Добірка наукової літератури з теми "Distributed fibre optic sensor"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Distributed fibre optic sensor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Distributed fibre optic sensor"

1

DeMerchant, Michael, Anthony Brown, Jeff Smith, Xiaoyi Bao, and Theodore Bremner. "Distributed strain sensing for structural monitoring applications." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 873–79. http://dx.doi.org/10.1139/l00-006.

Повний текст джерела
Анотація:
Strain sensors are a valuable tool for assessing the health of structures. The University of New Brunswick, in conjunction with ISIS Canada, is developing a distributed fibre optic strain sensor based on Brillouin scattering. This sensor can provide a virtually unlimited number of measurement points using a single optical fibre. A description of the operating principles of the system is given, along with a summary of laboratory test results. Strain measurement accuracy as high as approximately ±11 µε has been demonstrated at 1 m spatial resolution. Spatial resolutions as short as 100 mm can be used, although with decreased strain measurement accuracy. Future development of the technology will include an enhancement allowing both strain and temperature to be measured simultaneously.Key words: strain sensor, fibre optics, distributed sensing, structural monitoring, Brillouin scattering.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuznetsov, A. G., D. S. Kharenko, S. A. Babin, I. B. Tsydenzhapov, and I. S. Shelemba. "Ultralong fibre-optic distributed Raman temperature sensor." Quantum Electronics 47, no. 10 (October 31, 2017): 967–70. http://dx.doi.org/10.1070/qel16436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kersey, A. D., and A. Dandridge. "Distributed and multiplexed fibre-optic sensor systems." Journal of the Institution of Electronic and Radio Engineers 58, no. 5S (1988): S99. http://dx.doi.org/10.1049/jiere.1988.0041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tennyson, R. C., T. Coroy, G. Duck, G. Manuelpillai, P. Mulvihill, David JF Cooper, PW E. Smith, A. A. Mufti, and S. J. Jalali. "Fibre optic sensors in civil engineering structures." Canadian Journal of Civil Engineering 27, no. 5 (October 1, 2000): 880–89. http://dx.doi.org/10.1139/l00-010.

Повний текст джерела
Анотація:
This paper presents an overview of the development and application of ISIS fibre optic sensor (FOS) technology by the University of Toronto Institute for Aerospace Studies and Department of Electrical and Computer Engineering. The primary focus of this technology has involved the use of fibre Bragg gratings (FBGs) to measure strain and temperature in concrete structures and fibre reinforced plastic (FRP) overwraps applied to concrete structures. A brief review of existing fibre optic sensor configurations and the advantages of using FOS compared to other strain sensors is first presented. Subsequently, the development of new sensor concepts such as a long gauge of arbitrary length, a distributed gauge for measuring local strain gradients, and multiple FBGs on a single fibre optic cable are discussed, with examples of their application to civil engineering structures. In addition, the specialized instruments under development that are essential for obtaining strain information from these sensors are also described. Finally, the issue of wireless remote monitoring of FOS systems is addressed.Key words: fibre optic sensors, Bragg gratings, civil engineering structures, instrumentation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MacLean, A., C. Moran, W. Johnstone, B. Culshaw, D. Marsh, and P. Parker. "Detection of solvents using distributed fibre optic sensor." Electronics Letters 39, no. 17 (2003): 1237. http://dx.doi.org/10.1049/el:20030838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fenta, Mulugeta C., David K. Potter, and János Szanyi. "Fibre Optic Methods of Prospecting: A Comprehensive and Modern Branch of Geophysics." Surveys in Geophysics 42, no. 3 (March 9, 2021): 551–84. http://dx.doi.org/10.1007/s10712-021-09634-8.

Повний текст джерела
Анотація:
AbstractOver the past decades, the development of fibre optic cables, which pass light waves carrying data guided by total internal reflection, has led to advances in high-speed and long-distance communication, large data transmission, optical imaging, and sensing applications. Thus far, fibre optic sensors (FOSs) have primarily been employed in engineering, biomedicine, and basic sciences, with few reports of their usage in geophysics as point and distributed sensors. This work aimed at reviewing the studies on the use of FOSs in geophysical applications with their fundamental principles and technological improvements. FOSs based on Rayleigh, Brillouin, and Raman scatterings and fibre Bragg grating sensors are reviewed based on their sensing performance comprising sensing range, spatial resolution, and measurement parameters. The recent progress in applying distributed FOSs to detect acoustic, temperature, pressure, and strain changes, as either single or multiple parameters simultaneously on surface and borehole survey environments with their cable deployment techniques, has been systematically reviewed. Despite the development of fibre optic sensor technology and corresponding experimental reports of applications in geophysics, there have not been attempts to summarise and synthesise fibre optic methods for prospecting as a comprehensive and modern branch of geophysics. Therefore, this paper outlines the fibre optic prospecting methods, with an emphasis on their advantages, as a guide for the geophysical community. The potential of the new outlined fibre optic prospecting methods to revolutionise conventional geophysical approaches is discussed. Finally, the future challenges and limitations of the new prospecting methods for geophysical applications are elucidated.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zur, A., and A. Katzir. "Fiber optic distributed thermal sensor." Applied Physics Letters 53, no. 25 (December 19, 1988): 2474–76. http://dx.doi.org/10.1063/1.100217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xu, Cheng, and Zahra Sharif Khodaei. "Shape Sensing with Rayleigh Backscattering Fibre Optic Sensor." Sensors 20, no. 14 (July 21, 2020): 4040. http://dx.doi.org/10.3390/s20144040.

Повний текст джерела
Анотація:
In this paper, Rayleigh backscattering sensors (RBS) are used to realize shape sensing of beam-like structures. Compared to conventional shape sensing systems based on fibre Bragg grating (FBG) sensors, RBS are capable of continuous lateral sensing. Compared to other types of distributed fibre optic sensors (FOS), RBS have a higher spatial resolution. First, the RBS’s strain sensing accuracy is validated by an experiment comparing it with strain gauge response. After that, two shape sensing algorithms (the coordinate transformation method (CTM) and the strain-deflection equation method (SDEM)) based on the distributed FOS’ input strain data are derived. The algorithms are then optimized according to the distributed FOS’ features, to make it applicable to complex and/or combine loading situations while maintaining high reliability in case of sensing part malfunction. Numerical simulations are carried out to validate the algorithms’ accuracy and compare their accuracy. The simulation shows that compared to the FBG-based system, the RBS system has a better performance in configuring the shape when the structure is under complex loading. Finally, a validation experiment is conducted in which the RBS-based shape sensing system is used to configure the shape of a composite cantilever-beam-like specimen under concentrated loading. The result is then compared with the optical camera-measured shape. The experimental results show that both shape sensing algorithms predict the shape with high accuracy comparable with the optical camera result.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thomas, Peter J., and Jon O. Hellevang. "A fully distributed fibre optic sensor for relative humidity measurements." Sensors and Actuators B: Chemical 247 (August 2017): 284–89. http://dx.doi.org/10.1016/j.snb.2017.02.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bai, Hedan, Shuo Li, Jose Barreiros, Yaqi Tu, Clifford R. Pollock, and Robert F. Shepherd. "Stretchable distributed fiber-optic sensors." Science 370, no. 6518 (November 12, 2020): 848–52. http://dx.doi.org/10.1126/science.aba5504.

Повний текст джерела
Анотація:
Silica-based distributed fiber-optic sensor (DFOS) systems have been a powerful tool for sensing strain, pressure, vibration, acceleration, temperature, and humidity in inextensible structures. DFOS systems, however, are incompatible with the large strains associated with soft robotics and stretchable electronics. We develop a sensor composed of parallel assemblies of elastomeric lightguides that incorporate continuum or discrete chromatic patterns. By exploiting a combination of frustrated total internal reflection and absorption, stretchable DFOSs can distinguish and measure the locations, magnitudes, and modes (stretch, bend, or press) of mechanical deformation. We further demonstrate multilocation decoupling and multimodal deformation decoupling through a stretchable DFOS–integrated wireless glove that can reconfigure all types of finger joint movements and external presses simultaneously, with only a single sensor in real time.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Distributed fibre optic sensor"

1

MacLean, Alistair. "A distributed fibre optic water sensor." Thesis, University of Strathclyde, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kerrouche, Abdelfateh. "Fibre Optic Distributed Sensors Systems for Structural Health Monitoring." Thesis, City University London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mei, Ying. "Error analysis for distributed fibre optic sensing technology based on Brillouin scattering." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/278660.

Повний текст джерела
Анотація:
This dissertation describes the work conducted on error analysis for Brillouin Optical Time Domain Reflectometry (BOTDR), a distributed strain sensing technology used for monitoring the structural performance of infrastructures. Although BOTDR has been recently applied to many infrastructure monitoring applications, its measurement error has not yet been thoroughly investigated. The challenge to accurately monitor structures using BOTDR sensors lies in the fact that the measurement error is dependent on the noise and the spatial resolution of the sensor as well as the non-uniformity of the monitored infrastructure strain conditions. To improve the reliability of this technology, measurement errors (including precision error and systematic error) need to be carefully investigated through fundamental analysis, lab testing, numerical modelling, and real site monitoring verification. The relationship between measurement error and sensor characteristics is firstly studied experimentally and theoretically. In the lab, different types of sensing cables are compared with regard to their measurement errors. Influences of factors including fibre diameters, polarization and cable jacket on measurement error are characterized. Based on experimental characterization results, an optics model is constructed to simulate the Brillouin back scattering process. The basic principle behind this model is the convolution between the injected pulse and the intrinsic Brillouin spectrum. Using this model, parametric studies are conducted to theoretically investigate the impacts of noise, frequency step and spectrum bandwidth on final strain measurement error. The measurement precision and systematic error are then investigated numerically and experimentally. Measurement results of field sites with installed optical fibres displayed that a more complicated strain profile leads to a larger measurement error. Through extensive experimental and numerical verifications using a Brillouin Optical Time Domain Reflectometry (BOTDR), the dependence of precision error and systematic error on input strain were then characterized in the laboratory and the results indicated that a) the measurement precision error can be predicted using analyzer frequency resolution and the location determination error and b) the characteristics of the measurement systematic error can be described using the error to strain gradient curve. This is significant because for current data interpretation process, data quality is supposed to be constant along the fibre although the monitored strain for most of the site cases is non-uniformly distributed, which is verified in this thesis leading to a varying data quality. A novel data quality quantification method is therefore proposed as a function of the measured strain shape. Although BOTDR has been extensively applied in infrastructure monitoring in the past decade, their data interpretation has been proven to be nontrivial, due to the nature of field monitoring. Based on the measurement precision and systematic error characterization results, a novel data interpretation methodology is constructed using the regularization decomposing method, taking advantages of the measured data quality. Experimental results indicate that this algorithm can be applied to various strain shapes and levels, and the accuracy of the reconstructed strain can be greatly improved. The developed algorithm is finally applied to real site applications where BOTDR sensing cables were implemented in two load bearing piles to monitor the construction loading and ground heaving processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Juarez, Juan C. "Distributed fiber optic intrusion sensor system for monitoring long perimeters." Thesis, [College Station, Tex. : Texas A&M University, 2005. http://hdl.handle.net/1969.1/ETD-TAMU-1702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zeng, Xiaodong. "Characterization and application of Brillouin scattering-based distributed fiber optic sensor." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26414.

Повний текст джерела
Анотація:
Brillouin scattering based distributed fiber optic sensing as a novel technique has attracted much attention in both research and application for the past ten years. The fiber optic group at the University of Ottawa has developed an advanced automatic Brillouin sensing system and improved it continuously. This thesis presents the characterization and optimization of this sensing system and a series of successful applications both in the laboratory and in the field. Several parameters have been studied around the pulse generation subsystem: such as, bias, leakage, PW voltage, pulsewidth, and repetition frequency. Bias is found to be the most important parameter. We also discuss the relationships between the system repeatability and control parameters such as bias, polarization states, averages and frequency lock methods. Four successful applications of the distributed Brillouin sensing system are reported in the thesis. They are strain measurement in a reinforced concrete beam, simultaneous strain and temperature monitoring of composite curing process, strain and temperature monitoring of a concrete structure, and temperature compensated strain measurement of the load test on the Rollinsford Bridge.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baldwin, Christopher S. "Distributed sensing for flexible structures using a fiber optic sensor system." College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/288.

Повний текст джерела
Анотація:
Thesis (Ph. D.) -- University of Maryland, College Park, 2003.
Thesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Almutairi, Fajhan Hilal Hamad. "Fibre optic distributed temperature sensors applications and temperature modelling in intelligent wells environments." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/63.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sjölander, Ola. "Optimization and Miniaturization of a Fiber-Optic ф-OTDR Distributed Vibration Sensor". Thesis, KTH, Tillämpad fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Bo. "Sapphire Fiber-based Distributed High-temperature Sensing System." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82741.

Повний текст джерела
Анотація:
From the monitoring of deep ocean conditions to the imaging and exploration of the vast universe, optical sensors are playing a unique, critical role in all areas of scientific research. Optical fiber sensors, in particular, are not only widely used in daily life such as for medical inspection, structural health monitoring, and environmental surveillance, but also in high-tech, high-security applications such as missile guidance or monitoring of aircraft engines and structures. Measurements of physical parameters are required in harsh environments including high pressure, high temperature, highly electromagnetically-active and corrosive conditions. A typical example is fossil fuel-based power plants. Unfortunately, current optical fiber sensors for high-temperature monitoring can work only for single point measurement, as traditional fully-distributed temperature sensing techniques are restricted for temperatures below 800°C due to the limitation of the fragile character of silica fiber under high temperature. In this research, a first-of-its-kind technology was developed which pushed the limits of fully distributed temperature sensing (DTS) in harsh environments by exploring the feasibility of DTS in optical sapphire waveguides. An all sapphire fiber-based Raman DTS system was demonstrated in a 3-meters long sapphire fiber up to a temperature of 1400°C with a spatial resolution of 16.4cm and a standard deviation of a few degrees Celsius. In this dissertation, the design, fabrication, and testing of the sapphire fiber-based Raman DTS system are discussed in detail. The plan and direction for future work are also suggested with an aim for commercialization.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vošček, Jakub. "Optické vlákno jako distribuovaný teplotní senzor." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-433164.

Повний текст джерела
Анотація:
The financial requirements between fiber optic sensors and conventional sensors are gradually declining, which, despite many advatages and wide range of applicationas, has slowed down the demand for these sensors. With the demand for fiber optic sensors also grow the requirements for the parameters of these sensors. This thesis deals with distributed temperature fiber optic sensors. Non--linear phenomen in optical fibers, such as Raman scattering is used for measuring with these sensors. This scatterin was used to obtain information about temperature, which effected the optical cable under the test.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Distributed fibre optic sensor"

1

Melia, A. Instrumentation for fibre optic distributed sensors. Manchester: UMIST, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ross, Cameron D. Distributed single-mode microbend fiber-optic sensor. Sudbury, Ont: Laurentian University Press, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Craig, Lopatin, and Langley Research Center, eds. Application of a fiber optic distributed strain sensor system to woven E-glass composite. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brook, T. E. Development of a fibre optic moisture sensor. Manchester: UMIST, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rudd, Paul. A fibre optic pH sensor based on fluorescence measurements. Manchester: UMIST, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

D, Kersey Alan, Dakin John 1947-, and Society of Photo-optical Instrumentation Engineers., eds. Distributed and multiplexed fiber optic sensors: 4-5 September 1991, Boston, Massachusetts. Bellingham, Wash: SPIE, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

N, Kulchin Yuri, Society of Photo-optical Instrumentation Engineers. Russian Chapter., and Society of Photo-optical Instrumentation Engineers., eds. Distributed fiber optical sensors and measuring networks: Selected papers on distributed fiber optical sensors and measuring networks, 1999-2000. Bellingham, Wash: SPIE, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Valis, Tomas. Localized and distributed fiber-optic strain sensors embedded in composite materials. [Downsview, Ont.]: University of Toronto, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Valis, Tomas. Localized and distributed fiber-optic strain sensors embedded in composite materials. [Downsview, Ont.]: Institute for Aerospace Studies, University of Toronto, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1947-, Dakin John, Kersey Alan D, and Society of Photo-optical Instrumentation Engineers., eds. Distributed and multiplexed fiber optic sensors VI: 5-6 August 1996, Denver, Colorado. Bellingham, Wash., USA: SPIE, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Distributed fibre optic sensor"

1

Culshaw, Brian. "Distributed and Multiplexed Fibre Optic Sensor Systems." In Optical Fiber Sensors, 165–84. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3611-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hartog, A. H. "Distributed fiber-optic sensors." In Optical Fiber Sensor Technology, 347–82. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1210-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hartog, A. "Distributed Fiber-Optic Sensors: Principles and Applications." In Optical Fiber Sensor Technology, 241–301. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-6079-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marrone, M. J., A. D. Kersey, A. Dandridge, and C. A. Wade. "Quasi-Distributed Fiber Optic Sensor System with Subcarrier Filtering." In Springer Proceedings in Physics, 519–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75088-5_77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rui, Yi, and Qianchen Sun. "Measurement of Pile Cover Thickness Using Distributed Fibre Optic Sensors." In Information Technology in Geo-Engineering, 699–705. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32029-4_59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ogawa, K., Y. Ozawa, H. Kawakami, T. Tsutsui, and S. Yamamoto. "A Fiber-Optic Distributed Temperature Sensor with High Distance Resolution." In Springer Proceedings in Physics, 544–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75088-5_81.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mahadi, Nur Hidayah, and Hisham Mohamad. "Interpretation Method of Distributed Fibre Optic Strain Sensor in Instrumented Static Pile Load Test." In Lecture Notes in Civil Engineering, 772–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6311-3_88.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Novák, B., F. Stein, A. Dudonu, and J. Reinhard. "Application development of distributed fibre optic sensors for monitoring existing bridges." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 1781–85. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Novák, B., F. Stein, A. Dudonu, and J. Reinhard. "Application development of distributed fibre optic sensors for monitoring existing bridges." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 621–22. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pant, Shashank, Marc Genest, Lucy Li, and Gang Li. "Structural Health Monitoring of Adhesively Bonded Skin-Stiffener Composite Joint Using Distributed Fibre Optic Sensor." In Lecture Notes in Civil Engineering, 823–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07322-9_83.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Distributed fibre optic sensor"

1

Wylie, Michael T. V., Anthony W. Brown, and Bruce G. Colpitts. "Fibre optic distributed differential displacement sensor." In 21st International Conference on Optical Fibre Sensors (OFS21). SPIE, 2011. http://dx.doi.org/10.1117/12.882743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wakami, Toshinori, та Shigeru Tanaka. "1.55-μm long-span fiber optic distributed temperature sensor". У 10th Optical Fibre Sensors Conference. SPIE, 1994. http://dx.doi.org/10.1117/12.185023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MacLean, Alistair. "A distributed fibre optic sensor for hydrocarbon detection." In Fourteenth International Conference on Optical Fiber Sensors, edited by A. G. Mignani and H. C. Lefèvre. SPIE, 2000. http://dx.doi.org/10.1117/12.2302331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Michie, W. Craig, G. Thursby, A. McLean, B. Culshaw, B. Verwilghen, and M. Voet. "Fibre Optic Sensor for Distributed Water Ingress Detection and Humidity Measurement." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.ofb4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Michie, W. Craig, Brian Culshaw, I. McKenzie, Chris Moran, Neil B. Graham, F. Santos, Peter T. Gardiner, Erik Bergqvist, and B. Carlstrom. "Fibre optic/hydrogel probe for distributed chemical measurements." In 10th Optical Fibre Sensors Conference. SPIE, 1994. http://dx.doi.org/10.1117/12.185022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karamehmedovic, Emir, and Ulrich Glombitza. "Fibre optic distributed temperature sensing using IOFDR." In Second European Workshop on Optical Fibre Sensors. SPIE, 2004. http://dx.doi.org/10.1117/12.566628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Siwowski, Tomasz W., Aleksander Kozlowski, and Leonard Ziemiański. "Distributed fibre optic sensors for advanced structural health monitoring of FRP composite bridge." In IABSE Congress, New York, New York 2019: The Evolving Metropolis. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/newyork.2019.1533.

Повний текст джерела
Анотація:
<p>Considering the worldwide recognized advantages of fibre optic sensors as measuring devices in structural health monitoring (SHM) of bridges and the unique ability to measure the long range distributed strain and temperature along the entire bridge superstructure, the distributed fibre optic sensors (DFOS) technology was chosen for the advanced SHM system of the first Polish FRP composite bridge. To develop an understanding of the long-term performance of the FRP bridge, a monitoring scheme utilizing DFOSs was implemented to assess any changes in the bridge structural behaviour in service. The monitored FRP bridge is a simply supported structure with four U- girders bonded with sandwich deck panels. The initial results of the SHM with the DFOS technology are the main subject of the paper. Analysis of the results obtained under proof tests in the field proved the effectiveness of the distributed fibre optic sensors for the SHM purposes. Wide range of practical problems related to sensor installation, fibre connection and data processing were successfully solved in the pilot field application. The smart <span>Rayleigh </span>sensors can ensure an acceptable measurement accuracy, thereby providing reliable strains referring to time-dependent behaviour of the FRP bridge span to assess the safety and serviceability of the FRP bridge.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lyöri, Veijo, Kari Määttä, Seppo Nissilä, Harri Kopola, and Marja Englund. "A HIGH PRECISION FRESNEL-OTDR FOR DISTRIBUTED FIBRE-OPTIC SENSOR NETWORK APPLICATIONS." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.othc29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Luo, Fei, Muolin Yan, and Shanglian Huang. "Distributed fiber optic pressure sensor." In Microlithography '91, San Jose,CA, edited by Ramon P. DePaula and Eric Udd. SPIE, 1991. http://dx.doi.org/10.1117/12.24748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kulchin, Yuri N., Oleg B. Vitrik, Yuri S. Petrov, and Oleg V. Kirichenko. "Distributed fiber optic acoustic sensor." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Alan D. Kersey and John P. Dakin. SPIE, 1994. http://dx.doi.org/10.1117/12.187391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Distributed fibre optic sensor"

1

Wang, Anbo, and Zhihao Yu. Distributed Fiber Optic Sensor for On-Line Monitoring of Coal Gasifier Refractory Health. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1253131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Kevin P. High Spatial Resolution Distributed Fiber-Optic Sensor Networks for Reactors and Fuel Cycle Systems. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tsvetkov, Pavel, Bryan Dickerson, Joseph French, Donald McEachern, and Abderrafi Ougouag. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1150754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Quinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41325.

Повний текст джерела
Анотація:
Distributed Acoustic Sensing (DAS) is a fiber optic sensing system that is used for vibration monitoring. At a minimum, DAS is composed of a fiber optic cable and an optic analyzer called an interrogator. The oil and gas industry has used DAS for over a decade to monitor infrastructure such as pipelines for leaks, and in recent years changes in DAS performance over time have been observed for DAS arrays that are buried in the ground. This dissertation investigates the effect that soil type, soil temperature, soil moisture, time in-situ, and vehicle loading have on DAS performance for fiber optic cables buried in soil. This was accomplished through a field testing program involving two newly installed DAS arrays. For the first installation, a new portion of DAS array was added to an existing DAS array installed a decade prior. The new portion of the DAS array was installed in four different soil types: native fill, sand, gravel, and an excavatable flowable fill. Soil moisture and temperature sensors were buried adjacent to the fiber optic cable to monitor seasonal environmental changes over time. Periodic impact testing was performed at set locations along the DAS array for over one year. A second, temporary DAS array was installed to test the effect of vehicle loading on DAS performance. Signal to Noise Ratio (SNR) of the DAS response was used for all the tests to evaluate the system performance. The results of the impact testing program indicated that the portions of the array in gravel performed more consistently over time. Changes in soil moisture or soil temperature did not appear to affect DAS performance. The results also indicated that time DAS performance does change somewhat over time. Performance variance increased in new portions of array in all material types through time. The SNR in portions of the DAS array in native silty sand material dropped slightly, while the SNR in portions of the array in sand fill and flowable fill material decreased significantly over time. This significant change in performance occurred while testing halted from March 2020 to August 2020 due to the Covid-19 pandemic. These significant changes in performance were observed in the new portion of test bed, while the performance of the prior installation remained consistent. It may be that, after some time in-situ, SNR in a DAS array will reach a steady state. Though it is unfortunate that testing was on pause while changes in DAS performance developed, the observed changes emphasize the potential of DAS to be used for infrastructure change-detection monitoring. In the temporary test bed, increasing vehicle loads were observed to increase DAS performance, although there was considerable variability in the measured SNR. The significant variation in DAS response is likely due to various industrial activities on-site and some disturbance to the array while on-boarding and off-boarding vehicles. The results of this experiment indicated that the presence of load on less than 10% of an array channel length may improve DAS performance. Overall, this dissertation provides guidance that can help inform the civil engineering community with respect to installation design recommendations related to DAS used for infrastructure monitoring.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bellefleur, G., E. Schetselaar, and D. White. Seismic imaging of porphyry deposits with distributed acoustic sensing of fibre-optic cables: a summary of results at the New Afton Cu-Au mine, British Columbia. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/327942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Farmer, J., J. Chang, J. Zumstein, J. Kovotsky, F. Puglia, A. Dobley, G. Moore, et al. Novel Battery Management System with Distributed Wireless and Fiber Optic Sensors for Early Detection and Suppression of Thermal Runaway in Large Battery Packs, FY13 Q4 Report, ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPE. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1116985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії