Добірка наукової літератури з теми "Distinct charge density wave"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Distinct charge density wave".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Distinct charge density wave"

1

Hall, R. P., and A. Zettl. "Distinct current-carrying charge density wave states in NbSe3." Solid State Communications 57, no. 1 (January 1986): 27–30. http://dx.doi.org/10.1016/0038-1098(86)90664-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Miao, H., J. Lorenzana, G. Seibold, Y. Y. Peng, A. Amorese, F. Yakhou-Harris, K. Kummer, et al. "High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking." Proceedings of the National Academy of Sciences 114, no. 47 (November 7, 2017): 12430–35. http://dx.doi.org/10.1073/pnas.1708549114.

Повний текст джерела
Анотація:
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Malliakas, Christos D., Maria Iavarone, Jan Fedor, and Mercouri G. Kanatzidis. "Coexistence and Coupling of Two Distinct Charge Density Waves in Sm2Te5." Journal of the American Chemical Society 130, no. 11 (March 2008): 3310–12. http://dx.doi.org/10.1021/ja7111405.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

YUE, SONG. "ELECTRIC FIELD-ASSISTED RELAXATION OF THE CHARGE DENSITY WAVES IN K0.3MoO3." Modern Physics Letters B 21, no. 27 (November 20, 2007): 1863–67. http://dx.doi.org/10.1142/s021798490701422x.

Повний текст джерела
Анотація:
The evolution of the current-voltage characteristic in K 0.3 MoO 3 was observed intuitively with the presence of current cycling. No variation of the ohmic conductivity was distinguished, while the threshold field for the charge density waves depinning exhibited distinct enhancement with the current cycling. These results were attributed to the electric field-assisted metastable states' relaxation of the charge density waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

EFTHIMION, PHILIP C., ERIK GILSON, LARRY GRISHAM, PAVEL KOLCHIN, RONALD C. DAVIDSON, SIMON YU, and B. GRANT LOGAN. "ECR plasma source for heavy ion beam charge neutralization." Laser and Particle Beams 21, no. 1 (January 2003): 37–40. http://dx.doi.org/10.1017/s0263034602211088.

Повний текст джерела
Анотація:
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1–100 times the ion beam density and at a length ∼0.1–2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1–10 gauss. The goal is to operate the source at pressures ∼10−6 Torr at full ionization. The initial operation of the source has been at pressures of 10−4–10−1 Torr. Electron densities in the range of 108 to 1011 cm−3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kandhakumar, Gopal, Chinnasamy Kalaiarasi, and Poomani Kumaradhas. "Structure and charge density distribution of amine azide based hypergolic propellant molecules: a theoretical study." Canadian Journal of Chemistry 94, no. 2 (February 2016): 126–36. http://dx.doi.org/10.1139/cjc-2015-0416.

Повний текст джерела
Анотація:
A quantum chemical calculation and charge density analysis of some amine azide based propellants (DMAZ, DMAEH, ADMCPA, AMCBA and ACPA) have been carried out to understand the geometry, bond topological, electrostatic, and energetic properties. The topological properties of electron density of the molecules were determined using Bader’s theory of atoms in molecules from the wave functions obtained from the density functional method (B3LYP) with the 6-311G** basis set. The electron density distribution of these molecules reveals the nature of chemical bonding in the molecules. The azide group attached C−N bonds of all molecules exhibit the electron density of ρbcp(r) ∼1.639 e Å−3 and the Laplacian of electron density ∇2ρbcp(r) is ∼–14.0 e Å−5, in which the corresponding values of the ADMCPA molecule are relatively high, 1.725 e Å–3 and –15.2 e Å−5 respectively, whereas for the methylamine group attached C–N bonds, these values are found to be higher (1.824 e Å–3 and –17.25 e Å−5). The Laplacian of terminal N–N bonds of the azide group is highly negative, indicating that these charges are highly concentrated, whereas the charge concentration of the dimethylamine group attached N–N bond of DMEAH is very much less, confirming that the bond is the weakest bond among the molecules. The energy density has been calculated for each bond of the molecules, which insights the energy density distribution of the molecules. Relatively, the molecules exhibit distinct electrostatic properties that are related to different charge distribution in the molecules. Large negative electrostatic potential regions are found at the vicinity of the amine and azide groups of the molecules. The charge imbalance parameter of the molecules has been determined and shows that the DMAEH molecule is the least sensitive molecule in this series.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Xiaoxiao, Jun Hou, Wei Xia, Zhian Xu, Pengtao Yang, Anqi Wang, Ziyi Liu, et al. "Destabilization of the Charge Density Wave and the Absence of Superconductivity in ScV6Sn6 under High Pressures up to 11 GPa." Materials 15, no. 20 (October 21, 2022): 7372. http://dx.doi.org/10.3390/ma15207372.

Повний текст джерела
Анотація:
RV6Sn6 (R = Sc, Y, or rare earth) is a new family of kagome metals that have a similar vanadium structural motif as AV3Sb5 (A = K, Rb, Cs) compounds. Unlike AV3Sb5, ScV6Sn6 is the only compound among the series of RV6Sn6 that displays a charge density wave (CDW) order at ambient pressure, yet it shows no superconductivity (SC) at low temperatures. Here, we perform a high-pressure transport study on the ScV6Sn6 single crystal to track the evolutions of the CDW transition and to explore possible SC. In contrast to AV3Sb5 compounds, the CDW order of ScV6Sn6 can be suppressed completely by a pressure of about 2.4 GPa, but no SC is detected down to 40 mK at 2.35 GPa and 1.5 K up to 11 GPa. Moreover, we observed that the resistivity anomaly around the CDW transition undergoes an obvious change at ~2.04 GPa before it vanishes completely. The present work highlights a distinct relationship between CDW and SC in ScV6Sn6 in comparison with the well-studied AV3Sb5.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shi, Xun, Wenjing You, Yingchao Zhang, Zhensheng Tao, Peter M. Oppeneer, Xianxin Wu, Ronny Thomale, et al. "Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe2 mediated by mode-selective electron-phonon coupling." Science Advances 5, no. 3 (March 2019): eaav4449. http://dx.doi.org/10.1126/sciadv.aav4449.

Повний текст джерела
Анотація:
Quantum materials represent one of the most promising frontiers in the quest for faster, lightweight, energy-efficient technologies. However, their inherent complexity and rich phase landscape make them challenging to understand or manipulate. Here, we present a new ultrafast electron calorimetry technique that can systematically uncover new phases of quantum matter. Using time- and angle-resolved photoemission spectroscopy, we measure the dynamic electron temperature, band structure, and heat capacity. This approach allows us to uncover a new long-lived metastable state in the charge density wave material 1T-TaSe2, which is distinct from all the known equilibrium phases: It is characterized by a substantially reduced effective total heat capacity that is only 30% of the normal value, because of selective electron-phonon coupling to a subset of phonon modes. As a result, less energy is required to melt the charge order and transform the state of the material than under thermal equilibrium conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shimano, Ryo, and Naoto Tsuji. "Higgs Mode in Superconductors." Annual Review of Condensed Matter Physics 11, no. 1 (March 10, 2020): 103–24. http://dx.doi.org/10.1146/annurev-conmatphys-031119-050813.

Повний текст джерела
Анотація:
When the continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and the phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is referred to most recently as the Higgs mode as it is a condensed-matter analog of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations for over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light–Higgs coupling. In this review, we overview recent progress in the study of the Higgs mode in superconductors.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yu, Fang-Hang, Xi-Kai Wen, Zhi-Gang Gui, Tao Wu, Zhenyu Wang, Zi-Ji Xiang, Jianjun Ying, and Xianhui Chen. "Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5." Chinese Physics B 31, no. 1 (January 1, 2022): 017405. http://dx.doi.org/10.1088/1674-1056/ac3990.

Повний текст джерела
Анотація:
Controlling the anomalous Hall effect (AHE) inspires potential applications of quantum materials in the next generation of electronics. The recently discovered quasi-2D kagome superconductor CsV3Sb5 exhibits large AHE accompanying with the charge-density-wave (CDW) order which provides us an ideal platform to study the interplay among nontrivial band topology, CDW, and unconventional superconductivity. Here, we systematically investigated the pressure effect of the AHE in CsV3Sb5. Our high-pressure transport measurements confirm the concurrence of AHE and CDW in the compressed CsV3Sb5. Remarkably, distinct from the negative AHE at ambient pressure, a positive anomalous Hall resistivity sets in below 35 K with pressure around 0.75 GPa, which can be attributed to the Fermi surface reconstruction and/or Fermi energy shift in the new CDW phase under pressure. Our work indicates that the anomalous Hall effect in CsV3Sb5 is tunable and highly related to the band structure.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Distinct charge density wave"

1

Gaspar, Luis Alejandro Ladino. "CHARGE DENSITY WAVE POLARIZATION DYNAMICS." UKnowledge, 2008. http://uknowledge.uky.edu/gradschool_diss/643.

Повний текст джерела
Анотація:
We have studied the charge density wave (CDW) repolarization dynamics in blue bronze (K0.3MoO3) by applying symmetric bipolar square-wave voltages of different frequencies to the sample and measuring the changes in infrared transmittance, proportional to CDW strain. The frequency dependence of the electro-transmittance was fit to a modified harmonic oscillator response and the evolution of the parameters as functions of voltage, position, and temperature are discussed. We found that resonance frequencies decrease with distance from the current contacts, indicating that the resulting delays are intrinsic to the CDW with the strain effectively flowing from the contact. For a fixed position, the average relaxation time for most samples has a voltage dependence given by τ0 ∼ V −p, with 1 < p < 2. The temperature dependence of the fitting parameters shows that the dynamics are governed by both the force on the CDW and the CDW current: for a given force and position, both the relaxation and delay times are inversely proportional to the CDW current as temperature is varied. The long delay times (∼ 100 μs) for large CDW currents suggest that the strain response involves the motion of macroscopic objects, presumably CDW phase dislocation lines. We have done frequency domain simulations to study charge-density-wave (CDW) polarization dynamics when symmetric bipolar square current pulses of different frequencies and amplitudes are applied to the sample, using parameters appropriate for NbSe3 at T = 90 K. The frequency dependence of the strain at one fixed position was fit to the same modified harmonic oscillator response and the behavior of the parameters as functions of current and position are discussed. Delay times increase nonlinearly with distance from the current contacts again, indicating that these are intrinsic to the CDWwith the strain effectively flowing from the contact. For a fixed position and high currents the relaxation time increases with decreasing current, but for low currents its behavior is strongly dependent on the distance between the current contact and the sample ends. This fact clearly shows the effect of the phase-slip process needed in the current conversion process at the contacts. The relaxation and delay times computed (∼ 1 μs) are much shorter than observed in blue bronze (> 100 μs), as expected because NbSe3 is metallic whereas K0.3MoO3 is semiconducting. While our simulated results bear a qualitative resemblance with those obtained in blue bronze, we can not make a quantitative comparison with the K0.3MoO3 results since the CDW in our simulations is current driven, whereas the electro-optic experiment was voltage driven. Different theoretical models predict that for voltages near the threshold Von, quantities such as the dynamic phase velocity correlation length and CDW velocity vary as ξ ∼ |V/Von − 1| −ν and v ∼ |V/Von − 1|ξ with ν ∼ 1/2 and ζ = 5/6. Additionally, a weakly divergent behavior for the diffusion constant D ∼ |V/Von − 1|−2ν+ζ is expected. Motivated by these premises and the fact that no convincing experimental evidence is known, we carried out measurements of the parameters that govern the CDW repolarization dynamic for voltages near threshold. We found that for most temperatures considered the relaxation time still increases for voltages as small as 1.06Von indicating that the CDW is still in the plastic and presumably in the noncritical limit. However, at one temperature we found that the relaxation time saturates with no indication of critical behavior, giving a new upper limit to the critical regime, of |V/Von − 1| < 0.06.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rai, Ram C. "ELECTRO-OPTICAL STUDIES OF CHARGE-DENSITY-WAVE MATERIALS." UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_diss/427.

Повний текст джерела
Анотація:
A searched for narrow-band-noise (NBN) modulations of the infrared transmission in blue bronze has been performed. No modulations were observed, giving an upper limits for NBN changes in the absorption coefficient of )2000/(/3.0.andlt;.cmNBN. The implication of these results on proposed CDW properties and NBN mechanisms are discussed. An infrared microscope with a capability of doing both reflectance and transmission measurements has been integrated into the previous electro-transmission system with tunable diode lasers. Electro-optic experiments were done using the microscope for the studies of the CDW states of K0.3MoO3 (blue bronze) and orthorhombic TaS3. The electro-reflectance signal for blue bronze has been evidenced for the first time. The infrared reflectance of K0.3MoO3 varied with position when a voltage greater than the CDW depinning threshold is applied. The spatial dependence of .R/R was slightly different than for ./, in that the magnitude of .R/R decreased and, for low voltages and frequencies, the signal became inverted near the contacts. Perhaps the differences might be associated with changes in the CDW properties on the surface. For blue bronze, the electro-reflectance signal was measured to be smaller than electro-transmittance signal by one order of magnitude for light polarized transverse to the chain direction, while the electro-reflectance signal for parallel polarized light was found to be a few times smaller than for transverse polarized light. The fits of the electro-reflectance spectrum showed that the changes in background dielectric constant were ~ 0.05 % and/or oscillator strength and/or frequency shifts of the phonons were ~ 0.05 % and ~ 0.005 cm-1 in the applied electric field. We also found that parallel polarized phonons are affected by CDW strain, and these changes dominate the electro-reflectance spectrum. We have examined the electro-reflectance spectra associated with CDW current investigation for light polarized parallel to the conducting chains for signs of expected current-induced intragap states, and conclude that the density of any such states is at most a few times less than expected. We have observed a large (~1%) change in infrared reflectance of orthorhombic TaS3, when its CDW is depinned. The change is concentrated near one current contact. Assuming that the change in reflectance is proportional to the degree of CDW polarization, we have studied the dynamics of CDW repolarization through position dependent measurements of the variation of the electro-reflectance with the frequency of square wave voltages applied to the sample, and have found that the response could be characterized as a damped harmonic oscillator with a distribution of relaxation (i.e. damping) times. The average relaxation time, which increases away from the contacts, varies with applied voltage as with p ~ 3/2, but the distribution of times broadens as the voltage approaches the depinning threshold. Very low resonant frequencies (~ 1 kHz) indicate a surprisingly large amount of inertia, which is observable in the time dependence of the change in reflectance as a polarity dependent delay of ~ 100 s.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ru, Nancy. "Charge density wave formation in rare-earth tritellurides /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hite, Omar. "Controlling the Charge Density Wave in VSE2 Containing Heterostructures." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23179.

Повний текст джерела
Анотація:
Exploring the properties of layered materials as a function of thickness has largely been limited to semiconducting materials as thin layers of metallic materials tend to oxidize readily in atmosphere. This makes it challenging to further understand properties such as superconductivity and charge density waves as a function of layer thickness that are unique to metallic compounds. This dissertation discusses a set of materials that use the modulated elemental reactants technique to isolate 1 to 3 layers of VSe2 in a superlattice in order to understand the role of adjacent layers and VSe2 thickness on the charge density wave in VSe2. The modulated elemental reactants technique was performed on a custom built physical vapor deposition to prepare designed precursors that upon annealing will self assemble into the desired heterostructure. First, a series of (PbSe)1+δ(VSe2)n for n = 1 – 3 were synthesized to explore if the charge density wave enhancement in the isovalent (SnSe)1.15VSe2 was unique to this particular heterostructure. Electrical resistivity measurements show a large change in resistivity compared to room temperature resistivity for the n = 1 heterostructure. The overall change in resistivity was larger than what was observed in the analogous SnSe heterostructure. v A second study was conducted on (BiSe)1+δVSe2 to further understand the effect of charge transfer on the charge density wave of VSe2. It was reported that BiSe forms a distorted rocksalt layer with antiphase boundaries. The resulting electrical resistivity showed a severely dampened charge density wave when compared to both analogous SnSe and PbSe containing heterostructures but was similar to bulk. Finally, (SnSe2)1+δVSe2 was prepared to further isolate the VSe2 layers and explore interfacial effects on the charge density wave by switching from a distorted rocksalt structure to 1T-SnSe2. SnSe2 is semiconductor that is used to prevent adjacent VSe2 layers from coupling and thereby enhancing the quasi two-dimensionality of the VSe2 layer. Electrical characterization shows behavior similar to that of SnSe and PbSe containing heterostructures. However, structural characterization shows the presence of a SnSe impurity that is likely influencing the overall temperature dependent resistivity. This dissertation includes previously published and unpublished co-authored materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Boshoff, Ilana. "Ultrafast electron diffraction on the charge density wave compound 4Hb-TaSe2." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20062.

Повний текст джерела
Анотація:
Thesis (MSc)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: Ultrafast electron diffraction is a powerful method to study atomic movement in crystals on sub-picosecond timescales. This thesis consists of three parts. In part one the ultrafast electron diffraction machine is described, followed by improvements that were made and techniques that were developed in order to bring the system to state of the art level and enable the acquisition of suffcient data to obtain information on the structural dynamics in crystals. The second part contains a description of the sample which was studied in our fi rst time-resolved measurements, the transition-metal dichalcogenide 4Hb-TaSe2. This particular crystal is an example of a strongly coupled electronic system which develops a charge density wave (CDW) accompanied by a periodic lattice distortion (PLD). An overview of the formation of electron diffraction patterns and what can be learned from them are also given, followed by the results of the ultrafast electron diffraction experiments done with 4Hb-TaSe2. Part three describes an alternative source to study dynamics in crystalline samples, namely laser plasma-based ultrafast X-ray diffraction. The ultrafast electron diffraction group functions as a unit, but my tasks ranged from sample preparation and characterisation of the electron beam to the setting up and execution of experiments. I was involved in analysing the data and contributed small parts to the data analysis software.
AFRIKAANSE OPSOMMING: Ultravinnige elektron diffraksie is a metode om die beweging van atome in kristalle op sub-pikosekonde tydskale te bestudeer. Hierdie tesis bestaan uit drie dele. In deel een van die tesis word die ultravinnige elektron diffraksie masjien beskryf, gevolg deur verbeteringe wat aangebring is en tegnieke wat ontwikkel is om die sisteem tot op 'n wêreldklas vlak te bring waar die insameling van genoegsame data om inligting oor die strukturele dinamika in kristalle te bekom, moontlik is. Die tweede deel bevat 'n beskrywing van die monster wat in ons eerste tydopgeloste eksperimente gebruik is, naamlik die oorgangsmetaaldichalkogenied 4Hb-TaSe2. Hierdie kristal is 'n voorbeeld van 'n sterk gekoppelde elektroniese sisteem wat 'n ladingsdigtheid-golf en 'n gepaardgaande periodiese versteuring van die kristalrooster ontwikkel. 'n Oorsig van die formasie van elektron diffraksiepatrone en wat ons daaruit kan leer word ook gegee. Daarna word die resultate van die ultravinnige elektron diffraksie eksperimente wat op 4Hb-TaSe2uitgevoer is beskryf en bespreek. In deel drie word 'n alternatiewe metode om die dinamika in kristalmonsters te bestudeer, naamlik laser plasma-gebaseerde ultravinnige X-straal diffraksie, beskryf. Die ultravinnige elektron diffraksie groep funksioneer as 'n eenheid, maar my verantwoordelikhede het gestrek van die voorbereiding van monsters en die karakterisering van die elektron bundel tot die opstel en uitvoer van eksperimente. Ek was ook betrokke by die analisering van data en het dele van die data analise sagteware geskryf.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yetman, Paul John. "Experimental studies on the size dependence of sliding charge-density wave phenomena." Thesis, University of Bristol, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ren, Yuhang. "Time-resolved optical studies of colossal magnetoresistance and charge -density wave materials." W&M ScholarWorks, 2003. https://scholarworks.wm.edu/etd/1539623421.

Повний текст джерела
Анотація:
This thesis presents measurements of collective modes and ultrafast carrier relaxation dynamics in charge-density-wave (CDW) conductors and colossal magnetoresistance (CMR) manganites. A femtosecond laser pump pulse excites a broad frequency spectrum of low-energy collective modes and electron-hole pairs thereby changing its optical properties. The low-energy collective excitations and quasiparticle relaxation and recombination processes are monitored by measuring the resulting photoinduced absorption as a function of probe pulse wavelength and time delay.;A general model was developed for the photogeneration and detection mechanism of collective modes based on light absorption in two-color pump-probe experiments. A broad spectrum of collective modes (phasons and amplitudons) with frequencies down to a few GHz is excited and propagates normal to the surface into the material. The dispersion of the long-wavelength phason and amplitudon can be measured by changing the probe wavelength.;The first pump-probe spectroscopy was performed from the ultraviolet to mid-infrared wavelength range to study low-frequency collective excitations, including temperature evolution, dispersion, damping, and anisotropy of amplitude mode and transverse phason in quasi-one dimensional CDW conductors, K 0.3MoO3 and K0.33MoO3 on ultrafast time scale. The transverse phason exhibits an acoustic-like dispersion relation in the frequency range from 5--40 GHz. The phason velocity is strongly anisotropic with a very weak temperature dependence. In contrast, the amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency of 1.66 THz at 30 K.;The studies were extended to doped perovskite manganite thin films and single crystals. A low-energy collective mode is observed and discussed in terms of the opening of a pseudogap resulting from charge/orbital ordering phases. The softening of the collective mode is necessary to explain by combining a cooperative Jahn-Teller type distortion of the MnO6 octahedra with the collective mode. The quasiparticle dynamics in the vicinity of the metal-insulator transition is strongly affected by the presence of a pseudogap, phase separation and percolation, which are strongly dependent on temperature. A very long-lived relaxation process is observed due to a slow spin relaxation process. The dynamics of the spin system is further investigated in strained and unstrained thin films, which show a strong strain effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bellec, Ewen. "Study of charge density wave materials under current by X-ray diffraction." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS437/document.

Повний текст джерела
Анотація:
Ce manuscrit a pour sujet principal la diffraction par rayons X des matériaux ondes de densité de charges (ODC). Nous avons étudié le cristal quasi-1D NbSe3 ainsi que le quasi-2D TbTe3. Plusieurs grands instruments ont été utilisés pour cette étude, le synchrotron ESRF de Grenoble sur la ligne ID01 ainsi que le laser à électron libre LCLS à Stanford. Premièrement, grâce à la cohérence du faisceau X à LCLS, nous avons pu observer une perte de cohérence transverse dans NbSe3 lors de l’application d’un courant électrique au-dessus d’un certain seuil ainsi qu’une compression longitudinale de l’ODC. Ensuite, à l’ESRF, nous avons utilisé un faisceau X focalisé au micromètre par une Fresnel zone plate pour scanner l’ODC localement par diffraction sur NbSe3 puis ensuite sur TbTe3. Lorsqu’un courant est appliqué sur l’échantillon, nous avons observé une déformation transverse indiquant que l’ODC est bloquée au niveau de la surface de l’échantillon dans NbSe3. Dans le cas de TbTe3, l’ODC tourne sous courant présentant un cycle d’hystérésis lorsque le courant passe continument de positif à négatif. Nous avons aussi pu constater dans plusieurs régions, toujours pour TbTe3, la création de défauts d’irradiation localisés induisant une compression-dilatation de l’ODC. Dans une dernière partie théorique, nous montrons comment la théorie du transport électrique de l’ODC par un train de solitons portants chacun une charge ainsi que la prise en compte du blocage de l’ODC sur la surface de l’échantillon que nous avons vu expérimentalement permet de comprendre plusieurs mesures de résistivité en fonction des dimensions de l’échantillon trouvées dans la littérature. Nous présentons ensuite plusieurs idées pour expliquer du blocage de l’ODC sur les surfaces au niveau microscopique et proposons l’hypothèse d’une ODC commensurable en surface (et incommensurable dans le volume)
The main subject of this manuscript is the X-ray diffraction of charge density wave (CDW) materials. We studied the quasi-1D NbSe3 crystal and the quasi-2D TbTe3. Several large instruments facilities were used for this study, the ESRF synchrotron in Grenoble on the ID01 line and the LCLS free electron laser in Stanford. First, thanks to the coherence of the X-beam at LCLS, we were able to observe a loss of transverse coherence in NbSe3 when applying an electrical current above a certain threshold as well as a longitudinal compression of the CDW. Then, at the ESRF, we used an X-ray beam focused on the micrometer scale by a Fresnel zone plate to scan the CDW locally by diffraction on NbSe3 and on TbTe3. When a current is applied to the sample, we observed a transverse deformation indicating that the CDW is pinned on the sample surface in NbSe3. In the case of TbTe3, the CDW rotates under current showing a hysteresis cycle when one is continuously changing from positive to negative current. We have also observed in several regions, in TbTe3, the creation of localized irradiation defects inducing a compression-dilation of the CDW. In a last theoretical part, we show how the theory of electric transport in the CDW state by a train of charged solitons, as well as taking into account the CDW pinning on the surface of the sample that we have seen experimentally, allows us to understand several resistivity measurements, found in the literature, made on samples with different dimensions. Finally, we present several ideas for an explanation of the CDW pinning at the surfaces on a microscopic level and propose the hypothesis of a commensurate CDW on the surface (and incommensurate in volume)
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Edkins, Stephen David. "Visualising the charge and Cooper pair density waves in cuprates." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9888.

Повний текст джерела
Анотація:
The study of cuprate high-temperature superconductors has undergone a recent resurgence due to the discovery of charge order in several families of cuprate materials. While its existence is now well established, little is known about its microscopic origins or its relationship to high-temperature superconductivity and the pseudogap. The aim of the research presented in this thesis is to address these questions. In this thesis I will report on the use of spectroscopic-imaging scanning tunnelling microscopy (SI-STM) to visualise the short-ranged charge density wave (CDW) in Bi₂Sr₂CaCu₂O₈₊ₓ and NaxCa₂₋ₓCuO₂Cl₂. Building on previous measurements of the intra unit-cell electronic structure of cuprates, I introduce sub-lattice segregated SISTM to individually address the atomic sub-lattices in the CuO₂ plane with spatial phase sensitivity. Using this technique I establish that the CDW in Bi₂Sr₂CaCu₂O₈+x and NaxCa₂₋ₓCuO₂Cl₂ has a previously unobserved d-symmetry form factor, where a breaking of rotational symmetry within the unit cell is modulated periodically in space. Towards identifying a mechanism of CDW formation, I establish that the amplitude of CDW modulations in the electronic structure are maximal at the pseudogap energy-scale and that these modulations exhibit a spatial phase difference of π between filled and empty states. Together with the doping evolution of the CDW wave-vector this highlights the role of the low-energy electronic structure of the pseudogap regime in CDW formation. To elucidate the relationship between the CDW and the superconducting condensate I will introduce nanometer resolution scanned Josephson tunnelling microscopy (SJTM). In this approach the Cooper pair (Josephson) tunnelling current between a Bi₂Sr₂CaCu₂O₈₊ₓ sample and a scan-able Bi₂Sr₂CaCu₂O₈₊ₓ nano-flake STM tip is used to directly visualise the superconducting condensate. I will report the observation of a periodic modulation in the Cooper pair condensate at the same wave-vector as the CDW, the first direct detection of a periodically modulating condensate in any superconductor.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yi, Tianyou. "Modeling of dynamical vortex states in charge density waves." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00768237.

Повний текст джерела
Анотація:
Formation of charge density waves (CDW) is a symmetry breaking phenomenon found in electronic systems, which is particularly common in quasi-one-dimensional conductors. It is widely observed from highly anisotropic materials to isotropic ones like the superconducting pnictides. The CDW is seen as a sinusoidal deformation of coupled electronic density and lattice modulation; it can be also viewed as a crystal of singlet electronic pairs. In the CDW state, the elementary units can be readjusted by absorbing or rejecting pairs of electrons. Such a process should go via topologically nontrivial configurations: solitons and dislocations - the CDW vortices. An experimental access to these inhomogeneous CDW states came from studies of nano-fabricated mesa-junctions, from the STM and from the X-ray micro-diffraction. Following these requests, we have performed a program of modeling stationary states and of their transient dynamic for the CDW in restricted geometries under applied voltage or at passing normal currents. The model takes into account multiple fields in mutual nonlinear interactions: the two components of the CDW complex order parameter, and distributions of the electric field, the density and the current of normal carriers. We were using the Ginzburg-Landau type approach and also we have derived its extension based on the property of the chiral invariance. We observed the incremental creation of static dislocations within the junctions. The transient dynamics is very rich showing creation, annihilation and sweeping of multiple vortices. The dislocations cores concentrate the voltage drops thus providing self-tuned microscopic junctions where the tunneling creation of electron-hole pairs can take place. The results obtained from this model agree with experiment observations. The methods can be extended to other types of charge organization known under the general name of the Electronic Crystal. It takes forms of Wigner crystals at hetero-junctions and in nano-wires, CDWs in chain compounds, spin density waves in organic conductors, and stripes in doped oxides. The studied reconstruction in junctions of the CDW may be relevant also to modern efforts of the field-effect transformations in strongly correlated materials with a spontaneous symmetry breaking.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Distinct charge density wave"

1

Butz, Tilman, ed. Nuclear Spectroscopy on Charge Density Wave Systems. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-015-1299-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Butz, Tilman. Nuclear Spectroscopy on Charge Density Wave Systems. Dordrecht: Springer Netherlands, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tilman, Butz, ed. Nuclear spectroscopy on charge density wave systems. Dordrecht: Kluwer Academic Publishers, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zong, Alfred. Emergent States in Photoinduced Charge-Density-Wave Transitions. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81751-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Boswell, Frank W. Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Dordrecht: Springer Netherlands, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boswell, Frank W., and J. Craig Bennett, eds. Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4603-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

W, Boswell Frank, and Bennett J. Craig, eds. Advances in the cyrstallographic and microstructural analysis of charge density wave modulated crystals. Dordrecht: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Craig, Bennett J., and Boswell Frank W, eds. Advances in the crystallographic and microstructural analysis of charge density wave modulated crystals. Boston: Kluwer Academi Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Budkowski, Andrzej. Symmetry analysis of some modulated structures: Study of charge density wave-like periodic deviations in NbS₃, Au₂+x, Cd₁-x, TaTe₄ and (Ta₀.₇₂Nb₀.₂₈)Te₄. Kraków: Nakł. Uniwersytetu Jagiellońskiego, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gy, Hutiray, and Sólyom J, eds. Charge density waves in solids: Proceedings of the international conference held in Budapest, Hungary, September 3-7, 1984. Berlin: Springer-Verlag, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Distinct charge density wave"

1

Monceau, P. "From Sliding Charge Density Wave to Charge Ordering." In The Physics of Organic Superconductors and Conductors, 17–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-76672-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Overhauser, A. W. "Charge Density Wave Phenomena in Potassium." In Anomalous Effects in Simple Metals, 394–410. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Werner, S. A., T. M. Giebultowicz, and A. W. Overhauser. "Charge Density Wave Satellites in Potassium?" In Anomalous Effects in Simple Metals, 545–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Frano, Alex. "The Cuprates: A Charge Density Wave." In Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures, 91–138. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07070-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Brazovskii, S., and S. Matveenko. "Solitons in Charge Density Wave Crystals." In NATO ASI Series, 125–35. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5961-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Monceau, P. "Introduction to Charge Density Wave Transport." In Physics and Chemistry of Low-Dimensional Inorganic Conductors, 371–88. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1149-2_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bünner, M. J., G. Heinz, A. Kittel, and J. Parisi. "Structure Formation in Charge Density Wave Systems." In Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, 133–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79506-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Boriack, M. L., and A. W. Overhauser. "Dynamics of an Incommensurate Charge-Density Wave." In Anomalous Effects in Simple Metals, 169–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Giuliani, G. F., and A. W. Overhauser. "Charge-Density-Wave Satellite Intensity in Potassium." In Anomalous Effects in Simple Metals, 295–301. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giuliani, G. F., and A. W. Overhauser. "Structure Factor of a Charge-Density Wave." In Anomalous Effects in Simple Metals, 327–37. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631469.ch41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Distinct charge density wave"

1

Eremenko, Victor, Peter Gammel, Gyorgy Remenyi, Valentyna Sirenko, Anatolii Panfilov, Vladimir Desnenko, Vladimir Ibulaev, and A. Fedorchenko. "Magnetostriction Of Charge Density Wave Superconductor." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Matsuura, Toru, Taku Tsuneta, Katsuhiko Inagaki, and Satoshi Tanda. "Charge Density Wave Dynamics on Ring." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rogovin, D., J. Scholl, R. Pizzoferrato, M. DeSpirito, M. Marinelli, and U. Zammit. "Stark-enchanced nonlinear optics in shaped microparticle suspensions: beam combination." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.fz3.

Повний текст джерела
Анотація:
Electromagnetic alignment of the microparticles, by either a uniform electric field or polarized radiation, changes the gain spectrum for energy transfer via nondegenerate two-wave mixing in three distinct ways: (1) the low frequency peak of the gain spectrum, arising from the translational grating, is enhanced, (2) the high frequency portion of the gain, arising from the orientational grating, is enhanced, and (3) the high frequency portion of the gain spectrum is upshifted so that the orientational peak will occur at higher frequencies. The blue shift in the orientational peak arises because microparticle alignment reduces the rotational response time. The enhancement of the low frequency portion of the gain spectrum arises from the formation of an additional density grating that possesses some orientational characteristics. Enhancement of the high frequency orientational portion of the gain spectrum arises from two causes: the orientational grating is made deeper when the microparticles are aligned, and the formation of an additional orientational grating that has some translational characteristics. This feature of the suspension’s nonlinear electrodynamics reflects the appearance of new coherent scattering mechanisms resulting from the loss of symmetry in the presence of either a uniform electric field or polarized radiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MATSUURA, TORU, KATSUHIKO INAGAKI, SATOSHI TANDA, and TAKU TSUNETA. "TOPOLOGICAL EFFECTS IN CHARGE DENSITY WAVE DYNAMICS." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lalngilneia, P. C., A. Thamizhavel, S. Ramakrishnan, and D. Pal. "Charge density wave in Er2Ir3Si5 single crystal." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

YOSHIMOTO, HIROYUKI, and SUSUMU KURIHARA. "THERMOELECTRIC TRANSPORTS IN CHARGE-DENSITY-WAVE SYSTEMS." In Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics — In the Light of Quantum Computation. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701619_0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Degiorai, L., and G. Groner. "Fluctuation effects in charge density wave condensates." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

NOGAWA, T., and K. NEMOTO. "CHARGE DENSITY WAVE STATE IN TOPOLOGICAL CRYSTAL." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708687_0034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

van Smaalen, Sander, Sitaram Ramakrishnan, Ngyuen Hai An Bui, Florian Feulner, Marila Anurova, Andreas Schönleber, and Dmitry Chernyshov. "The three-dimensional charge-density-wave compound CuV2S4." In Aperiodic 2018 ("9th Conference on Aperiodic Crystals"). Iowa State University, Digital Press, 2018. http://dx.doi.org/10.31274/aperiodic2018-180810-33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

INAGAKI, KATSUHIKO, TAKESHI TOSHIMA, and SATOSHI TANDA. "SOLITON TRANSPORT IN NANOSCALE CHARGE-DENSITY-WAVE SYSTEMS." In Proceedings of the 1st International Symposium on TOP2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772879_0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Distinct charge density wave"

1

Coleman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough, and Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5901839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thomson, R. E. Scanning tunneling microscopy of charge density wave structure in 1T- TaS sub 2. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5130392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Coleman, R. V., Zhenxi Dai, W. W. McNairy, C. G. Slough, and Chen Wang. Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10122090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thomson, Ruth Ellen. Scanning tunneling microscopy of charge density wave structure in 1T- TaS2. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10158007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Coleman, R. V., W. W. McNairy, and C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS sub 2 at 300 K. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5879904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Coleman, R. V., W. W. McNairy, and C. G. Slough. Amplitude modulation of charge-density-wave domains in 1T-TaS{sub 2} at 300 K. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10122082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Creager, W. N. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6112541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії