Добірка наукової літератури з теми "Dissipative Scheme"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dissipative Scheme".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dissipative Scheme"
HANSEN, JAKOB, ALEXEI KHOKHLOV, and IGOR NOVIKOV. "PROPERTIES OF FOUR NUMERICAL SCHEMES APPLIED TO A NONLINEAR SCALAR WAVE EQUATION WITH A GR-TYPE NONLINEARITY." International Journal of Modern Physics D 13, no. 05 (May 2004): 961–82. http://dx.doi.org/10.1142/s021827180400502x.
Повний текст джерелаBurkhardt, Ulrike, and Erich Becker. "A Consistent Diffusion–Dissipation Parameterization in the ECHAM Climate Model." Monthly Weather Review 134, no. 4 (April 1, 2006): 1194–204. http://dx.doi.org/10.1175/mwr3112.1.
Повний текст джерелаChen, Xiaowei, Mingzhan Song, and Songhe Song. "A Fourth Order Energy Dissipative Scheme for a Traffic Flow Model." Mathematics 8, no. 8 (July 28, 2020): 1238. http://dx.doi.org/10.3390/math8081238.
Повний текст джерелаNajafiyazdi, Mostafa, Luc Mongeau, and Siva Nadarajah. "Low-dissipation low-dispersion explicit Taylor-Galerkin schemes from the Runge-Kutta kernels." International Journal of Aeroacoustics 17, no. 1-2 (February 24, 2018): 88–113. http://dx.doi.org/10.1177/1475472x17743657.
Повний текст джерелаZlotnik, Alexander, and Timofey Lomonosov. "VERIFICATION OF AN ENTROPY DISSIPATIVE QGD-SCHEME." Mathematical Modelling and Analysis 24, no. 2 (February 5, 2019): 179–94. http://dx.doi.org/10.3846/mma.2019.013.
Повний текст джерелаAppadu, A. R. "Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes." Journal of Applied Mathematics 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/734374.
Повний текст джерелаLin, F. B., and F. Sotiropoulos. "Assessment of Artificial Dissipation Models for Three-Dimensional Incompressible Flow Solutions." Journal of Fluids Engineering 119, no. 2 (June 1, 1997): 331–40. http://dx.doi.org/10.1115/1.2819138.
Повний текст джерелаZhang, Yang, Laiping Zhang, Xin He, and Xiaogang Deng. "An Improved Second-Order Finite-Volume Algorithm for Detached-Eddy Simulation Based on Hybrid Grids." Communications in Computational Physics 20, no. 2 (July 21, 2016): 459–85. http://dx.doi.org/10.4208/cicp.190915.240216a.
Повний текст джерелаLu, Changna, Qianqian Gao, Chen Fu, and Hongwei Yang. "Finite Element Method of BBM-Burgers Equation with Dissipative Term Based on Adaptive Moving Mesh." Discrete Dynamics in Nature and Society 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3427376.
Повний текст джерелаMai-Duy, N., N. Phan-Thien, and T. Tran-Cong. "An improved dissipative particle dynamics scheme." Applied Mathematical Modelling 46 (June 2017): 602–17. http://dx.doi.org/10.1016/j.apm.2017.01.086.
Повний текст джерелаДисертації з теми "Dissipative Scheme"
Fiebach, André [Verfasser]. "A dissipative finite volume scheme for reaction-diffusion systems in heterogeneous materials / André Fiebach." Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1057869732/34.
Повний текст джерелаAvila, Jorge Andrés Julca. "Solução numérica em jatos de líquidos metaestáveis com evaporação rápida." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-13082008-010924/.
Повний текст джерелаThis study analyses the rapid evaporation of superheated or metastable liquid jets in a two-dimensional region. The phenomenon is triggered, in this case, when a jet in its liquid phase at high temperature and pressure, emerges from a small aperture nozzle and expands into a low pressure chamber, below saturation pressure. During the evolution of the process, after crossing the saturation curve, one observes that the fluid remains in a superheated liquid state. Then, suddenly the superheated liquid changes phase by means of an oblique evaporation wave. This phase change transforms the liquid into a biphasic mixture at high velocity pointing toward different directions, with increasing supersonic velocity as an expansion process takes place to the chamber back pressure, after going through a compression shock wave. The equations which govern this phenomenon are: the equations of conservation of mass, momentum and energy and an equation of state. Due to its steady state process, the numerical simulation is by means of a finite difference method using the McCormack method of Discretization. As this method does not capture shock waves, a second finite difference method is used to reach this task, the method uses the transient equations version of the conservation laws, applying the Dispersion-Controlled Dissipative (DCD) scheme. Numerical results using the code ShoWPhasT-2D v2 and experimental data have been compared, and the numerical results from the DCD-2D v1 have been analysed.
Bensaid, Bilel. "Analyse et développement de nouveaux optimiseurs en Machine Learning." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0218.
Повний текст джерелаOver the last few years, developping an explainable and frugal artificial intelligence (AI) became a fundamental challenge, especially when AI is used in safety-critical systems and demands ever more energy. This issue is even more serious regarding the huge number of hyperparameters to tune to make the models work. Among these parameters, the optimizer as well as its associated tunings appear as the most important leverages to improve these models [196]. This thesis focuses on the analysis of learning process/optimizer for neural networks, by identifying mathematical properties closely related to these two challenges. First, undesirable behaviors preventing the design of explainable and frugal networks are identified. Then, these behaviors are explained using two tools: Lyapunov stability and geometrical integrators. Through numerical experiments, the learning process stabilization improves the overall performances and allows the design of shallow networks. Theoretically, the suggested point of view enables to derive convergence guarantees for classical Deep Learning optimizers. The same approach is valuable for mini-batch optimization where unwelcome phenomenons proliferate: the concept of balanced splitting scheme becomes essential to enhance the learning process understanding and improve its robustness. This study paves the way to the design of new adaptive optimizers, by exploiting the deep relation between robust optimization and invariant preserving scheme for dynamical systems
Petropoulos, Ilias. "Study of high-order vorticity confinement schemes." Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0001/document.
Повний текст джерелаVortices are flow structures of primary interest in a wide range of fluid dynamics applications including wakes, fluid-structure interaction, flow separation and turbulence. Albeit their importance, standard Computational Fluid Dynamics (CFD) methods very often fail to provide an accurate representation of vortices. This is primarily related to the schemes’ numerical dissipation which, if inadequately tuned for the calculation of vortical flows, results in the artificial spreading and diffusion of vortices in numerical simulations. Among other approaches, the Vorticity Confinement (VC) method of J. Steinhoff allows balancing the baseline dissipation within vortices by introducing non-linear anti-dissipation in the discretization of the flow equations, but remains at most first-order accurate. At the same time, remarkable progress has recently been made on the development of high-order numerical methods. These allow reducing the problem of excess dissipation, but the diffusion of vortices remains important for many applications. The present study aims at developing high-order extensions of the VC method to reduce the excess dissipation of vortices, while preserving the accuracy of high-order methods. First, the schemes are analyzed in the case of the linear transport equation, based on time-space coupled and uncoupled formulations. A spectral analysis of nonlinear schemes with VC is performed analytically and numerically, due to their nonlinear character. These schemes exhibit improved dispersive and dissipative properties compared to their linear counterparts at all orders of accuracy. In a second step, third- and fifth-order accurate VC schemes are developed for the compressible Navier-Stokes equations. These remain conservative, rotationally invariant and independent of the baseline scheme, as the original VC2 formulation. Numerical tests validate the increased order of accuracy and the capability of high-order VC extensions to balance dissipation within vortices. Finally, schemes with VC are applied to the calculation of turbulent flows, in an implicit Large Eddy Simulation (ILES) approach. In these applications, numerical schemes with VC exhibit improved resolvability compared to their baseline linear version, while they are capable of producing consistent results even in complex vortical flows
Wajid, Hafiz Abdul. "Dispersive and dissipative properties of high order schemes for computational wave propagation." Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=11530.
Повний текст джерелаLee, Dongwook. "An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics a staggered dissipation-control differencing algorithm /." College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3842.
Повний текст джерелаThesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Nazari, Farshid. "Strongly Stable and Accurate Numerical Integration Schemes for Nonlinear Systems in Atmospheric Models." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32128.
Повний текст джерелаAzim, Riasat. "Low-Storage Hybrid MacCormack-type Schemes with High Order Temporal Accuracy for Computational Aeroacoustics." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1515720270119389.
Повний текст джерелаHuart, Robin. "Simulation numérique d'écoulements magnétohydrodynamiques par des schémas distribuant le résidu." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14480/document.
Повний текст джерелаDuring this thesis, we worked on the numerical resolution of the Magnetohydrodynamic (MHD) equations, to which we added a hyperbolic transport equation for the divergence errors of the magnetic field.The first step consisted in symmetrizing the new ideal MHD system in order to study its eigensystem, which was the opportunity to remind the role of the entropy in this calculation as well as in the Clausius-Duhem inequality. Next, we aimed at solving these ideal equations by the mean of Residual Distribution (RD) schemes.The four main schemes were tested, and we showed among other things that the N scheme (although it has been proven very efficient with Euler equations in Fluid Mechanics) could not give satisfying results with the MHD equations. Classical strategies for the limitation and the stabilization were revisited then. Moreover,since we dealt with unsteady equations, we had to formulate atime discretization and a spatial distribution of the unsteady terms (as well as possible sources). We first choosed an implicit approach allowing us to be powerful on the long simulations needed for tokamak experiments, and to treat the divergence cleaning part in an original and efficient way. The convergence problems of our Newton-Raphson algorithm having not been fully resolved, we turned to an explicit alternative (Runge-Kutta type).Finally, we discussed about the principles of higher order schemes (theoretically, up to arbitrary orders, taking into account the Gibbs phenomenon) thanks to any type of 2D or 3D finite element (properly defined), without having been able to to validate all these aspects. We also implemented the dissipative part of the full MHD equations (in the classical sense, i.e. omitting the Hall effect) by the use of a RD/Galerkin coupling
Langenberg, Marcel Simon Verfasser], Marcus [Akademischer Betreuer] Müller, Marcus [Gutachter] Müller, Reiner [Gutachter] Kree, Cynthia A. [Gutachter] [Volkert, Krüger [Gutachter], Annette [Gutachter] Zippelius, and Stefan [Gutachter] Klumpp. "Energy dissipation and transport in polymeric switchable nanostructures via a new energy-conserving Monte-Carlo scheme / Marcel Simon Langenberg ; Gutachter: Marcus Müller, Reiner Kree, Cynthia Volkert, Krüger, Annette Zippelius, Stefan Klumpp ; Betreuer: Marcus Müller." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/1156460581/34.
Повний текст джерелаКниги з теми "Dissipative Scheme"
Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаRoe, P. L. Linear bicharacteristic schemes without dissipation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Знайти повний текст джерелаInstitute for Computer Applications in Science and Engineering., ed. Linear bicharacteristic schemes without dissipation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Знайти повний текст джерелаR, Radespiel, Turkel E, and Institute for Computer Applications in Science and Engineering., eds. Comparison of several dissipation algorithms for central difference schemes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Знайти повний текст джерелаSwanson, R. Charles. On central-difference and upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1990.
Знайти повний текст джерелаSwanson, R. Charles. On central-difference and upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1990.
Знайти повний текст джерелаЧастини книг з теми "Dissipative Scheme"
Wen, Chih-Yung, Yazhong Jiang, and Lisong Shi. "Non-dissipative Core Scheme of CESE Method." In Engineering Applications of Computational Methods, 7–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_2.
Повний текст джерелаPoluru, Venkata Reddy. "A Low Dissipative Scheme for Hyperbolic Conservation Laws." In Lecture Notes in Mechanical Engineering, 583–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9956-9_57.
Повний текст джерелаWen, Chih-Yung, Yazhong Jiang, and Lisong Shi. "CESE Schemes with Numerical Dissipation." In Engineering Applications of Computational Methods, 21–36. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_3.
Повний текст джерелаAristova, Elena N. "Hermitian Grid-Characteristic Scheme for Linear Transport Equation and Its Dissipative-Dispersion Properties." In Smart Modelling for Engineering Systems, 51–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4619-2_5.
Повний текст джерелаFu, Lei, Chenliang Gu, and Jiachang Shi. "Dissipative Control for Singular T-S Fuzzy Systems Under Dynamic Event-Triggered Scheme." In Proceedings of International Conference on Image, Vision and Intelligent Systems 2023 (ICIVIS 2023), 708–16. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0855-0_68.
Повний текст джерелаWen, Chih-Yung, Yazhong Jiang, and Lisong Shi. "Multi-dimensional CESE Schemes." In Engineering Applications of Computational Methods, 37–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_4.
Повний текст джерелаYang, Yan. "Hybrid Scheme for Compressible MHD Turbulence." In Energy Transfer and Dissipation in Plasma Turbulence, 35–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8149-2_3.
Повний текст джерелаYee, H. C., and B. Sjögreen. "Designing Adaptive Low Dissipative High Order Schemes." In Computational Fluid Dynamics 2002, 124–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_15.
Повний текст джерелаSonar, Thomas. "Entropy Dissipation in Finite Difference Schemes." In Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, 544–49. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87871-7_66.
Повний текст джерелаWu, Xinyuan, and Bin Wang. "Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations." In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 235–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_8.
Повний текст джерелаТези доповідей конференцій з теми "Dissipative Scheme"
Hou, Daizheng, Yanfei Zhang, and Yafu Zhou. "A Novel Heat Dissipation Optimization Design Scheme of Printed Circuit Board." In 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), 1635–41. IEEE, 2024. http://dx.doi.org/10.1109/icepet61938.2024.10627435.
Повний текст джерелаHenke, Jan-Wilke, Yujia Yang, F. Jasmin Kappert, Arslan S. Raja, Germaine Arend, Guanhao Huang, Armin Feist, et al. "Probing the Formation of Nonlinear Optical States with Free Electrons." In CLEO: Fundamental Science, FW3P.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3p.3.
Повний текст джерелаPinho, Pedro V., André G. Primo, Natália C. Carvalho, Rodrigo Benevides, Cauê M. Kersul, Simon Groeblacher, Gustavo S. Wiedehecker, and Thiago P. Mayer Alegre. "Quadrature-Resolved Dissipative Optomechanical Measurement." In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth1b.2.
Повний текст джерелаPrimo, André G., Pedro V. Pinho, Natália C. Carvalho, Rodrigo Benevides, Cauê M. Kersul, Simon Groeblacher, Gustavo S. Wiedehecker, and Thiago P. Mayer Alegre. "Homodyne Detection of Dissipative Optomechanical Interactions." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.m4d.6.
Повний текст джерелаKim, Dehee, and Jang Hyuk Kwon. "A Low Dissipative and Dispersive Scheme with a High Order WENO Dissipation for Unsteady Flow Analyses." In 34th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2705.
Повний текст джерелаMatsuo, T., E. Torii, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "A Dissipative Linearly-Implicit Scheme for the Ginzburg-Landau Equation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241623.
Повний текст джерелаPoe, Nicole M. W., and D. Keith Walters. "A Low-Dissipation Optimization-Based Gradient Reconstruction (OGRE) Scheme for Finite Volume Simulations." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-01013.
Повний текст джерелаTian, Cheng, Song Fu, and Siya Jiang. "Numerical Dissipation Effects on Detached Eddy Simulation of Turbomachinery Flows." In GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-74.
Повний текст джерелаBahrainian, Seyed Saied. "Effect of Dissipative Terms on the Quality of Two and Three-Dimensional Euler Flow Solutions." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55221.
Повний текст джерелаMa, Yian, Qijun Tan, Ruoshi Yuan, Bo Yuan, and Ping Ao. "Decomposition scheme in continuous dissipative chaotic systems and role of strange attractors." In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6578915.
Повний текст джерелаЗвіти організацій з теми "Dissipative Scheme"
Cabot, B., D. Eliason, and L. Jameson. A Wavelet Based Dissipation Method for ALE Schemes. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/793693.
Повний текст джерелаANALYSIS OF THE SEISMIC BEHAVIOR OF INNOVATIVE ALUMINIUM ALLOY ENERGY DISSIPATION BRACES. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.341.
Повний текст джерела