routinely used by clinics to detect and manage disease, and those analyses are increasingly providing the richer data content and improved performance necessary for effective clinical decision-making by employing chemically modified nucleic acids. To date, the use of these unnatural nucleotides has largely been achieved empirically, but their growing use is motivating the development of new tools and guidelines that accelerate and improve their implementation in novel assays. This thesis describes how two experimental methods may be tailored to accurately measure the melting thermodynamics of short duplex DNA containing chemical modifications – specifically locked nucleic acids (LNAs) – and then reports on a study that used those methods to measure the thermal stabilities of a large panel of DNA duplexes containing LNA substitutions in one or both strands. Those data and insights gleaned from them are used to extend a molecular thermodynamic model, the “Single Base Thermodynamic” (SBT) model[1], to enable accurate predictions of the melting thermodynamics of short B-form DNA duplexes containing i) LNA:LNA base pair and/or ii) oppositely oriented LNA:DNA base pair structures. It is the only thermodynamic model with this ability, and its value is demonstrated through its use to guide the development of a entirely new type of quantitative real-time PCR based diagnostic assay – in this case directed against clinically relevant BRAFV600 mutations in cancer – that improves upon commercially available assays by bettering their throughput and limit of detection.
Applied Science, Faculty of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Verdemato, Philip Edward. "The interaction of the Ada protein with DNA : structure and thermodynamics." Thesis, University of Leicester, 2000. http://hdl.handle.net/2381/29654.

Повний текст джерела
Анотація:
The C-terminal domain of the E. coli Ada protein (Ada-C) aids the maintenance of genomic integrity by efficiently repairing pre-mutagenic O6-alkylguanine lesions in DNA. The aim of this thesis was to discern the manner in which Ada-C binds and repairs DNA. The research was pursued from both structural and thermodynamic perspectives, to obtain a model of the DNA-binding process. The production of recombinant Ada-C from E. coli culture was enhanced through a combination of rational media design, E. coli strain choice, and the employment of a growth strategy for maximising cell density prior to induction of protein expression. Nuclear Magnetic Resonance (NMR) studies mapped the DNA-binding site to the recognition helix of the helix-turn-helix motif and a loop region (residues 149-155) known as the 'wing'. Using this binding interface, and in the absence of a large conformational change in the protein upon DNA-binding, it was found that an O6 meG lesion was inaccessible to active site nucleophile Cys 144 when the lesion remained stacked within the DNA duplex. This lesion could enter the active site by being rendered extrahelical, or "flipping". The DNA-binding process was shown to be entropically driven, whilst the demethylation reaction provoked an exothermic heat change. At millimolar concentrations, methylation of Ada-C led to a loss of structural integrity. Duplex DNA containing an O6meG lesion had a lower enthalpy of melting than unmethylated DNA. This, along with 19F NMR work on modified DNA, led to the postulation that O6meG might induce localised duplex melting. This would certainly aid the base-flipping process.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Singleton, Scott F. Dervan Peter B. Dervan Peter B. "The thermodynamics of oligonucleotide-directed triple helix formation at single DNA sites /." Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-10242007-090557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kilpatrick, Nancy A. "Binding of Bisbenzamidines with AT Rich DNA: A Thermodynamic Study." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/chemistry_theses/41.

Повний текст джерела
Анотація:
Diamidines are small molecules that generally possess antiparasitic properties and bind preferentially to the minor groove of AT rich DNA. With the goal of getting a better understanding of the thermodynamic driving forces and binding affinities, a series of pentamidine analogs were investigated with various AT rich DNA by ITC, UV-Vis and fluorescence spectroscopic methods. Findings suggest that the substitution of the linker oxygen of pentamidine to a nitrogen slightly improves the binding affinity. All of the investigated compounds are entropically driven at 25 oC with non-alternating AT DNA. Additionally, the increased fluorescence of the nitrogen and sulfur linked analogs will enable future work to be done with fluorescence microscopy to help determine if and where these compounds accumulate in the target organism.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Davis, Michael L. "Excimer-Monomer Switching Molecular Beacon: The Study on Synthetic Cryptosporidum DNA Detection, Thermodynamics, and Magnesium Effects." DigitalCommons@USU, 2014. https://digitalcommons.usu.edu/etd/2191.

Повний текст джерела
Анотація:
Cryptosporidium parvum is a deadly waterborne protozoan parasite that invades the gastrointestinal tract of humans and causes severe to life-threatening gastro enteric disease. Due to the ubiquitous nature of Cryptosporidium parvum in the world’s water, it is necessary to determine the source of an outbreak. Rapid detection and identification of various genotypes of Cryptosporidium are a valuable goal in determining the source of the pathogen in a human epidemic. Exploitation of gene sequences specific to species is a powerful tool detecting pathogens. Molecular beacons are one of these tools for high selectivity and specificity detection of DNA and RNA. Molecular beacon is a single strand of DNA that forms a stem and loop structure, where the stem holds the DNA together and the loop detects a target sequence. This molecular beacon detection is determined by the changes of fluorescent emissions of fluorescent dye linked to the ends of the stem. In this thesis work, a new and novel molecular beacon was designed to detect the specific sequences from the heat shock protein gene of Cryptosporidium parvum that infects humans. This probe is synthesized by the conjugation of pyrene molecules to both ends of the stem which leads to a unique feature of pyrene excimer-monomer switching molecular beacon upon the hybridization of the loop sequence with the target DNA sequence. This thesis systematically investigates the physical binding (e.g., quantum yield) and thermodynamic properties, including enthalpy, entropy, and free energy of this excimer-monomer switching molecular beacon in the presences of complimentary, mismatched, and damaged DNA, respectively, in the three phases: phase one is the molecular beacon in the stem and loop structure, phase two is the molecular beacon hybridized to its target DNA, and phase three is the molecular beacon in a random coil. The effect of magnesium concentration on the binding and thermodynamic properties was also investigated. Finally, as a comparison, a conventional fluorescence resonance energy transfer-based molecular beacon with a fluorophore at the 5’ end and quencher at the 3’ end was used to assess selectivity and sensitivity in detection of DNA-DNA hybridization.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "DNA thermodynamics"

1

1947-, Johnson Michael L., and Ackers Gary K, eds. Energetics of biological macromolecules. San Diego, CA: Academic Press, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wilardjo, L. Bahang dan termodinamika. Jakarta: Departemen Pendidikan dan Kebudayaan, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bolek, Wiktor. Linearyzacja przez sprzężenie zwrotne w syntezie algorytmów regulacji dla obiektów termoenergetycznych. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hubert, Jerzy. Numeryczne zastosowania termodynamicznego potencjału lokalnego: Algorytmy rozwiązań i analiza błędu dla różnych typów warunków brzegowych i geometrii przepływu. Kraków: Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bachmann, Michael. Thermodynamics and Statistical Mechanics of Macromolecular Systems. University of Cambridge ESOL Examinations, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bachmann, Michael. Thermodynamics and Statistical Mechanics of Macromolecular Systems. Cambridge University Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thermodynamics and Statistical Mechanics of Macromolecular Systems. Cambridge University Press, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stormo, Gary D. Introduction to Protein-DNA Interactions: Structure, Thermodynamics, and Bioinformatics. Cold Spring Harbor Laboratory Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leong, Terence T. Thermodynamics of nucleic acids ; and, Nucleic acid interactions with CC1065 and structurally analogous cytotoxic drugs. 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

U, Bastolla, ed. Structural approaches to sequence evolution: Molecules, networks, populations. Berlin: Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "DNA thermodynamics"

1

Tanaka, Fumiaki, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi. "Nearest-Neighbor Thermodynamics of DNA Sequences with Single Bulge Loop." In DNA Computing, 170–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24628-2_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Härd, Torleif. "Dissecting the Thermodynamics of DNA-Protein Interactions." In Biocalorimetry 2, 81–91. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470011122.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Burgot, Jean-Louis. "The Molecular Basis of the Informational System–The Replication of DNA–The Trancription to mRNA– Protein Biosynthesis." In Thermodynamics in Bioenergetics, 302–10. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9781351034227-41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Palumbo, Manlio, Giorgio Palu’, and Sebastiano Marciani Magno. "Thermodynamics and Stereochemistry of the Interaction between Anthraquinone Drugs and DNA." In Macromolecular Biorecognition, 185–98. Totowa, NJ: Humana Press, 1987. http://dx.doi.org/10.1007/978-1-4612-4600-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Evstigneev, Maxim P., and Anna V. Shestopalova. "Structure, Thermodynamics and Energetics of Drug-DNA Interactions: Computer Modeling and Experiment." In Challenges and Advances in Computational Chemistry and Physics, 21–57. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9257-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Prislan, Iztok, Hui-Ting Lee, Cynthia Lee, and Luis A. Marky. "The Size of Internal Loops Influences the Unfolding Thermodynamics of DNA Hairpins." In ACS Symposium Series, 93–110. Washington, DC: American Chemical Society, 2011. http://dx.doi.org/10.1021/bk-2011-1082.ch006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Crane-Robinson, Colyn, Anatoly I. Dragan, and Christopher M. Read. "Defining the Thermodynamics of Protein/DNA Complexes and Their Components Using Micro-calorimetry." In Methods in Molecular Biology™, 625–51. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-015-1_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cheng, C. C., Gregory A. Neyhart, Thomas W. Welch, James G. Goll, and H. Holden Thorp. "Thermodynamics and Kinetics of Competing Redox Processes During DNA Cleavage: Reactivity-Based Selectivity." In Bioinorganic Chemistry, 237–43. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0255-1_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hadži, San, Matjaž Boncina, Gorazd Vesnaver, and Jurij Lah. "CHAPTER 17. Thermodynamics of the Folding and Interconversion of G-quadruplex DNA Structures." In Gibbs Energy and Helmholtz Energy, 464–78. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164095-00464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ouldridge, Thomas E. "Thermodynamic Properties of Model DNA." In Coarse-Grained Modelling of DNA and DNA Self-Assembly, 71–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30517-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "DNA thermodynamics"

1

Carlon, Enrico. "Thermodynamics of DNA microarrays." In Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nuser, Maryam. "Analyzing Thermodynamics of DNA Spaces." In 2011 2nd International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA). IEEE, 2011. http://dx.doi.org/10.1109/ibica.2011.90.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

González-Amezcua, O. "Structural Thermodynamics of Cationic Liposome DNA System." In ADVANCED SUMMER SCHOOL IN PHYSICS 2005: Frontiers in Contemporary Physics EAV05. AIP, 2006. http://dx.doi.org/10.1063/1.2160991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Engelhardt, Jan, Bent Andresen, and Steen Rasmussen. "Thermodynamics and kinetics of Lesion Induced DNA Amplification (LIDA)." In The 2020 Conference on Artificial Life. Cambridge, MA: MIT Press, 2020. http://dx.doi.org/10.1162/isal_a_00312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crivellari, M. Ribezzi, J. M. Huguet, and F. Ritort. "Nonequilibrium thermodynamics of single DNA hairpins in a dual-trap optical tweezers setup." In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fujibayashi, Kenichi, and Satoshi Murata. "Thermodynamic Simulations of DNA Tile Self-Assembly." In 2nd Internationa ICST Conference on Nano-Networks. ICST, 2007. http://dx.doi.org/10.4108/icst.nanonet2007.2075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ibrahim, Zuwairie, Mohd Falfazli Mat Jusof, and Mohd Zaidi Mohd Tumari. "Ant Colony Optimisation with Unified Nearest-Neighbour Thermodynamic Parameter for DNA Sequence Design in DNA Computing." In 2014 International Conference on Soft Computing & Machine Intelligence (ISCMI). IEEE, 2014. http://dx.doi.org/10.1109/iscmi.2014.40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ibrahim, Zuwairie, Mohd Falfazli Mat Jusof, and Mohd Zaidi Mohd Tumari. "Ant Colony Optimisation with Breslauer Nearest-Neighbour Thermodynamic Parameter for DNA Sequence Design in DNA Computing." In 2014 8th Asia Modelling Symposium (AMS). IEEE, 2014. http://dx.doi.org/10.1109/ams.2014.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anastasiia, Herus. "Thermodynamic analysis of ligand - DNA complex formation from the spectrophotometric data." In 2015 International Young Scientists Forum on Applied Physics (YSF). IEEE, 2015. http://dx.doi.org/10.1109/ysf.2015.7333127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Altaisky, Mikhail, and Natalia Kaputkina. "Thermodynamic restrictions on artificial intelligence based on quantum systems." In 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA). IEEE, 2021. http://dx.doi.org/10.1109/dcna53427.2021.9587013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "DNA thermodynamics"

1

Aboul-ela, F. M. Sequence dependent structure and thermodynamics of DNA oligonucleotides and polynucleotides: uv melting and NMR (nuclear magnetic resonance) studies. Office of Scientific and Technical Information (OSTI), December 1987. http://dx.doi.org/10.2172/5211306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dickman, Rebekah. Thermodynamic Effects of 5' and 3' Single Strand Dangling Ends on Short Duplex DNA. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.94.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schutt, Timothy C., and Manoj K. Shukla. Computational Investigation on Interactions Between Some Munitions Compounds and Humic Substances. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39703.

Повний текст джерела
Анотація:
Humic acid substances (HAs) in natural soil and sediment environments effect the retention and degradation of insensitive munitions compounds and legacy high explosives (MCs): DNAN, DNi- NH4+, nMNA, NQ, NTO (neutral and anionic forms), TNT, and RDX.A humic acid model compound has been considered using molecular dynamics, thermodynamic integration, and density functional theory to characterize the munition binding ability, ionization potential, and electron affinity compared to that in the water solution. Humic acids bind most compounds and act as both a sink and source for electrons. Ionization potentials suggest HAs are more susceptible to oxidation than the MCs studied. The electron affinity of HAs are very conformation-dependent and spans the same range as the munition compounds. When HAs and MCs are complexed the HAs tend to radicalize first thus buffering MCs against reductive as well as oxidative attacks.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії