Добірка наукової літератури з теми "Direct field"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Direct field".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Direct field"

1

Peresada, S., S. Bozhko, S. Kovbasa, and Ye Nikonenko. "ROBUST DIRECT FIELD ORIENTED CONTROL OF INDUCTION GENERATOR." Tekhnichna Elektrodynamika 2021, no. 4 (June 17, 2021): 14–24. http://dx.doi.org/10.15407/techned2021.04.014.

Повний текст джерела
Анотація:
A novel and robust field oriented vector control method for standalone induction generators (IG) is presented. The proposed controller exploits the concept of direct field orientation and provides asymptotic rotor flux modulus and DC-link voltage regulations when a DC-load is constant or slowly varying. Flux subsystem, designed using Lyapunov’s second method, has, in contrast to standard structures, closed loop properties and therefore is robust with respect to rotor resistance variations. A decomposition approach on the base of the two-time scale separation of the voltage and torque current dynamics is used for design of the voltage subsystem. The feedback linearizing voltage controller is designed using a steady state IG power balance equation. The resulting quasi-linear dynamics of the voltage control loop allows use of simple controllers tuning procedure and provides an improved dynamic performance for variable speed and flux operation. Results of a comparative experimental study with standard indirect field oriented control are presented. In contrast to existing solutions, the designed controller provides system performances stabilization when speed and flux are varying. It is experimentally shown that a robust field oriented controller ensures robust flux regulation and robust stabilization of the torque current dynamics leading to improved energy efficiency of the electromechanical conversion process. The proposed controller is suitable for energy generation systems with variable speed operation. References 18, figures 8.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

PAN Sun-qiang, 潘孙强, 陈哲敏 CHEN Zhe-min, and 张建锋 ZHANG Jian-feng. "Direct measurement of sound field." Optics and Precision Engineering 23, no. 11 (2015): 3077–82. http://dx.doi.org/10.3788/ope.20152311.3077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tai, C. T. "Direct Integration of Field Equations." Progress In Electromagnetics Research 28 (2000): 339–59. http://dx.doi.org/10.2528/pier99101401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fan, H. f. "Direct methods outside traditional field." Acta Crystallographica Section A Foundations of Crystallography 43, a1 (August 12, 1987): C279. http://dx.doi.org/10.1107/s0108767387077997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Babakhani, Aydin, David B. Rutledge, and Ali Hajimiri. "Near-field direct antenna modulation." IEEE Microwave Magazine 10, no. 1 (February 2009): 36–46. http://dx.doi.org/10.1109/mmm.2008.930674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Borca, Bogdana, Tomasz Michnowicz, Rémi Pétuya, Marcel Pristl, Verena Schendel, Ivan Pentegov, Ulrike Kraft, et al. "Electric-Field-Driven Direct Desulfurization." ACS Nano 11, no. 5 (May 2017): 4703–9. http://dx.doi.org/10.1021/acsnano.7b00612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gratwick, R., and M. A. Sychev. "Direct Methods in Variational Field Theory." Siberian Mathematical Journal 63, no. 5 (September 2022): 862–67. http://dx.doi.org/10.1134/s0037446622050056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lindblad, Sven, and Karl‐Ola Lundberg. "The modulation direct field radius: Model." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1392. http://dx.doi.org/10.1121/1.426579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lundberg, Karl‐Ola, and Sven Lindblad. "The modulation direct field radius: Experiments." Journal of the Acoustical Society of America 105, no. 2 (February 1999): 1393. http://dx.doi.org/10.1121/1.426584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ávila, Francisco, María Victoria Collados, Jorge Ares, and Laura Remón. "Wide-field direct ocular straylight meter." Optics Express 28, no. 8 (April 1, 2020): 11237. http://dx.doi.org/10.1364/oe.387940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Direct field"

1

Bai, Kun. "Direct field-feedback control for permanent magnet spherical motors." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50141.

Повний текст джерела
Анотація:
There are emerging requirements for high accuracy multi-DOF actuators in numerous applications. As one of the novel motors capable of multi-DOF manipulation, permanent magnet spherical motors (PMSMs) that can provide continuous and dexterous motion in one joint have been widely studied for their advantages in structure and energy efficiency. The demands to bring forward the performance of PMSMs for precision applications have motivated this thesis to develop a closed-loop orientation control system with high accuracy and bandwidth. Unlike traditional control methods for PMSMs, which rely on explicit orientation feedback, a new control method (referred to here as direct field-feedback control or in short DFC) directly utilizing the magnetic fields for feedback have been developed in this thesis. Because magnetic field measurements are almost instantaneous and the need for real-time orientation estimation is eliminated in DFC, the system sampling time is greatly reduced. Meanwhile, several field-based methods have been developed for the major components in the DFC system and each component can be processed independently and concurrently with the magnetic field measurements. The parallel computation further improves the system bandwidth and also reduces accumulated error. The DFC system has been experimentally implemented and evaluated. The results show excellent control performances in terms of accuracy and bandwidth. To facilitate the design and analysis of the DFC system, several new algorithms have been developed, which include the modeling and computing of magnetic fields as well as forces and torques, an analysis of bijective relationship between orientation and magnetic fields, and a method for calibration and reconstruction of the rotor magnetic field in 3 dimensional space. These algorithms not only enable the implementation of the DFC system for a PMSM, but also benefit the PMSM studies in design, modeling and field-based sensing. While the immediate outcome of this research is a control system for PMSMs, this new control method can be applied to a broad spectrum of electromagnetic motion systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andrikopoulos, Pavlos. "Direct electric field visualization in semiconductor planar structures." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion.exe/06Dec%5FAndrikopoulos.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Applied Physics and M.S. in Systems Engineering)--Naval Postgraduate School, December 2006.
Thesis Advisor(s): Nancy M. Haegel, David Jenn. "December 2006." Includes bibliographical references (p. 125). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Källström, Petter. "Direct Digital Frequency Synthesis in Field-Programmable Gate Arrays." Thesis, Linköping University, Department of Electrical Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56550.

Повний текст джерела
Анотація:

This thesis is about creation of a Matlab program that suggests and automatically generates a Phase to Sine Amplitude Converter (PSAC) in the hardware language VHDL, suitable for Direct Digital Frequency Synthesis (DDFS). Main hardware target is Field Programmable Gate Arrays (FPGAs).

Focus in this report is how an FPGA works, different methods for sine amplitude generation and their signal qualities vs the hardware resources they use.


Detta exjobb handlar om att skapa ett Matlab-program som föreslår och implementerar en sinusgenerator i hårdvaruspråket VHDL, avsedd för digital frekvenssyntes (DDFS). Ämnad hårdvara för implementeringen är en fältprogrammerbar grindmatris (FPGA).

Fokus i denna rapport ligger på hur en FPGA är uppbyggd, olika metoder för sinusgenerering och vilka kvaliteter på sinusvågen de ger och vilka resurser i hårdvaran de använder.

Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mahaffey, Joshua Vincent. "A Direct Approach at Field Computation Using the FMM Framework." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1330913863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sitapati, Kartik. "Mixed-Field Finite-Element Computations." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11195.

Повний текст джерела
Анотація:
A new method called the Direct Method is developed to solve for the propagating modes in waveguides via the finite-element method. The variational form of the Direct method is derived to ensure that an extremum is reached. The Direct method uses Maxwell's equations directly, both zero and first-order, scalar and vector bases that are used in the finite-element formulation. The direct solution method solves for both the magnetic and electric fields simultaneously. Comparisons are made with the traditionally used vector-Helmholtz equation set. The advantages and disadvantages of the newly developed method is described as well as several results displayed using the WR-90 waveguide and a circular waveguide as test waveguides. Results include a partially filled dielectric loaded rectangular waveguide. The effects of including the divergence of the fields in the functional as penalty terms on the quality of results obtained by the Direct method and the vector-Helmholtz method is explored. The quality of results is gauged on the accuracy of the computed modes as well as the elimination or a significant reduction in the number of 'spurious modes' that are often encountered in solutions to waveguide problems. It is shown that computational time for the solution and computer storage requirements exceed the typically used Helmholtz equation method but the results obtained can be more accurate. Future work may include developing a sparse eigenvalue solution method that could reduce the solution time and storage requirements significantly. The Direct method of solution in dynamics resulted after an initial search in magnetostatics for methods to solve for the magnetic field without using the magnetic-vector potential using finite-element methods. A variational derivation that includes the boundary conditions is developed for the magnetic-vector potential method. Several techniques that were used to attempt accurate solutions for the magnetostatic fields with multiple materials and without the use of the magnetic-vector potential are described. It was found that some of the newly developed general techniques for magnetostatics are only accurate when homogeneous media are present. A method using two curl equations is developed which is a Direct method in magnetostatics and reveals the interaction between the bases used. The transition from magnetostatics to dynamics is made and similar Direct methods are applied to the waveguide problem using different bases.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vedula, Prakash. "Study of scalar transport in turbulent flows using direct numerical simulations." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shih, Chun Yu. "Direct numerical simulation of charged colloids in an oscillating electric field." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/200506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jing, Hengzhen. "Direct antenna modulations for UWB pulse transmission and near field communications." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1835265221&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Varjo, S. (Sami). "A direct microlens array imaging system for microscopy." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526213828.

Повний текст джерела
Анотація:
Abstract This work presents the development of a new optical imaging system. Previous objections have claimed that it is easier to build a single good quality field lens than a large number of good microlenses and it is therefore better to use a field objective. The possible benefits from a field lens are here traded for a more compact and cost-efficient design that would be suitable for field diagnostics. The new imaging setup described in this work is based on a microlens array capable of capturing light field data and no other refractive optics are used. Hundreds of lenses with a diameter range 100 to 200 µm are used to capture small elementary images containing a small part of the sample. The design uses a single light source aperture enabling signal separation between the elementary images from the neighboring lenses. Prior art uses, for example, physical structures behind lenses for signal separation, making the suggested approach less complex. Further, the possibility for using printed microlens arrays for imaging instead of expensive glass lenses is studied. The captured light field data consisting of elementary images must be rendered for human viewing. A new method is developed where the rendering is based on gathering the resulting pixel values on a plane set freely in object space, enabling single pass rendering with possibilities to apply statistics to the contributing data improving the rendering quality. Commonly used projection or mosaicing based integration approaches do not allow this. The developed system has its resolution limited by the camera sensor pixel size and objects a few micrometers in size can be resolved. The results show that the imaging setup can be used to capture semi-microscopic images without expensive magnifying optics and it is useful in selected applications. For example, it is shown that the eggs of parasites causing Schistosomiasis can be detected automatically in a microscope sample. It is estimated that the system could be mass produced at low cost. The new system has no moving parts making it less susceptible to mechanical failures and it is compact in comparison with conventional microscopes. It could be a part of a point of care solution needed in diagnostic fieldwork
Tiivistelmä Tässä väitöskirjassa kuvataan ja tarkastellaan uutta mikrolinsseihin perustuvaa mikroskooppista kuvantamismenetelmää. Aiemmin mikrolinssejä on käytetty tavanomaisten mikroskooppien ominaisuuksien laajentamiseen. Tässä työssä perinteiset mikroskooppiobjektit korvataan linssimatolla, kompaktin ja kustannustehokkaan rakenteen saavuttamiseksi. Käyttökohteena laitteelle on kenttädiagnostiikka. Uusi kuvausjärjestelmä perustuu mikrolinssimattoihin, joilla pystytään näytteistämään valokenttää. Muuta taittavaa optiikka ei käytetä. Sadat halkaisijaltaan 100-200 µm olevat linssit kuvaavat kukin pienen osan näytteestä. Linssien välisten signaalien sekoittumisen estämiseen käytetään hyvin kontrolloitua valonlähdettä. Aiemmin esitetyissä ratkaisuissa käytetään esimerkiksi fyysisiä rakenteita yksittäisten linssien takana. Nyt esitetty ratkaisu on yksinkertaisempi. Työssä esitetään uusi menetelmä osakuvista muodostuvan datan rekonstruktioon. Tuloskuvien muodostamiseksi pikselien arvot kerätään rekonstruktiopinnalle, joka on sijoitettu vapaasti esineavaruuteen. Tämä mahdollistaa laskennallisesti tehokkaan tuloskuvan muodostuksen, sekä tilastollisten menetelmien käytön tuloksen laadun parantamiseen. Kehitetyn järjestelmän resoluutiota rajoittaa kameran pikselikoko ja sillä voidaan havaita muutaman mikrometrin kokoisia kohteita. Tulokset osoittavat, että kuvausmenetelmä sopii mikroskooppisten kohteiden kuvaamiseen ilman kalliita suurentavia linssejä. Menetelmän käyttökelpoisuutta havainnollistetaan, muun muassa, automaattisella Schistosoma parasiitin munien tunnistuksella virtsanäytteestä. Uusi kuvausjärjestelmä on mahdollista toteuttaa edullisesti, siinä ei ole liikkuva osia ja se on pieni verrattuna tavanomaiseen mikroskooppiin. Esitetty ratkaisu soveltuu yhdeksi vaihtoehdoksi kenttädiagnostiikan tarpeisiin
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wu, Guangyu 1972. "Direct simulation and deterministic prediction of large-scale nonlinear ocean wave-field." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/33450.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2004.
Includes bibliographical references (p. 251-258).
Despite its coarse approximation of physics, the phase-averaged wave spectrum model has been the only type of tool available for ocean wave prediction in the past 60 years. With the rapid advances in sensing technology, phase-resolved nonlinear wave modeling, and high performance computing capability in recent years, the time has come to start developing a new generation tool for ocean wave prediction using direct phase-resolved simulations. The key issues in developing such a tool are: (i) proper specification of initial/boundary conditions of the nonlinear ocean wave-field; (ii) development of efficient algorithm for simulation of large-scale wave-field evolution on high performance computing platforms; (iii) modeling of nonlinear physics in ocean wave evolution such as wave-wave, wave-current, wave-bottom and wave-wind interactions. The objective of this thesis is to address (i), (ii) and part of (iii). For (i), a multi-level iterative wave reconstruction tool is developed to deter- ministically reconstruct a nonlinear ocean wave-field based on single or multiple wave probe records, using both analytic low-order Stokes solutions and High-Order-Spectral (HOS) nonlinear wave model.
(cont.) With the reconstructed wave-field as the initial conditions, the ocean wave-field can then be simulated and forecasted into the future deterministically with the physics-based phase-resolved wave model. A theoretical framework is developed to provide the validity of the reconstructed wave-field and the predictability of future evolution of the reconstructed wave-field for given wave conditions. The effects of moving probe, ambient current and finite water depth on the predictable region are studied respectively. To demonstrate its efficacy and useful- ness, the wave reconstruction tool is applied to reconstruct the full kinematics of steep two- and three-dimensional irregular waves using both wave-basin measurements and synthetic data. Excellent agreements between the reconstructed nonlinear wave-field and the original specified wave data are obtained. In particular, it is shown that the inclusion of high-order effects in wave reconstruction is of significance, especially for the prediction of the wave kinematics such as velocity and acceleration. For (ii), a highly scalable HOS wave model is developed and applied to study both two- and three-dimensional ocean wave-field evolution for a realistic space and time scale.
(cont.) Effective filtering tools are developed to model the wave breaking process in wave evolution. For (iii), the HOS wave model is enhanced to account for not only nonlinear wave-wave interactions, but also nonlinear wave interaction with variable ambient current. With this tool, the effects of variable ambient current on nonlinear wave-field evolution are investigated. As a final illustration, this tool is applied in practical ship motion control. Based on the deterministically forecasted wave-field provided by this tool, an optimal path is obtained to reduce the RMS heave motion of ship in point-to-point transit.
by Guangyu Wu.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Direct field"

1

P, Nikolelis Dimitrios, ed. Biosensors for direct monitoring of environmental pollutants in field. Dordrecht: Kluwer Academic Publishers, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nikolelis, Dimitrios P., Ulrich J. Krull, Joseph Wang, and Marco Mascini, eds. Biosensors for Direct Monitoring of Environmental Pollutants in Field. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8973-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sharifi, Masoud. Magnetic field modelling of a Direct Current Electric ARC Furnace. Ottawa: National Library of Canada, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

The structure and organization of EU law in the field of direct taxes. Amsterdam: IBFD, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Johnson, Eric Gunnar. Direct measurement of the electric field of a laser pulse--theory. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Milne, George R. Consumer participation in mailing lists: A field experiment. Cambridge, Mass: Marketing Science Institute, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Olken, Benjamin A. Direct democracy and local public goods: Evidence from a field experiment in Indonesia. Cambridge, MA: National Bureau of Economic Research, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Williams, Alison. The handbook of field marketing: A complete guide to understanding and outsourcing face-to-face direct marketing. London: Kogan Page, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Appleby, Terry. A consensus of the comparative costs and returns of a 1920 acre direct seeding & conventional seeding operation in the Falher region. [Alberta]: Alberta Agriculture, Food, and Rural Development, Economic Services Division, Production Economics Branch, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pyrhönen, Olli. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives. Lappeenranta, Finland: Lappeenranta University of Technology, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Direct field"

1

Bai, Kun, and Kok-Meng Lee. "Direct Field-Feedback Control." In Permanent Magnet Spherical Motors, 125–50. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7962-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lupi, Sergio, Michele Forzan, and Aleksandr Aliferov. "Electromagnetic Field in Cylindrical Bodies." In Induction and Direct Resistance Heating, 85–125. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03479-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Basdevant, Jean-Louis, and Jean Dalibard. "Direct Observation of Field Quantization." In The Quantum Mechanics Solver, 119–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13724-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Basdevant, Jean-Louis, and Jean Dalibard. "Direct Observation of Field Quantization." In Advanced Texts in Physics, 39–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04277-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eargle, John M. "Amplifier Requirements: Direct Field Considerations." In Electroacoustical Reference Data, 244–45. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2027-6_118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lupi, Sergio, Michele Forzan, and Aleksandr Aliferov. "Electromagnetic Field in Workpieces with Flat Surfaces." In Induction and Direct Resistance Heating, 23–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03479-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Skládal, P., J. Horáček, and M. Malina. "Direct Piezoelectric Immunosensors for Pesticides." In Biosensors for Direct Monitoring of Environmental Pollutants in Field, 145–53. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-8973-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kubler, Cornelius C. "Study abroad via direct enrollment." In The Field of Chinese Language Education in the U.S., 182–93. New York : Routledge, 2018. | “First published 2018 by Routledge … Abingdon, Oxon … and by Routledge … New York …”: Routledge, 2018. http://dx.doi.org/10.4324/9781315144665-15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Raychaudhuri, Amal Kumar. "Direct Calculation of Field in Some Cases." In Classical Theory of Electricity and Magnetism, 7–16. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8139-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Waghmare, Kakasaheb D., and K. K. Tripathi. "Review on Field Direct Shear Test Methodologies." In Recent Trends in Construction Technology and Management, 665–72. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2145-2_51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Direct field"

1

Larkin, Paul A., and Mike Whalen. "Direct, Near Field Acoustic Testing." In World Aviation Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-5553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Walczak, Andrzej, Edward Nowinowski-Kruszelnicki, and Aleksander Kiezun. "Director field in a liquid crystal: direct measurement method." In Liquid Crystals, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski, and Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.300000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hoshino, M. "Direct Particle Acceleration in Astroplasmas." In SCIENCE OF SUPERSTRONG FIELD INTERACTIONS: Seventh International Symposium of the Graduate University for Advanced Studies on Science of Superstrong Field Interactions. AIP, 2002. http://dx.doi.org/10.1063/1.1514282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Walker-Loud, Andre. "Direct lattice calculation of m_d - m_u." In The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lou, Shyhliang A., Edward A. Sickles, H. K. Huang, Fei Cao, David R. Hoogstrate, and Mohammad I. Jahangiri. "Full-field direct digital telemammography: preliminary." In Medical Imaging 1997, edited by Steven C. Horii and G. James Blaine. SPIE, 1997. http://dx.doi.org/10.1117/12.274593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lachapelle, Amélie, Kazuto Otani, Sylvain Fourmaux, Stéphane Payeur, Steve Maclean, Michel Piché, and Jean-Claude Kieffer. "Direct Laser Field Electron Acceleration in Relativistic Regime." In High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm6b.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheshmi, Kazem, Guanzheng Xu, Saman A. Zonouz, and Maryam Mehri Dehnavi. "Axb: A compiler for sparse direct solvers." In 2016 IEEE Conference on Electromagnetic Field Computation (CEFC). IEEE, 2016. http://dx.doi.org/10.1109/cefc.2016.7816364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Iliopoulos, Athanasios, and John G. Michopoulos. "Direct Strain Imaging for Full Field Measurements." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71109.

Повний текст джерела
Анотація:
Full field strain measurement techniques are based on computing the spatial derivatives of the approximation or interpolation of the underlying displacement fields extracted from digital imaging methods. These methods implicitly assume that the medium satisfies the compatibility conditions, which for any practical reason is only true in the case of a continuum body that remains continuum throughout the history of its mechanical loading. In the present work we introduce a method that can be used to calculate the strain components directly from typical digital imaging data, without the need of the continuum hypothesis and the need for displacement field differentiation. Thus it allows the imaging and measurement of strain fields from surfaces with discontinuities (i.e. small cracks). Numerical comparisons are performed based on synthetic data produced from an analytical solution for an open hole domain in tension. Mean absolute error distributions are calculated for the cases of both the traditional mesh free random grid method and the direct strain method introduced in the paper are given. It is established that the more refined representation of strain provided by this approach is more accurate everywhere in the domain, but most importantly, near the boundaries of the representation domain, where the error is higher for traditional methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hong Young Jeon, Lei Tian, Tony Grift, Loren Bode, and Aaron Hager. "Plant Specific Direct Chemical Application Field Robot." In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.26937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Huang, Xuri, and Mohan Kelkar. "Direct porosity inversion using field statistical correlation." In SEG Technical Program Expanded Abstracts 1996. Society of Exploration Geophysicists, 1996. http://dx.doi.org/10.1190/1.1826261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Direct field"

1

Sickles, Edward A. Real-Time Full-Field Direct Telemammography. Fort Belvoir, VA: Defense Technical Information Center, October 1997. http://dx.doi.org/10.21236/ada335973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sickles, Edward A. Real-Time Full-Field Direct Telemammography. Fort Belvoir, VA: Defense Technical Information Center, October 1998. http://dx.doi.org/10.21236/ada359271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sickles, Edward A. Real-Time Full Field Direct Digital Telemammography. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada394009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sickles, Edward A. Real-Time Full-Field Direct Digital Telemammography. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada383353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gurau, Bogdan. Improved Flow-Field Structures for Direct Methanol Fuel Cells. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1114198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tominaka, T. Analytical Field Calculation of the Direct Wind Helical Dipole. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/1149831.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada613064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation Of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yue, Dick K., and Yuming Liu. Direct Phase-Resolved Simulation of Large-Scale Nonlinear Ocean Wave-Field. Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada513669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії