Добірка наукової літератури з теми "DNA Synthesis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "DNA Synthesis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "DNA Synthesis"

1

Burke, Cassandra R., and Andrej Lupták. "DNA synthesis from diphosphate substrates by DNA polymerases." Proceedings of the National Academy of Sciences 115, no. 5 (January 16, 2018): 980–85. http://dx.doi.org/10.1073/pnas.1712193115.

Повний текст джерела
Анотація:
The activity of DNA polymerase underlies numerous biotechnologies, cell division, and therapeutics, yet the enzyme remains incompletely understood. We demonstrate that both thermostable and mesophilic DNA polymerases readily utilize deoxyribonucleoside diphosphates (dNDPs) for DNA synthesis and inorganic phosphate for the reverse reaction, that is, phosphorolysis of DNA. For Taq DNA polymerase, the KMs of the dNDP and phosphate substrates are ∼20 and 200 times higher than for dNTP and pyrophosphate, respectively. DNA synthesis from dNDPs is about 17 times slower than from dNTPs, and DNA phosphorolysis about 200 times less efficient than pyrophosphorolysis. Such parameters allow DNA replication without requiring coupled metabolism to sequester the phosphate products, which consequently do not pose a threat to genome stability. This mechanism contrasts with DNA synthesis from dNTPs, which yield high-energy pyrophosphates that have to be hydrolyzed to phosphates to prevent the reverse reaction. Because the last common ancestor was likely a thermophile, dNDPs are plausible substrates for genome replication on early Earth and may represent metabolic intermediates later replaced by the higher-energy triphosphates.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shilkin, E. S., E. O. Boldinova, A. D. Stolyarenko, R. I. Goncharova, R. N. Chuprov-Netochin, M. P. Smal, and A. V. Makarova. "Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance." Biochemistry (Moscow) 85, no. 8 (August 2020): 869–82. http://dx.doi.org/10.1134/s0006297920080039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shaista Sabir and Naghmmana Rashid, Shaista Sabir and Naghmmana Rashid. "Organocatalyzed Synthesis, DNA Binding and Microbial Studies of Warfarin Analogues." Journal of the chemical society of pakistan 46, no. 1 (2024): 107. http://dx.doi.org/10.52568/001426/jcsp/46.01.2024.

Повний текст джерела
Анотація:
A noval chiral sec-amine/amidine-base hybrid catalyst, N [S-carbonylprolyl] cyclohexyl Amine is described, which is able to catalyze conjugate addition of 6-Methyl-4-hydroxypyran and 2-Hydroxy-naphthaquinone with various benzylideneacetones through Michael reactions that directly gives anticoagulant Warfarin analogues. These analogues were prepared in good yields (54–82%) and in good enantiomeric excess (50–75%). Identification of synthesized compounds was done by physio-chemical properties and spectral analysis (1H-NMR andamp; 13C-NMR).These compounds were further investigated for their antimicrobial (antibacterial andamp; antifungal) activities and DNA-binding studies. Antimicrobial studies were carried out by Disc Diffusion while DNA-binding studies were carried out by Cyclic Voltammetry and UV-Visible spectroscopy. These studies showed that the compounds showed significant interaction with DNA. Some analogues also imparted prominent antimicrobial activities.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Caruthers, Marvin H. "Chemical synthesis of DNA and DNA analogs." Accounts of Chemical Research 24, no. 9 (September 1991): 278–84. http://dx.doi.org/10.1021/ar00009a005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Church, Geoffrey A., Anindya Dasgupta, and Duncan W. Wilson. "Herpes Simplex Virus DNA Packaging without Measurable DNA Synthesis." Journal of Virology 72, no. 4 (April 1, 1998): 2745–51. http://dx.doi.org/10.1128/jvi.72.4.2745-2751.1998.

Повний текст джерела
Анотація:
ABSTRACT Herpes simplex virus (HSV) type 1 DNA synthesis and packaging occur within the nuclei of infected cells; however, the extent to which the two processes are coupled remains unclear. Correct packaging is thought to be dependent upon DNA debranching or other repair processes, and such events commonly involve new DNA synthesis. Furthermore, the HSV UL15 gene product, essential for packaging, nevertheless localizes to sites of active DNA replication and may link the two events. It has previously been difficult to determine whether packaging requires concomitant DNA synthesis due to the complexity of these processes and of the viral life cycle; however, we have recently described a model system which simplifies the study of HSV assembly. Cells infected with HSV strain tsProt.A accumulate unpackaged capsids at the nonpermissive temperature of 39°C. Following release of the temperature block, these capsids proceed to package viral DNA in a single, synchronous wave. Here we report that, when DNA replication was inhibited prior to release of the temperature block, DNA packaging and later events in viral assembly nevertheless occurred at near-normal levels. We conclude that, under our conditions, HSV DNA packaging does not require detectable levels of DNA synthesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Turgay Tun, Turgay Tun, Nadir Demirel Nadir Demirel, Mahmut Emir Mahmut Emir, Asl han G. nel Asl han G nel, R. fk Kad o. lu R fk Kad o lu, and Nurcan Karacan Nurcan Karacan. "Three New Copper (II) Complexes with CHIRAL SCHIFF BASES: Synthesis, Characterization, DNA Binding and DNA-Cleavage Studies." Journal of the chemical society of pakistan 41, no. 2 (2019): 334. http://dx.doi.org/10.52568/000730/jcsp/41.02.2019.

Повний текст джерела
Анотація:
New mononuclear copper (II) complexes (1, 2 and 3) were synthesized from Schiff bases (H2L) of chiral amino alcohols. The structures of the copper complexes were proposed by a combination of elemental analyses, FTIR, LCMS, magnetic susceptibility and molar conductance measurement methods. Spectroscopic and analytical data of the complexes suggest four-coordinated structures. Geometry optimization carried out with DFT/6-31G (d,p) were proposed to be distorted square planar geometry for the complexes. The similarity between experimental and theoretical IR spectra confirms the proposed structures. The interaction of copper (II) complexes with calf thymus (CT-DNA) was investigated using absorption titration method. The results suggest that the complex 1 and 2 can bind to DNA by intercalation. Binding constants Kb were found to be 2.46and#215;105 for 1, 5.41and#215;105 for 2 and 7.00and#215;104 for 3. Moreover, agarose gel electrophoresis assay demonstrates that all complexes were found to cleavage of plasmid pentry/d-topo plasmid DNA. Complex 2 shows the best cleavage activity (5 and#181;M).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Leslie, Mitch. "Double-checking DNA synthesis." Journal of Cell Biology 204, no. 2 (January 13, 2014): 148. http://dx.doi.org/10.1083/jcb.2042iti1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Doerr, Allison. "DNA synthesis lights up." Nature Methods 5, no. 4 (April 2008): 286. http://dx.doi.org/10.1038/nmeth0408-286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Uppenbrink, J. "ORGANIC SYNTHESIS: Sugarcoated DNA." Science 290, no. 5492 (October 27, 2000): 675b—675. http://dx.doi.org/10.1126/science.290.5492.675b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

LeBrasseur, Nicole. "Geminin halts DNA synthesis." Journal of Cell Biology 165, no. 4 (May 24, 2004): 455. http://dx.doi.org/10.1083/jcb1654iti3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "DNA Synthesis"

1

Lo, Allen Tak Yiu. "Protein dynamics on the lagging strand during DNA synthesis." Thesis, School of Chemistry, 2012. https://ro.uow.edu.au/theses/3684.

Повний текст джерела
Анотація:
DNA replication is one of the vital processes in the cell; it duplicates chromosomal DNA before a cell divides. In all organisms, DNA synthesis on the leading-strand template occurs continuously, whereas on the lagging strand a different mechanism is required. Due to the anti-parallel structure of double-stranded DNA, lagging-strand synthesis requires repeated RNA priming by a specialist primase and synthesis of short Okazaki fragments. How proteins carry out this dynamic process is still unknown. For Escherichia coli DNA replication, a lagging-strand three-point switch was proposed in 1999 to explain priming by DnaG primase while it is associated with the DnaB6 helicase, and its subsequent hand-off from the primer to the χ subunit of DNA polymerase III holenzyme to enable primer utilization for Okazaki fragment synthesis. The main aims of this project were to study the interactions involved in this switch to understand better how the proteins coordinate their roles during lagging-strand DNA synthesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lo, Pik Kwan Peggy. "Supramolecular DNA chemistry: assembly of DNA nanotubes and templated synthesis of DNA-mimetic polymers." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95152.

Повний текст джерела
Анотація:
DNA has emerged as a promising template for the programmable assembly of structures on the nanometer scale. In particular, DNA nanotubes hold promise for a number of biological and materials applications, because of their high aspect ratio and encapsulation potential. Current construction methods result in symmetrical and cylindrical assemblies that are totally double-stranded, and are long and polydisperse. In order to investigate DNA nanotubes for applications as well-defined molecular hosts and one-dimensional templates, better control over their geometry, stiffness and porosity, ability to encapsulate and length needs to be achieved. Specifically, the first section of this thesis will describe (a) a modular approach to construct DNA nanotubes of geometrically well-defined triangular and square-shapes, which can exist in either double- and single-stranded forms with different stiffnesses, (b) the construction of DNA nanotubes with longitudinal variation by alternating larger and smaller capsules along the tube length, the encapsulation of guest molecules within these DNA nanotubes as well as their selective release with externally added DNA strands, (c) the use of a DNA-templated approach to produce nanotubes with controlled pre-determined lengths of 1 μm, and 500 nm and narrow length distributions, and the encapsulation of gold nanoparticles within these well-defined nanotubes to form finite lines of gold nanoparticles with longitudinal plasmon coupling. While DNA is a very promising construction material, it suffers from serious drawbacks for practical applications in materials science and biology. DNA is difficult and expensive to obtain in large quantities, and has limited long-term stability. On the other hand, synthetic polymers are routinely used as building blocks for nanostructured materials, with multiple applications in areas ranging from optics and data storage, to separation science and biology. Thus, an important challenge is the creation of
L'ADN s'est récemment manifesté comme un matériau prometteur pour l'assemblage programmable de structures à l'échelle nanométrique. En particulier, les nanotubes d'ADN sont intéressants pour leurs applications en science des matériaux et en biologie, en raison de leur aspect linéaire et leur potentiel d'encapsulation. Les méthodes courantes de leur synthèse produisent des assemblées symétriques et cylindriques totalement constituées de doubles brins d'ADN longs et polydisperses. Afin d'examiner les nanotubes d'ADN pour leurs applications comme des hôtes moléculaires à structure bien-définie et comme modèles unidimensionnels, des méthodes de synthèse qui mènent à un plus haut niveau de contrôle de leur géométrie, rigidité, porosité, capacité d'encapsulation et longueur doivent être développées. Plus précisément, la première section de cette thèse décrira (a) une approche modulaire pour construire des nanotubes d'ADN géométriquement bien définis, triangulaires ou carrés, et pouvant exister en formes d'ADN double-brin ou brin simple avec des différences de rigidité, (b) la construction des nanotubes d'ADN avec une variation longitudinale, en alternant les grandes et les petites capsules le long du tube, et l'encapsulation de matériaux invités au sein de ces nanotubes d'ADN, ainsi que leur libération sélective sous l'action de brins d'ADN externes ajoutés, (c) l'utilisation de l'approche d'un modèle d'ADN pour produire des nanotubes avec des longueurs contrôlées et prédéterminées de 1 µm ou de 500 nm et des distributions de longueurs étroites, et l'encapsulation de nanoparticules d'or au sein de ces nanotubes bien définis pour former des lignes de longueurs bien définies de nanoparticules d'or avec un couplage plasmonique longitudinal. Bien que l'ADN soit une molécule très intéressante pour l'auto-assemblage de structures, son utilisation comme un outil dans les applications pratiques en science des maté
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Araki, Kasumi. "Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis". Kyoto University, 2006. http://hdl.handle.net/2433/143860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Porssa, Manuchehr. "Synthesis of radiosensitisers targeted to DNA." Thesis, Brunel University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ellsmore, Victoria. "Human cytomegalovirus origin-dependent DNA synthesis." Thesis, University of Glasgow, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Devadoss, Babho. "Probing the Base Stacking Contributions During Translesion DNA Synthesis." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1222818842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roberts, Lezah Wilette. "The synthesis of a tetracene quinone phosphoramidite photosensitizer to study charge migration through DNA." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/30903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Erler, Christiane. "Synthesis of Metallic Nanowires Using Integrated DNA Molecules as Templates." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-27671.

Повний текст джерела
Анотація:
The DNA double helix is inherently a nanoscale wire-like object, possessing a 2 nm diameter as well as a remarkable capability for molecular recognition and the interaction with other chemical compounds, thus making it an attractive material for biologically driven assembly of artificial nanostructures. In this work methods for the construction of functional electronic networks from single DNA molecules are presented. For this, (i) the generation of patterns of distinct interconnects between micro-fabricated contact pads are explored by stretching end-specifically thiol-functionalized, single-tethered DNA molecules using hydrodynamic flow as well as an electric field-induced thermal flow. (ii) These networks then serve as a template for a selective in-situ photoinduced nucleation and growth of platinum clusters of 4 nm diameter along the DNA molecules. In the synthesis exclusively platinum ions from an aqueous platinum nitrate solution bonded electrostatically to the backbone of the immobilized DNA can be reduced upon irradiation with UV light, while background metallization is inhibited. Furthermore, the metallization scheme is applied to DNA nanotubes and another photochemical deposition process is used to tune the interparticle gap space in a discontinuous platinum cluster chain to form conducting nanowires. The "process toolbox'' presented in this work offers a versatile alternative for the hierarchical patterning and incorporation of biotemplated nanomaterials into micro-/nanofabrication schemes
Ein doppelhelikaler DNA-Strang besitzt mit seinem hohen Aspektverhältnis von Natur aus Ähnlichkeit mit einem Kabel. Zusammen mit seinen einzigartigen Selbstassemblierungseigenschaften sowie der Fähigkeit, mit einer Vielzahl von chemischen Stoffen eine Verbindung einzugehen, macht dies ihn zu einem aussichtsreichen Baumaterial für den Aufbau von künstlichen Nanostrukturen. In dieser Arbeit werden deshalb verschiedene Methoden für den Bau von elektronischen Schaltkreisen aus einzelnen DNA-Strängen demonstriert. Dazu wird (i) die Herstellung von Verdrahtungsmustern zwischen lithographisch gefertigten Kontaktstrukturen untersucht. Endständig mit Thiolgruppen funktionalisierte DNA-Moleküle, die an nur einem Ende mit der Oberfläche verknüpft sind, werden mittels Strömung oder eines elektrothermisch induzierten Flusses zwischen Elektroden gespannt. (ii) Diese Netzwerke dienen im Weiteren als Vorlage für ein selektives, lichtinduziertes Wachstum von Platinpartikeln mit Durchmessern von 4 nm lokal entlang der DNA-Moleküle. Dabei werden unter UV-Bestrahlung nur solche Platinionen reduziert, die aus einer Platinnitrat-Lösung elektrostatisch an die immobilisierte DNA angebunden haben. Partikelwachstum in der umgebenden Lösung wird weitgehend verhindert. Darüber hinaus wird dieses Verfahren auch auf DNA-Nanoröhren angewendet und ein weiterer photochemischer Abscheideprozess eingesetzt, um unterbrochene Clusterkettern zusammenzuwachsen, mit dem Ziel, elektrisch leitfähige Nanodrähte zu erhalten. Die vorgestellten Verfahren stellen eine vielseitige Alternative zu herkömmlichen, hierarchischen Fabrikationsschemen der Mikro- und Nanotechnologie dar
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stockley, Martin Lee. "Design and synthesis of selective DNA-dependent protein kinase (DNA-PK) inhibitors." Thesis, University of Newcastle Upon Tyne, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kapusuz, Derya. "Sol-gel Synthesis Of Dna Encapsulated Silica." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610627/index.pdf.

Повний текст джерела
Анотація:
Sol-gel processing routes for encapsulation of double stranded DNA in solid porous silica hosts have been established. The encapsulation was carried out in two steps: hydrolysis of a silica-forming alkoxide-based sol was followed by condensation/gelation to a solid form upon addition of a buffer solution containing DNA molecules. The effects of gelation chemistry and DNA amount on chemical and microstructural properties of resultant silica matrices and on DNA encapsulation efficiency were investigated. The analytical characterization was performed by UV-vis spectroscopy, 29Si nuclear magnetic resonance spectroscopy and by nitrogen adsorption studies. It was demonstrated that DNA incorporation had a pH-dependent catalytic effect on gelation kinetics and promoted silica network completion. In addition, the scale of porosity and the average pore size of the resultant silica increased with gelation pH and also with DNA-buffer solution in the starting sol-gel formulation. The chemistry-derived pore size variation controls the DNA encapsulation efficiency in the silica matrices and the DNA holding capacity strongly depends on the scale of the porosity attained. The selective adsorption of ethidium bromide- a DNA-intercalative reagent molecule- on DNA-silica gels confirmed that the DNA molecules remained entrapped within the silica host in their native state without any deterioration. Besides pure silica, amine-functionalized hybrid silica hosts were also formed by sol-gel. The hybrid gels were found not to be suitable for DNA encapsulation, as these matrices dissolve in aqueous environment due to incomplete silica network formation. The DNA-doped silica hosts may provide promising matrices for development of biosensors, bioreactors and bioassay platforms.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "DNA Synthesis"

1

Campbell, Marissa J. DNA microarrays, synthesis, and synthetic DNA. Hauppauge, N.Y: Nova Science, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lilley, David M. J. 1948- and Dahlberg James, eds. DNA structures. San Diego: Academic Press, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

A, Baker Tania, ed. DNA replication. 2nd ed. New York: W.H. Freeman, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Porssa, Manuchehr. Synthesis of radiosensitisers targeted to DNA. Uxbridge: Brunel University, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

1943-, Erlich Henry A., ed. PCR technology: Principles and applications for DNA amplification. Houndmills, Busingstoke, Hants, England: Macmillan Publishers, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hŏ, Tʻae-hoe. Chae chohap ŭiyakpʻum ŭi myŏnyŏgwŏnsŏng e kwanhan yŏnʼgu =: Study on immunogenicity of recombinant medicinal products. [Seoul]: Sikpʻum Ŭiyakpʻum Anjŏnchʻŏng, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

E, Khudyakov Yury, and Fields Howard A, eds. Artificial DNA: Methods and applications. Boca Raton, FL: CRC Press, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Adams, R. L. P. DNA replication. Oxford [England]: IRL Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

A, Narang Saran, ed. Synthesis and applications of DNA and RNA. Orlando: Academic Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arnold, Revzin, ed. The Biology of nonspecific DNA-protein interactions. Boca Raton, Fla: CRC Press, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "DNA Synthesis"

1

Engels, Joachim W., Belinda Sprunkel, and Eugen Uhlmann. "DNA Synthesis." In Biotechnology, 317–69. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620838.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Seeger, C., J. Summers, and W. S. Mason. "Viral DNA Synthesis." In Current Topics in Microbiology and Immunology, 41–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76015-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nouri, Ali, and Christopher F. Chyba. "DNA Synthesis Security." In Methods in Molecular Biology, 285–96. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-564-0_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Masutani, Chikahide, and Fumio Hanaoka. "Translesion DNA Synthesis." In DNA Repair Disorders, 169–89. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6722-8_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rosen, Christian B., Thomas Tørring, and Kurt V. Gothelf. "DNA-Templated Synthesis." In Nucleic Acids and Molecular Biology, 173–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38815-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mannocci, Luca. "DNA-encoded Chemical Libraries." In Diversity-Oriented Synthesis, 353–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118618110.ch11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Little, Rachel C., Colette J. Whitfield, Eimer M. Tuite, and Andrew R. Pike. "The Synthesis of Designer DNA." In DNA Nanotechnology, 11–21. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8582-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kotlyar, Alexander. "Synthesis of DNA-Based Nanowires." In DNA Nanotechnology, 23–47. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8582-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hélène, Claude, and Thérèse Garestier. "Oligonucleotide-Directed Recognition of Double-Helical DNA." In Chemical Synthesis, 403–17. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0255-8_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Loeb, L. A., and M. E. Reyland. "Fidelity of DNA Synthesis." In Nucleic Acids and Molecular Biology, 157–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-46596-3_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "DNA Synthesis"

1

Abu-Sini, Maria, Andreas Lenz, and Eitan Yaakobi. "DNA Synthesis Using Shortmers." In 2023 IEEE International Symposium on Information Theory (ISIT). IEEE, 2023. http://dx.doi.org/10.1109/isit54713.2023.10206609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Makarychev, Konstantin, Miklos Z. Racz, Cyrus Rashtchian, and Sergey Yekhanin. "Batch Optimization for DNA Synthesis." In 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9517820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lenz, Andreas, Yi Liu, Cyrus Rashtchian, Paul H. Siegel, Antonia Wachter-Zeh, and Eitan Yaakobi. "Coding for Efficient DNA Synthesis." In 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020. http://dx.doi.org/10.1109/isit44484.2020.9174272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vaníková, Zuzana, and Michal Hocek. "Polymerase synthesis of new photocaged DNA." In XVIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2014. http://dx.doi.org/10.1135/css201414392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nguyen, Khoa, Stéphane Streiff, Sébastien Lyonnais, Laurence Goux-Capes, Arianna Filoramo, Marcelo Goffman, and Jean Philippe Bourgoin. "Synthesis of Palladium Conductive DNA-based Nanowires." In DNA-BASED NANOSCALE INTEGRATION: International Symposium on DNA-Based Nanoscale Integration. AIP, 2006. http://dx.doi.org/10.1063/1.2360585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

An, H. T., S. Houchaimi, C. T. Burkhart, and M. J. Schertzer. "DNA Ligation on a Digital Microfluidic Device." In ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icnmm2020-1028.

Повний текст джерела
Анотація:
Abstract This investigation demonstrates that digital microfluidic platforms are suitable for automated DNA ligation. Multiple DNA ligation steps are required to create DNA products using oligonucleotide synthesis. Unfortunately, traditional methods of oligonucleotide synthesis are unable to create highly accurate, long DNA products. This leads to a supply-side bottleneck that puts a drag on innovation in drug development, organism engineering, and agricultural improvement. Here we demonstrate ligation of two DNA products into one DNA product in digital microfluidic devices that manipulate droplets in air and in oil. Results from the gel electrophoresis imaging confirmed that ligation on digital microfluidics devices was successful in all cases. Silicone oil experiments also verified that on-chip incubation of DNA ligation is possible on these devices using an external resistive heater. This suggests that large-scale DMF automation of DNA synthesis can be used to alleviate the bottleneck created by the lack of efficient, high-volume production of long change DNA products. Such an advancement would be highly valued for a wide variety of biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Seela, Frank, Xiaohua Peng, Hong Li, Padmaja Chittepu, Khalil I. Shaikh, Junlin He, Yang He, and Igor Mikhailopulo. "Modified DNA: From synthesis to molecular recognition." In XIIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2005. http://dx.doi.org/10.1135/css200507001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Erler, C., and M. Mertig. "Synthesis of metallic nanowire networks on DNA." In 2008 2nd Electronics Systemintegration Technology Conference. IEEE, 2008. http://dx.doi.org/10.1109/estc.2008.4684499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lavenier, Dominique. "DNA Storage: Synthesis and Sequencing Semiconductor Technologies." In 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chrisnata, Johan, Han Mao Kiah, and Van Long Phuoc Pham. "Deletion Correcting Codes for Efficient DNA Synthesis." In 2023 IEEE International Symposium on Information Theory (ISIT). IEEE, 2023. http://dx.doi.org/10.1109/isit54713.2023.10206892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "DNA Synthesis"

1

Huntsman, Steven. Towards the Batch Synthesis of Long DNA. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada409078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reif, John. Programme DNA Lattices: Design, Synthesis and Applications. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada447708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mullet, J. E. Regulation of chloroplast number and DNA synthesis in higher plants. Final report. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/132689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dervan, Peter B. Molecular Recognition of DNA. Synthesis of Novel Bases for Triple Helix Formation. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada278902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mullet, J. E. Regulation of chloroplast number and DNA synthesis in higher plants. Final report. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/134990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Freeman, J. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/98639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mullet, J. E. Regulation of chloroplast number and DNA synthesis in higher plants. Final report, August 1995--August 1996. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/548678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grafi, Gideon, and Brian Larkins. Endoreduplication in Maize Endosperm: An Approach for Increasing Crop Productivity. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575285.bard.

Повний текст джерела
Анотація:
The focus of this research project is to investigate the role of endoreduplication in maize endosperm development and the extent to which this process contributes to high levels of starch and storage protein synthesis. Although endoreduplication has been widely observed in many cells and tissues, especially those with high levels of metabolic activity, the molecular mechanisms through which the cell cycle is altered to produce consecutive cycles of S-phase without an intervening M-phase are unknown. Our previous research has shown that changes in the expression of several cell cycle regulatory genes coincide with the onset of endoreduplication. During this process, there is a sharp reduction in the activity of the mitotic cyclin-dependent kinase (CDK) and activation of the S-phase CDK. It appears the M-phase CDK is stable, but its activity is blocked by a proteinaceous inhibitor. Coincidentally, the S-phase checkpoint protein, retinoblastoma (ZmRb), becomes phosphorylated, presumably releasing an E2F-type transcriptional regulator which promotes the expression of genes responsible for DNA synthesis. To investigate the role of these cell cycle proteins in endoreduplication, we have created transgenic maize plants that express various genes in an endosperm-specific manner using a storage protein (g-zein) promoter. During the first year of the grant, we constructed point mutations of the maize M-phase kinase, p34cdc2. One alteration replaced aspartic acid at position 146 with asparagine (p3630-CdcD146N), while another changed threonine 161 to alanine (p3630-CdcT161A). These mutations abolish the activity of the CDK. We hypothesized that expression of the mutant forms of p34cdc2 in endoreduplicating endosperm, compared to a control p34cdc2, would lead to extra cycles of DNA synthesis. We also fused the gene encoding the regulatory subunit of the M- phase kinase, cyclin B, under the g-zein promoter. Normally, cyclin B is expected to be destroyed prior to the onset of endoreduplication. By producing high levels of this protein in developing endosperm, we hypothesized that the M-phase would be extended, potentially reducing the number of cycles of endoreduplication. Finally, we genetically engineered the wheat dwarf virus RepA protein for endosperm-specific expression. RepA binds to the maize retinoblastoma protein and presumably releases E2F-like transcription factors that activate DNA synthesis. We anticipated that inactivation of ZmRb by RepA would lead to additional cycles of DNA synthesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weiser, Douglas C. The Role of GADD34 (Growth Arrest and DNA Damage-Inducible Protein) in Regulating Apoptosis, Proliferation, and Protein Synthesis in Human Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada427916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weiser, Douglas C. The Role of GADD34 (Growth Arrest and DNA Damage-Inducible Protein) in Regulating Apoptosis, Proliferation, and Protein Synthesis in Human Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada418759.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії