Добірка наукової літератури з теми "Direct nucleic acid detection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Direct nucleic acid detection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Direct nucleic acid detection"
Zezza, Paola, María Isabel Lucío, Estrella Fernández, Ángel Maquieira, and María-José Bañuls. "Surface Micro-Patterned Biofunctionalized Hydrogel for Direct Nucleic Acid Hybridization Detection." Biosensors 13, no. 3 (February 23, 2023): 312. http://dx.doi.org/10.3390/bios13030312.
Повний текст джерелаOuyang, Wei, and Jongyoon Han. "Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration." Proceedings of the National Academy of Sciences 116, no. 33 (July 29, 2019): 16240–49. http://dx.doi.org/10.1073/pnas.1904513116.
Повний текст джерелаIwanaga, Masanobu. "High-Sensitivity High-Throughput Detection of Nucleic Acid Targets on Metasurface Fluorescence Biosensors." Biosensors 11, no. 2 (January 27, 2021): 33. http://dx.doi.org/10.3390/bios11020033.
Повний текст джерелаKnight, Ivor T., Jocelyne DiRuggiero, and Rita R. Colwell. "Direct Detection of Enteropathogenic Bacteria in Estuarine Water Using Nucleic Acid Probes." Water Science and Technology 24, no. 2 (July 1, 1991): 261–66. http://dx.doi.org/10.2166/wst.1991.0070.
Повний текст джерелаKricka, Larry J., and Paolo Fortina. "Analytical Ancestry: “Firsts” in Fluorescent Labeling of Nucleosides, Nucleotides, and Nucleic Acids." Clinical Chemistry 55, no. 4 (April 1, 2009): 670–83. http://dx.doi.org/10.1373/clinchem.2008.116152.
Повний текст джерелаUno, Takeshi, Toshihito Ohtake, Hitoshi Tabata, and Tomoji Kawai. "Direct Deoxyribonucleic Acid Detection Using Ion-Sensitive Field-Effect Transistors Based on Peptide Nucleic Acid." Japanese Journal of Applied Physics 43, No. 12B (November 19, 2004): L1584—L1587. http://dx.doi.org/10.1143/jjap.43.l1584.
Повний текст джерелаFaron, Matthew L., Nathan A. Ledeboer, Jessica Connolly, Paul A. Granato, Brenda R. Alkins, Jennifer Dien Bard, Judy A. Daly, Stephen Young, and Blake W. Buchan. "Clinical Evaluation and Cost Analysis of Great Basin Shiga Toxin Direct Molecular Assay for Detection of Shiga Toxin-Producing Escherichia coli in Diarrheal Stool Specimens." Journal of Clinical Microbiology 55, no. 2 (December 7, 2016): 519–25. http://dx.doi.org/10.1128/jcm.01939-16.
Повний текст джерелаJi, Minghui, Yun Xia, Jacky Fong-Chuen Loo, Lang Li, Ho-Pui Ho, Jianan He, and Dayong Gu. "Automated multiplex nucleic acid tests for rapid detection of SARS-CoV-2, influenza A and B infection with direct reverse-transcription quantitative PCR (dirRT-qPCR) assay in a centrifugal microfluidic platform." RSC Advances 10, no. 56 (2020): 34088–98. http://dx.doi.org/10.1039/d0ra04507a.
Повний текст джерелаBaron, Ellen Jo, Fred C. Tenover, and Devasena Gnanashanmugam. "Direct Detection of Mycobacterium tuberculosis in Clinical Specimens Using Nucleic Acid Amplification Tests." Clinical Microbiology Newsletter 40, no. 13 (July 2018): 107–12. http://dx.doi.org/10.1016/j.clinmicnews.2018.06.003.
Повний текст джерелаZhou, Yunying, Fengyan Pei, Mingyu Ji, Li Wang, Huailong Zhao, Huanjie Li, Weihua Yang, Qingxi Wang, Qianqian Zhao, and Yunshan Wang. "Sensitivity evaluation of 2019 novel coronavirus (SARS-CoV-2) RT-PCR detection kits and strategy to reduce false negative." PLOS ONE 15, no. 11 (November 18, 2020): e0241469. http://dx.doi.org/10.1371/journal.pone.0241469.
Повний текст джерелаДисертації з теми "Direct nucleic acid detection"
Lores, Lareo Pablo. "Nucleic acids and SNP detection via template-directed native chemical ligation and inductively coupled plasma mass spectrometry." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20133.
Повний текст джерелаThe field of nucleic acid detection has evolved swiftly in recent years. From quantification of micro RNA for the study of cell death, proliferation, and regulation, to the assessment of the influence of genetic variability towards disease development and treatment, the analysis of nucleic acids will play a central role in future medicine. In that regard, the detection of SNPs, as the primary source of genetic variability and the most challenging mutation from the analytical point of view, will be at the forefront of the discussion. Methods for the detection of SNPs not only require sensitivity, selectivity and robustness, but they should also allow multiplexing and offer high throughput in order to face the growing analysis demand In this work an assay for the detection of nucleic acids and single nucleotide polymorphisms (SNPs) was developed. The reaction system for the detection of nucleic acids is based on the interaction between two modified peptide nucleic acid (PNA) oligonucleotides. The first incorporated a C-terminal thioester (donor probe), and the second one a N-terminal cysteinyl residue (acceptor probe). In addition, the donor probe is functionalized with a metal-tag, which consist of a macrocyclic metal chelate complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) with a chelated lanthanoide. A biotin tag for purification by streptavidin magnetic particles was incorporated in the acceptor probe. The target DNA strand brings together the reporter probes allowing the chemical reaction. The resulting ligation product contains the metal-tag and the biotin, which is used to purify the product before measurement in the ICP-MS system. The lanthanoid concentration is used as an indicator of the ligation product, which at the same time serves as reporter of the target template. The methodological limit of detection achieved with this system was 29 pM with RSD of 6.8% at 50 pM (n=5). Detection of SNPs was performed using a combination of two sets of PNA probes labeled with different lanthanoid metal tags. The first probe set targeted the sequence where the SNP was present (reporter probe system), while the second set of probes was designed to bind to a neighboring sequence (control probe system). The signals of both lanthanides were used to establish a ratio that allowed the detection of the SNP. This assay was successfully used to simultaneously differentiate between alleles of 3 SNPs by measuring six lanthanoids at 5 nM concentration.
Chatwell, Nicola. "Nucleic acid approaches to toxin detection." Thesis, University of Nottingham, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606582.
Повний текст джерелаBehrmann, Ole [Verfasser], and Gerald A. [Akademischer Betreuer] Urban. "Methods for rapid nucleic acid extraction and detection." Freiburg : Universität, 2021. http://d-nb.info/1227187289/34.
Повний текст джерелаFerrier, David Christopher. "Nucleic acid detection using oligonucleotide cross-linked polymer composites." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28944.
Повний текст джерелаGorgannezhad, Lena. "Advanced Technologies in Rapid and Multiplex Detection of Nucleic acid." Thesis, Griffith University, 2020. http://hdl.handle.net/10072/397045.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Kershaw, David Michael. "Nanoparticle bound nucleic acid probes for DNA detection and gene inactivation." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7432/.
Повний текст джерелаSaeed, Ibrahim Q. "Optoelectronically active sensitisers for the selective detection of nucleic acid biomarkers." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/100885/.
Повний текст джерелаO'Meara, Deirdre. "Molecular Tools for Nucleic Acid Analysis." Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3220.
Повний текст джерелаKhater, Mohga Wagdy Yehia Mohamed. "Nanoparticle-based sensors for pathogen nucleic acid detection with interest for agriculture." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667373.
Повний текст джерелаThis thesis aims at developing sensitive, affordable and portable biosensors based on nanomaterials for the determination of nucleic acid related to plant pathogens. The work strives to contribute to the keeping up in the advancements of biosensing systems relevant to plant infection diagnostics which would be an essential solution in the future to the issues of plant disease monitoring and food security. Following Chapter I, state-of-the-art on the latest trends in the development of advantageous biosensors based on both antibody and DNA receptors for early plant disease detection, as well as the use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is given. The next sections of this dissertation will describe three diagnostic biosensing strategies for the detection of citrus tristeza virus (CTV) related nucleic acid using electrical and optical transducing techniques. The electrical sensing of CTV through DNA hybridization based approach and the in situ amplified nucleic acid method will be achieved on carbon sensing substrate modified with gold nanoparticles, while paper-based sensors will be operated in lateral flow format for the gold nanoparticle-based optical detection of CTV. Furthermore, all aspects of the developed biosensing systems, from the bioassay and biosensor design to their development and optimization are presented in which will be organized in the following manner: Chapter III will present highly specific DNA hybridization sensor based on AuNP-modified SPCE employing label-free impedance for the detection of the CTV-related nucleic acid, together with dedicating emphasis to the study of electrodeposition time of AuNPs, whose precise particle size and shape will be required for the enhancement of DNA hybridization rate. A set of voltammetric studies of deposited AuNPs will be discussed. Particular attention will be paid for assembling the thiolated DNA probe as sensing layer for biosensor construction. The main sensor design aspects such as AuNPs size, probe DNA concentration and immobilization time together with DNA hybridization time will be optimized, in order to precisely select the best working conditions for this diagnostic platform. Chapter IV will cover the whole process undertaken for preparation of in situ nucleic acid amplification on gold nanoparticle-modified sensor for sensitive and quantitative detection of CTV. Plant disease (Citrus tristeza virus (CTV)) diagnostics was selected as relevant target for the demonstration of the proof-of-concept. This chapter will include two parts, the first one focuses on the design of RPA amplification assay, primers design, optimization of all essential bioassay aspects such as amplification temperature, volume and screening primers and finally the electrophoresis analysis for RPA products. The second part of this chapter will demonstrate label-free highly integrated in situ RPA amplification/detection approach at room temperature that takes advantage of the high sensitivity offered by gold nanoparticle-modified sensing substrates and electrochemical impedance spectroscopic (EIS) detection. Chapter V focuses on the application of isothermal nucleic acid amplification technology in simple lateral flow platform. The preparation of AuNP-based LFA for the highly sensitive direct detection of RPA amplified nucleic acid, the assembling of lateral flow step, the conjugation of AuNPs to the antibodies used for colorimetric detection, as well as the optimization of all working conditions and finally the analytical performance of the bioassay in LF will be explored. Moreover, aiming at truly achieving the point of care requirements of simple and affordable diagnostic technologies, the work here will present the possibility of amplifying nucleic acid without heat source and visual color detection. This approach would be of great potential as point of care diagnostics.
Baloda, Meenu. "Lateral Flow Nucleic Acid Biosensor for the Detection of Sexually Transmitted Diseases." Diss., North Dakota State University, 2015. https://hdl.handle.net/10365/27596.
Повний текст джерелаКниги з теми "Direct nucleic acid detection"
Kolpashchikov, Dmitry M., and Yulia V. Gerasimova, eds. Nucleic Acid Detection. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-535-4.
Повний текст джерелаAstakhova, Kira, and Syeda Atia Bukhari, eds. Nucleic Acid Detection and Structural Investigations. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0138-9.
Повний текст джерелаKolpashchikov, Dmitry M., and Yulia V. Gerasimova. Nucleic acid detection: Methods and protocols. New York: Humana Press, 2013.
Знайти повний текст джерелаUltrastructural methods for nucleic acid detection by immunocytology. Stuttgart: Gustav Fischer Verlag, 1999.
Знайти повний текст джерелаThiry, Marc. Ultrastructural methods for nucleic acid detection by immunocytology. Jena, Germany: Urban & Fischer, 1999.
Знайти повний текст джерелаLuo, Yunbo. Functional Nucleic Acid Based Biosensors for Food Safety Detection. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8219-1.
Повний текст джерелаD, Sobsey Mark, and AWWA Research Foundation, eds. Enteric virus detection in water by nucleic acid methods. Denver, CO: AWWA Research Foundation and American Water Works Association, 1996.
Знайти повний текст джерелаLi, Tang. Development of liposome-based nucleic acid analyses for rapid detection of listeria monocytogenes. Ithaca, NY: Cornell University, 2003.
Знайти повний текст джерелаL, Wiedbrauk Danny, and Farkas Daniel H, eds. Molecular methods for virus detection. San Diego: Academic Press, 1995.
Знайти повний текст джерелаSchillinger, Julia Ann. Detection of human papillomavirus by nucleic acid hybridization as an adjunct to the papanicolaou smear. [New Haven: s.n.], 1990.
Знайти повний текст джерелаЧастини книг з теми "Direct nucleic acid detection"
Xu, Yao, and Zhi Zheng. "Hybridization Chain Reaction for Direct mRNA Detection Without Nucleic Acid Purification." In Methods in Molecular Biology, 187–96. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7213-5_12.
Повний текст джерелаLehmann, Marc, and Roland P. H. Schmitz. "Nucleic Acid Amplification Techniques." In Modern Techniques for Pathogen Detection, 55–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527687978.ch3.
Повний текст джерелаMerril, Carl R., Karen M. Washart, and Robert C. Allen. "Ultrasensitive Silver Based Stains for Nucleic Acid Detection." In Nucleic Acid Electrophoresis, 152–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58924-9_5.
Повний текст джерелаDittmann, Elke, Anne Rantala-Ylinen, Vitor Ramos, Vitor Vasconcelos, Guntram Christiansen, and Rainer Kurmayer. "Nucleic Acid Extraction." In Molecular Tools for the Detection and Quantification of Toxigenic Cyanobacteria, 135–61. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119332169.ch5.
Повний текст джерелаWheeler, David. "Detection of DNA Curvature Using Transverse Pore Gradient Polyacrylamide Gel Electrophoresis." In Nucleic Acid Electrophoresis, 311–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58924-9_13.
Повний текст джерелаFried, Michael G., and Mark M. Garner. "The Electrophoretic Mobility Shift Assay (EMSA) for Detection and Analysis of Protein-DNA Interactions." In Nucleic Acid Electrophoresis, 239–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58924-9_10.
Повний текст джерелаSakallah, Sameer A., Robert W. Lanning, and David L. Cooper. "Rapid Detection of Hepatitis C Virus in Plasma and Liver Biopsies by Capillary Electrophoresis." In Nucleic Acid Electrophoresis, 193–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58924-9_8.
Повний текст джерелаXu, Wentao. "Lateral Flow Nucleic Acid Biosensors." In Functional Nucleic Acids Detection in Food Safety, 245–73. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1618-9_12.
Повний текст джерелаKarcher, Susan J. "Non-radioactive nucleic acid detection systems." In Plant Molecular Biology Manual, 309–33. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0511-8_21.
Повний текст джерелаXu, Wentao. "Nucleic Acid Biosensors for Food Safety." In Functional Nucleic Acids Detection in Food Safety, 275–322. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1618-9_13.
Повний текст джерелаТези доповідей конференцій з теми "Direct nucleic acid detection"
Shen, Chuanjie, Hao Yin, Zhaoduo Tong, Shihui Qiu, Yunxing Lu, Zhenhua Wu, and Hongju Mao. "Digital Microfluidic Chip Based on Direct Ink Writing For Nucleic Acid Multiplex PCR Detection." In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). IEEE, 2022. http://dx.doi.org/10.1109/mems51670.2022.9699738.
Повний текст джерелаUno, Takeshi, Toshihito Ohtake, Hitoshi Tabata, and Tomoji Kawai. "Direct DNA detection using ion-sensitive field effect transistors (IS-FETs) based on peptide nucleic acid." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.i-4-4.
Повний текст джерелаBratcher, Amber R., Laurie B. Connell, and Rosemary L. Smith. "Development of a direct detection method for Alexandrium spp. Using surface plasmon resonance and peptide nucleic acid probes." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398359.
Повний текст джерелаBogdanov, Valery L., Yu-Hui Rogers, Guang Lan, and Michael Boyce-Jacino. "Multicolor instrumentation for direct fluorescent detection of nucleic acids in a microchip format." In BiOS '98 International Biomedical Optics Symposium, edited by Gerald E. Cohn. SPIE, 1998. http://dx.doi.org/10.1117/12.307323.
Повний текст джерелаFan, Y., X. Chen, J. Kong, and Z. Gao. "Direct Detection of Nucleic Acids by Tagging Phosphates on Their Backbones with Conductive Nanoparticles." In TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2007. http://dx.doi.org/10.1109/sensor.2007.4300534.
Повний текст джерелаRitzi-Lehnert, Marion, Jan Claussen, Eva Schaeffer, Ole Wiborg, Isabell Wick, Klaus S. Drese, Ralf Himmelreich, et al. "New Lab-on-a-Chip System for Infectious Disease Analysis." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31048.
Повний текст джерела"DNA-nanomachines for nucleic acid detection." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-200.
Повний текст джерелаLin, Zhihong, Meng Wu, Shu Ren, Michaela Arbter, Martin Boehmer, Vladimir Mirsky, and Otto S. Wolfbeis. "Single- and dual- near-infrared fluorescent labeled nucleic acid conjugate for nucleic acid detection." In International Conference on Sensing units and Sensor Technology, edited by Yikai Zhou and Shunqing Xu. SPIE, 2001. http://dx.doi.org/10.1117/12.440165.
Повний текст джерелаLiu, Ye, Bo Wu, Sanjida Yeasmin, and Li-Jing Cheng. "Magnetoplasmonic Nanoparticles for Enhanced Nucleic Acid Detection." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.am3c.1.
Повний текст джерелаGulyaeva, Irina V., Ekaterina V. Efimtseva, Andrei A. Rodionov, Boris S. Ermolinsky, and Sergey N. Mikhailov. "Direct synthesis of 5'-nucleotides using glycosylation reaction." In XIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2002. http://dx.doi.org/10.1135/css200205312.
Повний текст джерелаЗвіти організацій з теми "Direct nucleic acid detection"
Castro, A., and E. B. Shera. Ultrasensitive nucleic acid sequence detection by single-molecule electrophoresis. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/374265.
Повний текст джерелаKingsley, Mark T. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/781863.
Повний текст джерелаKingsley, Mark T. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/965696.
Повний текст джерелаLers, Amnon, and Pamela J. Green. LX Senescence-Induced Ribonuclease in Tomato: Function and Regulation. United States Department of Agriculture, September 2003. http://dx.doi.org/10.32747/2003.7586455.bard.
Повний текст джерелаLers, Amnon, E. Lomaniec, S. Burd, A. Khalchitski, L. Canetti, and Pamela J. Green. Analysis of Senescence Inducible Ribonuclease in Tomato: Gene Regulation and Function. United States Department of Agriculture, February 2000. http://dx.doi.org/10.32747/2000.7570563.bard.
Повний текст джерелаFluhr, Robert, and Maor Bar-Peled. Novel Lectin Controls Wound-responses in Arabidopsis. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697123.bard.
Повний текст джерелаDelwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz, and Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, February 2001. http://dx.doi.org/10.32747/2001.7573998.bard.
Повний текст джерела