Добірка наукової літератури з теми "Dissipative approach"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dissipative approach".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dissipative approach"
CHRISTOV, C. I. "DISSIPATIVE QUASI-PARTICLES: THE GENERALIZED WAVE EQUATION APPROACH." International Journal of Bifurcation and Chaos 12, no. 11 (November 2002): 2435–44. http://dx.doi.org/10.1142/s0218127402005959.
Повний текст джерелаMayorga, M. "Upper Bound for the Entropy Production and Dissipative Particle Dynamics." International Journal of Modern Physics C 09, no. 08 (December 1998): 1299–306. http://dx.doi.org/10.1142/s0129183198001175.
Повний текст джерелаBhattacharya, Samyadeb, and Sisir Roy. "Dissipative Effect and Tunneling Time." Advances in Mathematical Physics 2011 (2011): 1–13. http://dx.doi.org/10.1155/2011/138358.
Повний текст джерелаAURICCHIO, FERDINANDO, ELENA BONETTI, and ANTONIO MARIGONDA. "A METRIC APPROACH TO PLASTICITY VIA HAMILTON–JACOBI EQUATION." Mathematical Models and Methods in Applied Sciences 20, no. 09 (September 2010): 1617–47. http://dx.doi.org/10.1142/s0218202510004726.
Повний текст джерелаLÓPEZ, G., M. MURGUÍA, and M. SOSA. "TIME-INDEPENDENT APPROACH FOR DISSIPATIVE SYSTEMS." Modern Physics Letters B 10, no. 24 (October 20, 1996): 1197–203. http://dx.doi.org/10.1142/s021798499600136x.
Повний текст джерелаSakagami, M. a., and T. Kubota. "Path Integral Approach to Dissipative Processes." Progress of Theoretical Physics 76, no. 2 (August 1, 1986): 548–60. http://dx.doi.org/10.1143/ptp.76.548.
Повний текст джерелаBose, Thomas, and Steffen Trimper. "Lagrangian approach and dissipative magnetic systems." Physics Letters A 375, no. 24 (June 2011): 2452–55. http://dx.doi.org/10.1016/j.physleta.2011.05.019.
Повний текст джерелаAnkiewicz, Adrian, Nail Akhmediev, and Natasha Devine. "Dissipative solitons with a Lagrangian approach." Optical Fiber Technology 13, no. 2 (April 2007): 91–97. http://dx.doi.org/10.1016/j.yofte.2006.12.001.
Повний текст джерелаABE, Y., C. GRÉGOIRE, and H. DELAGRANGE. "LANGEVIN APPROACH TO NUCLEAR DISSIPATIVE DYNAMICS." Le Journal de Physique Colloques 47, no. C4 (August 1986): C4–329—C4–338. http://dx.doi.org/10.1051/jphyscol:1986436.
Повний текст джерелаCivelek, Cem. "Observability, controllability and stability of a nonlinear RLC circuit in form of a Duffing oscillator by means of theoretical mechanical approach." Journal of Electrical Engineering 73, no. 2 (April 1, 2022): 140–45. http://dx.doi.org/10.2478/jee-2022-0018.
Повний текст джерелаДисертації з теми "Dissipative approach"
Tanriverdi, Vedat. "Nuclear Dissipative Dynamics In Langevin Approach." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605034/index.pdf.
Повний текст джерелаRolt, Kenneth D. "A dissipative wave packet approach for unified nonlinear acoustics." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28080.
Повний текст джерелаMathey, Steven [Verfasser], and Thomas [Akademischer Betreuer] Gasenzer. "Functional renormalisation approach to driven dissipative dynamics / Steven Mathey ; Akademischer Betreuer: Thomas Gasenzer." Heidelberg : Universitätsbibliothek Heidelberg, 2014. http://d-nb.info/1180325141/34.
Повний текст джерелаKoch, Christiane. "Quantum dissipative dynamics with a surrogate Hamiltonian." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2002. http://dx.doi.org/10.18452/14816.
Повний текст джерелаThis thesis investigates condensed phase quantum systems which interact with their environment and which are subject to ultrashort laser pulses. For such systems the timescales of the involved processes cannot be separated, and standard approaches to treat open quantum systems fail. The Surrogate Hamiltonian method represents one example of a number of new approaches to address quantum dissipative dynamics. Its further development and application to phenomena under current experimental investigation are presented. The single dissipative processes are classified and discussed in the first part of this thesis. In particular, a model of dephasing is introduced into the Surrogate Hamiltonian method. This is of importance for future work in fields such as coherent control and quantum computing. In regard to these subjects, it is a great advantage of the Surrogate Hamiltonian over other available methods that it relies on a spin, i.e. a fully quantum mechanical description of the bath. The Surrogate Hamiltonian method is applied to a standard model of charge transfer in condensed phase, two nonadiabatically coupled harmonic oscillators immersed in a bath. This model is still an oversimplification of, for example, a molecule in solution, but it serves as testing ground for the theoretical description of a prototypical ultrafast pump-probe experiment. All qualitative features of such an experiment are reproduced and shortcomings of previous treatments are identified. Ultrafast experiments attempt to monitor reaction dynamics on a femtosecond timescale. This can be captured particularly well by the Surrogate Hamiltonian as a method based on a time-dependent picture. The combination of the numerical solution of the time-dependent Schrödinger equation with the phase space visualization given by the Wigner function allows for a step by step following of the sequence of events in a charge transfer cycle in a very intuitive way. The utility of the Surrogate Hamiltonian is furthermore significantly enhanced by the incorporation of the Filter Diagonalization method. This allows to obtain frequency domain results from the dynamics which can be converged within the Surrogate Hamiltonian approach only for comparatively short times. The second part of this thesis is concerned with the theoretical treatment of laser induced desorption of small molecules from oxide surfaces. This is an example which allows for a description of all aspects of the problem with the same level of rigor, i.e. ab initio potential energy surfaces are combined with a microscopic model for the excitation and relaxation processes. This model of the interaction between the excited adsorbate-substrate complex and substrate electron-hole pairs relies on a simplified description of the electron-hole pairs as a bath of dipoles, and a dipole-dipole interaction between system and bath. All parameters are connected to results from electronic structure calculations. The obtained desorption probabilities and desorption velocities are simultaneously found to be in the right range as compared to the experimental results. The Surrogate Hamiltonian approach therefore allows for a complete description of the photodesorption dynamics on an ab initio basis for the first time.
Sakurai, Atsunori. "Exploring Nonlinear Responses of Quantum Dissipative Systems from Reduced Hierarchy Equations of Motion Approach." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/179368.
Повний текст джерелаRoosen, David [Verfasser], Walter [Akademischer Betreuer] Hofstetter, and Peter [Akademischer Betreuer] Kopietz. "A numerical renormalization group approach to dissipative quantum impurity systems / David Roosen. Gutachter: Walter Hofstetter ; Peter Kopietz. Betreuer: Walter Hofstetter." Frankfurt am Main : Univ.-Bibliothek Frankfurt am Main, 2012. http://d-nb.info/1044772611/34.
Повний текст джерелаYilmaz, Bulent. "Stochastic Approach To Fusion Dynamics." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608517/index.pdf.
Повний текст джерелаMartelli, F. "WAVEPACKET APPROACHES TO DISSIPATIVE QUANTUM DYNAMICS." Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150221.
Повний текст джерелаCharkaluk, Éric Saxcé Géry de. "Fatigue des matériaux métalliques quelques contributions à une approche dissipative /." Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2007. https://iris.univ-lille1.fr/dspace/handle/1908/1030.
Повний текст джерелаN° d'ordre (Lille 1) : 548. Titre provenant de la page de titre du document numérisé. Bibliogr. à la suite des chapitres.
Berro, Hassan. "A molecular dynamics approach to nano-scale lubrication." Lyon, INSA, 2010. http://theses.insa-lyon.fr/publication/2010ISAL0084/these.pdf.
Повний текст джерелаUne approche numérique basée sur des simulations Dynamique Moléculaire a été développée dans le but d'étudier les mécanismes locaux de la lubrification à l'échelle nanométrique. Les éléments du modèle ont été présentés et caractérisés afin de reproduire les propriétés les plus réalistes des matériaux et de l'interface du contact. En raison de leur relation étroite avec le frottement, les méthodes de dissipation énergétique pour la dynamique moléculaire ont été revisitées et des recommandations ont été proposées pour le choix d'une méthode correcte adaptée aux différentes conditions opératoires. Pour le régime de fort cisaillement et donc de forte dissipation, une nouvelle méthode mieux fondée physiquement a été développée, combinant simplicité et vitesse de calcul. Le modèle a ensuite été utilisé pour étudier les effets liés à la structure moléculaire des surfaces et du lubrifiant confiné. Afin d'étudier différentes surfaces tribologiques, une méthode originale a été utilisée pour mesurer quantitativement les potentiels physiques d'adsorption et de corrugation. Ces propriétés influencent directement la stratification dans le film et son glissement à l'interface solide. D'autre part, l'influence de la forme moléculaire du lubrifiant sur sa performance tribologique a été étudiée, en solution pure et en mélange, pour les surfaces mouillantes et non-mouillantes. Les simulations moléculaires ont permis une analyse locale du frottement lubrifié à l'échelle moléculaire et ainsi une meilleure compréhension des interactions physiques entre les éléments mis en jeu
Книги з теми "Dissipative approach"
Vakulenko, Sergey. Complexity and evolution of dissipative systems: An analytical approach. Berlin: Walter de Gruyter, 2014.
Знайти повний текст джерела1976-, Nersesov Sergey G., ed. Stability and control of large-scale dynamical systems: A vector dissipative systems approach. Princeton, N.J: Princeton University Press, 2011.
Знайти повний текст джерелаRakotomanana, L. R. A Geometric Approach to Thermomechanics of Dissipating Continua. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8132-6.
Повний текст джерелаRakotomanana, L. R. A Geometric Approach to Thermomechanics of Dissipating Continua. Boston, MA: Birkhäuser Boston, 2004.
Знайти повний текст джерелаCenter, Langley Research, ed. Preprocessing for eddy dissipation rate and TKE profile generation. Hampton, Va: National Aeronautics and Science Administration, Langley Research Center, 2001.
Знайти повний текст джерелаChen, Hsing-Ta. Delving Into Dissipative Quantum Dynamics: From Approximate to Numerically Exact Approaches. [New York, N.Y.?]: [publisher not identified], 2016.
Знайти повний текст джерелаVakulenko, Sergey. Complexity and Evolution of Dissipative Systems: An Analytical Approach. De Gruyter, Inc., 2013.
Знайти повний текст джерелаVakulenko, Sergey. Complexity and Evolution of Dissipative Systems: An Analytical Approach. de Gruyter GmbH, Walter, 2013.
Знайти повний текст джерелаNersesov, Sergey G., and Wassim M. Haddad. Stability and Control of Large-Scale Dynamical Systems: A Vector Dissipative Systems Approach. Princeton University Press, 2011.
Знайти повний текст джерелаNersesov, Sergey G., and Wassim M. Haddad. Stability and Control of Large-Scale Dynamical Systems: A Vector Dissipative Systems Approach. Princeton University Press, 2011.
Знайти повний текст джерелаЧастини книг з теми "Dissipative approach"
Mori, Hazime, and Yoshiki Kuramoto. "A Physical Approach to Chaos." In Dissipative Structures and Chaos, 129–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80376-5_9.
Повний текст джерелаKopachevsky, Nikolay D., and Selim G. Krein. "Oscillations of Partially Dissipative Hydrosystems." In Operator Approach to Linear Problems of Hydrodynamics, 251–314. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8063-3_5.
Повний текст джерелаWeiland, Siep. "Dissipative Dynamical Systems: A Behavioral Approach." In New Trends in Systems Theory, 707–14. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0439-8_89.
Повний текст джерелаBaty, Hubert, and Hiroaki Nishikawa. "A Hyperbolic Approach for Dissipative Magnetohydrodynamics." In Theory, Numerics and Applications of Hyperbolic Problems I, 137–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91545-6_11.
Повний текст джерелаKohen, Daniela, and David J. Tannor. "Phase Space Approach to Dissipative Molecular Dynamics." In Advances in Chemical Physics, 219–398. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470141700.ch2.
Повний текст джерелаSols, F. "Dissipative Transport in Nanostructures: A Many-Electron Approach." In Phonons in Semiconductor Nanostructures, 479–87. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1683-1_46.
Повний текст джерелаBiot, M. A. "On a Unified Thermodynamic Approach to a Large Class of Instabilities of Dissipative Continua." In Advances in Chemical Physics, 13–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470143841.ch2.
Повний текст джерелаMirra, M., and G. Ravenshorst. "A seismic retrofitting design approach for activating dissipative behavior of timber diaphragms in existing unreinforced masonry buildings." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 1901–7. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348443-312.
Повний текст джерелаMirra, M., and G. Ravenshorst. "A seismic retrofitting design approach for activating dissipative behavior of timber diaphragms in existing unreinforced masonry buildings." In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 663–64. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003348450-312.
Повний текст джерелаAchermann, Guillem, Gabriele De Luca, and Michele Simoni. "An Information-Theoretic and Dissipative Systems Approach to the Study of Knowledge Diffusion and Emerging Complexity in Innovation Systems." In Lecture Notes in Computer Science, 252–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50423-6_19.
Повний текст джерелаТези доповідей конференцій з теми "Dissipative approach"
Wentzel, Richard E., and Jeff VanBuskirk. "A Dissipative Approach to Vehicle Sound Abatement." In Noise & Vibration Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1668.
Повний текст джерелаCastin, Yvan, Jean Dalibard, and Klaus Mo̸lmer. "A wave function approach to dissipative processes." In Thirteenth International conference on atomic physics (ICAP-13). AIP, 1993. http://dx.doi.org/10.1063/1.43795.
Повний текст джерелаWynne, James J. "Approach to nonlinear optical balance." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.tud13.
Повний текст джерелаZimin, B. A., I. S. Zorin, and V. E. Sventitskaya. "On the Hamilton approach of the dissipative systems." In THE EIGHTH POLYAKHOV’S READING: Proceedings of the International Scientific Conference on Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5034716.
Повний текст джерелаJung, Tae-Hwa, and Changhoon Lee. "Supercritical Group Velocity for Dissipative Waves in Shallow Water." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83279.
Повний текст джерелаMazauric, Vincent, Nadia Maizi, Loic Rondot, and Philippe Wendling. "Dissipative processes in electrical engineering: A multi-scale approach." In 2010 14th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2010). IEEE, 2010. http://dx.doi.org/10.1109/cefc.2010.5481409.
Повний текст джерелаSahoo, Ambaresh, Samudra Roy, and Govind P. Agrawal. "Frequency downshifting of perturbed dissipative solitons: A variational approach." In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.jtu3a.66.
Повний текст джерелаSussman, Roberto A., Leonardo Dagdug, A. García-Perciante, A. Sandoval-Villalbazo, and L. S. García-Colín. "Self-gravitating dissipative sources in the “fluid flow” approach." In IV MEXICAN MEETING ON MATHEMATICAL AND EXPERIMENTAL PHYSICS: RELATIVISTIC FLUIDS AND BIOLOGICAL PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3533206.
Повний текст джерелаRahman, MuhibUr, and Ke Wu. "Hybrid Dissipative NLTL Soliton Solution Based on KdV Approach." In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9329626.
Повний текст джерелаPerodou, Arthur, Anton Korniienko, Mykhailo Zarudniev, and Gerard Scorletti. "Frequency Design of Interconnected Dissipative Systems: a Unified LMI Approach." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8618932.
Повний текст джерелаЗвіти організацій з теми "Dissipative approach"
Segalman, Daniel Joseph. A modal approach to modeling spatially distributed vibration energy dissipation. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/993326.
Повний текст джерелаYounes, W., and D. Gogny. Collective Dissipation from Saddle to Scission in a Microscopic Approach. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1053675.
Повний текст джерелаGambill, Daniel, Matthew Stoklosa, Sean Matus, Heidi Howard, and Garrett Feezor. White Sands Missile Range Thurgood Canyon watershed : analysis of Range Road 7 for development of best management practices and recommendations. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45622.
Повний текст джерелаCahaner, Avigdor, Sacit F. Bilgili, Orna Halevy, Roger J. Lien, and Kellye S. Joiner. effects of enhanced hypertrophy, reduced oxygen supply and heat load on breast meat yield and quality in broilers. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7699855.bard.
Повний текст джерелаWu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.
Повний текст джерелаGunay, Selim, Fan Hu, Khalid Mosalam, Arpit Nema, Jose Restrepo, Adam Zsarnoczay, and Jack Baker. Blind Prediction of Shaking Table Tests of a New Bridge Bent Design. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/svks9397.
Повний текст джерелаFinancial Stability Report - Second Semester of 2021. Banco de la República, September 2022. http://dx.doi.org/10.32468/rept-estab-fin.sem2.eng-2021.
Повний текст джерела