Добірка наукової літератури з теми "Dioxyde de carbone – Absorption"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dioxyde de carbone – Absorption".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dioxyde de carbone – Absorption"
Testud, F. "Dioxyde de carbone." EMC - Pathologie professionnelle et de l 'environnement 5, no. 2 (January 2010): 1–5. http://dx.doi.org/10.1016/s1155-1925(10)71870-x.
Повний текст джерелаPhoummixay, S., Biswadip Basu Mallik, T. Khampasith, V. Somchay, K. Phouphavanh, P. Sengkeo, and S. Sivakone. "The Assessment of Carbon Dioxide (CO2) Adsorption and Spatial Biomass Distribution Mapping in the Reservoir of Hinboun Hydropower Project." Journal of Mathematical Sciences & Computational Mathematics 3, no. 1 (October 4, 2021): 127–33. http://dx.doi.org/10.15864/jmscm.3110.
Повний текст джерелаPrud’homme, Rémy. "Dioxyde de carbone : raison garder." Commentaire Numéro125, no. 1 (2009): 133. http://dx.doi.org/10.3917/comm.125.0133.
Повний текст джерелаSoubeyran, Aurélien, Ahmed Rouabhi, and Christophe Coquelet. "Étude du comportement thermodynamique du CO2 en stockage en cavité saline." Revue Française de Géotechnique, no. 179 (2024): 1. http://dx.doi.org/10.1051/geotech/2024002.
Повний текст джерелаSène, Matar, Maurice Ndeye, and Alpha Oumar Diallo. "Le carbone 14 (14C) un traceur idéal pour la surveillance de la pollution atmosphérique en dioxyde de carbone (CO2) anthropogénique dans la zone de dakar." Journal de Physique de la SOAPHYS 2, no. 2 (May 12, 2021): C20A18–1—C20A18–8. http://dx.doi.org/10.46411/jpsoaphys.2020.02.18.
Повний текст джерелаMastrodicasa, A., A. Cuenoud, M. Pasquier, and P. N. Carron. "Intoxication aiguë au dioxyde de carbone." Annales françaises de médecine d’urgence 8, no. 5 (September 17, 2018): 326–31. http://dx.doi.org/10.3166/afmu-2018-0082.
Повний текст джерелаConstant, P., L. Poissant, and R. Villemur. "Impact de la variation du niveau d'eau d'un marais du lac Saint-Pierre (Québec, Canada) sur les concentrations et les flux d'hydrogène, monoxyde de carbone, méthane et dioxyde de carbone." Revue des sciences de l'eau 18, no. 4 (April 12, 2005): 521–39. http://dx.doi.org/10.7202/705571ar.
Повний текст джерелаPongas, D. "Angioplastie artérielle périphérique au dioxyde de carbone." Journal des Maladies Vasculaires 41, no. 2 (March 2016): 119. http://dx.doi.org/10.1016/j.jmv.2015.12.091.
Повний текст джерелаDelattre, L. "Applications pharmaceutiques du dioxyde de carbone supercritique." Annales Pharmaceutiques Françaises 65, no. 1 (January 2007): 58–67. http://dx.doi.org/10.1016/s0003-4509(07)90017-6.
Повний текст джерелаRaymond, Hugues-Louis. "Premier inventaire quantitatif des <em>Tabanidae (Diptera)</em> du Nord de la Guyane française." Revue d’élevage et de médecine vétérinaire des pays tropicaux 40, no. 1 (January 1, 1987): 71–75. http://dx.doi.org/10.19182/remvt.8704.
Повний текст джерелаДисертації з теми "Dioxyde de carbone – Absorption"
Almantariotis, Dimitrios. "Captage du dioxyde de carbone par des liquides ioniques partiellement fluorés." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00671346.
Повний текст джерелаBenizri, David. "Epuration du biogaz à la ferme : EPUROGAS, une solution énergétique et économique d'avenir. Etude expérimentale et modélisation d'un procédé d'absorption de dioxyde de carbone avec de l'eau sous pression à une échelle industrielle." Thesis, Toulouse, INSA, 2016. http://www.theses.fr/2016ISAT0024/document.
Повний текст джерелаBiogas upgrading is a key technology for the renewable energy mix of tomorrow. Biogas is a mix of Carbon Dioxide (40%) and Methane (55%). It is obtained thanks to the anaerobic digestion of organic matter. The adapted High Pressure Water Scrubbing process was studied in this thesis. The process was installed in farm and operated at a real scale for upgrading biogas flows up to 40 Nm3/h. It is called EPUROGAS. Two main research axes were obtained with a preliminary study on a prototype: biogas leaks were detected at the water outlet and stripping water with air allowed both CH4 and CO2 production. Works have led through innovation with two patents: an enlarged column bottom and a static mixer to enhance CO2 desorption from water. During this work, experimental results were collected during operation and statistically studied. Thanks to theoretical studies, two predictive models were built to predict CO2 absorption efficiency and CH4 rate recover. Moreover, two complementary processes were studied. SATUROMETRIX is a laboratory apparatus that aims to characterize gas/liquid equilibrium under pressure for mixed gases and a complex liquid phase. PSA system is an adsorption process for biogas upgrading operating with biogas or half upgraded biogas. It leads to Compressed Natural Gas at 200 bars. Finally, EPUROGAS and PSA were coupled in order to conduct their energetic study and their Life Cycle Analysis
Knöfel, Christina. "Synthesis, characterisation and evaluation of porous materials for the adsorption of carbon dioxide." Aix-Marseille 1, 2009. http://www.theses.fr/2009AIX11005.
Повний текст джерелаDans ce travail, des oxydes mesoporeux, tels que silice, oxyde de titane et oxyde de zircone ont été synthétisés en utilisant un copolymère à triblock comme agent structurant. De plus, la silice et l’oxyde de titane ont été fonctionnalisés avec différentes molécules d'aminosilane. La caractérisation des matériaux préparés a été effectuée par diverses méthodes, telles que la sorption d'azote, la spectroscopie infrarouge (ATR) et la diffraction des rayons X. Les matériaux ont été examinés pour leurs propriétés d'adsorption du dioxyde de carbone utilisant principalement la microcalorimétrie. Dans certains cas, des mesures de spectroscopie IR in-situ et des calculs théoriques de DFT ont été effectués pour mieux comprendre les résultats obtenus par microcalorimétrie d’adsorption. En ce qui concerne les différentes propriétés d'adsorption nous avons mis en évidence que la functionalisation des emplacements d'amine sur les matériaux de silice a amélioré de manière significative les capacités d'adsorption. Une comparaison des différents oxydes a confirmé que les propriétés d'adsorption dépendent principalement de la force du lien du métal-oxygène dans les oxydes mais également des caractéristiques de texture, telles que la porosité
Stevanovic, Stéphane. "Absorption sélective de gaz par des liquides ioniques basés sur des anions carboxylates ou des anions tris (pentafluoroethyl) trifluorophosphates." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00822155.
Повний текст джерелаAouini, Ismaël. "Captage du dioxyde de carbone en postcombustion : Application à un incinérateur de déchets industriels : Etude expérimentale à l’échelle pilote." Thesis, Rouen, INSA, 2012. http://www.theses.fr/2012ISAM0004.
Повний текст джерелаThis research is part of a survey designed to establish the viability of the CO2 recovery as a raw material from an industrial waste incinerator.. Several commercial licenses are available to capture CO2 in flue gas, but there are no references for incinerators. This work studies with a pilot the post-combustion CO2 capture from incinerator flue gas using absorption/desorption process with 30 %wt monoethanolamine (MEA). A literature review identifies the technology gaps. Then, the pilot setup was described. A parametric study has evaluated the pilot performance for CO2 capture and energy consumption. Finally, Long runs (5 days) have studied the solvent chemical stability in front of incinerator flue gas. The laboratory experiments show that CO2 capture form incinerator flue gas is possible
Detallante, Virginie. "Influence de l'humidité sur les propriétés de transport de gaz d'une membrane de polyimide sulfone naphthalénique." Rouen, 2002. http://www.theses.fr/2002ROUES016.
Повний текст джерелаAït-Ameur, Nadira. "Contribution à la quantification du CO2 anthropique en mer Méditerranée et en mer de Ross." Perpignan, 2007. http://www.theses.fr/2007PERP0777.
Повний текст джерелаIn order to improve our understanding of the role of the ocean in the uptake of excess CO2, we estimate the anthropogenic CO2 concentrations in the Ross Sea and in the Mediterranean Sea. In the Ross Sea the different water masses are invaded by anthropogenic CO2 with a mean concentration of 28 ± 2 µmol/kg in the shelf waters (500-800m) and 7 ± 2 µmol/kg in the deep waters (1500-1800m). Since the beginning of the industrialisation the waters stored 8. 57 10-4 ± 3 10-4 GtC/year which represent approximately 4% of the Austral ocean uptake. The shelf water circulation on the shelf break provides approximately 38% the anthropogenic CO2 to the deep water contributing to its long term storage. In the Western Mediterranean Sea, the intermediate (400-800m) and deep waters (2000m) are characterized by high anthropogenic carbon concentrations with a mean of 64. 4 ± 4 µmol/kg in the intermediate waters and 72. 6 ± 5 µmol/kg in the deep waters. The modification of the circulation that affected the eastern basin (EMT, Eastern Mediterranean Transient) seems to affect also the anthropogenic CO2 storage in the western basin leading to a decrease of 8 µmol/kg in the intermediate water over the last decade. In the gulf of Lion the distribution of fCO2 and the air-sea CO2 exchange are influenced by riverine (Rhone) input. During our investigation this area appears to be a slight source of CO2 for the atmosphere with a mean net flux of +17. 7 mmol/m2/day. In the Mediterranean Sea as in the Ross Sea, the formation of deep water and water circulation are the main processes involved in sequestration of anthropogenic CO2: the Ross Sea shelf water spreading to the deep ocean and the Mediterranean water residence time with its exchange with the Atlantic Ocean. The anthropogenic CO2 exported from the Mediterranean Sea to the Atlantic Ocean represents up to 4. 8% (0. 03 to 0. 06 GtC/year) of the total CO2 exported. The Mediterranean Sea is thus a significant source of anthropogenic CO2 to the Atlantic Ocean. It seems to be a concentration basin where, as a consequence of their long residence time, the deep waters are enriched in anthropogenic CO2
Jay, Sophie. "Etude expérimentale de la solubilté du soufre dans le gaz naturel." Pau, 2009. http://www.theses.fr/2009PAUU3024.
Повний текст джерелаFor several years occurrence of sulphur deposits in natural gas transmission facilities is observed. Mainly located downstream of a pressure reduction facility, these deposits lead to many security problems and represent a significant additional financial cost for the operator. The literature review on this topic has shown a total lack of experimental data of sulphur solubility in natural gas under conditions of temperature and pressure of transport of natural gas. So, an experimental apparatus has been developed. The operating procedure is divided into three steps. The first step is to saturate a gas in sulphur. The second step is the trapping of sulphur in vapour phase contained in the saturated gas stream by reactive absorption after a flash. The final step is the analysis of the trapping solution by Gas Chromatography for trapped sulphur quantification. Once the operating procedure validated, the solubility of sulphur in carbon dioxide has been studied between 100 and 400 bar for two temperatures (363. 15 K and 333. 15 K). These experimental data allowed optimizing the CO2/S8 binary interaction coefficient of a thermodynamic model of sulphur deposition in natural gas developed in the LaTEP
Vasilchenko, Semen. "Development of an ultrasensitive cavity ring down spectrometer in the 2.10-2.35 µm region : application to water vapor and carbon dioxide." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY037/document.
Повний текст джерелаA cavity ring down spectrometer has been developed in the 2.00-2.35 µm spectral range to achieve highly sensitive absorption spectroscopy of molecules of atmospheric and planetologic interest and at high spectral resolution. This spectral region corresponds to a transparency window for water vapor and carbon dioxide. Atmospheric windows, where absorption is weak, are used to sound the Earth’s and Venus’ atmospheres where water vapor and carbon dioxide represent the main gaseous absorbers in the infrared, respectively.The CRDS technique consists of injecting photons inside a high finesse optical cavity and measuring the photon’s life time of this cavity. This life-time depends on the mirror reflectivity and on the intra-cavity losses due to the absorbing gas in the cavity. Measuring these losses versus the wavelength allow obtaining the absorption spectrum of the gas. The extreme reflectivity of the mirrors allows reaching, for a 1-meter long cavity, a sensitivity equivalent to the one obtained classically with absorption cells of several thousands of kilometers.Three DFB laser diodes emitting around 2.35, 2.26, 2.21 µm were used with this spectrometer giving access to the 4249-4257, 4422-4442 and 4516-4534 cm-1 interval, respectively. Thanks to optical feedback from an external cavity, two of these diodes were spectrally narrowed leading to a better injection of the high finesse cavity thus reducing the noise level of the spectrometer. In parallel, we tested a VECSEL (Vertical-external-Cavity, Surface Emitting laser) through a collaboration with the Institu d’Electronique (IES, UMR 5214) in Montpellier and the Innoptics firm. This laser source is able to cover a 80 cm-1 spectral range centered at 4340 cm-1, equivalent to four DFB laser diodes. In routine the achieved sensitivity with this spectrometer, corresponding to the minimum detectable coefficient is typically of 1×10-10 cm-1. The introductive chapter (Chapter 1) makes the point on the different techniques allowing absorption spectra recordings in the studied spectral region and on their sensitivity. The experimental set-up, the characteristics and performances by the CRD spectrometer developed in this work are detailed in Chapter 2. To our knowledge this instrument is the most sensitive in the considered spectral region.In Chapter 3, detection of quadrupolar electric transitions of HD and N2 illustrate the level of sensitivity reached: (i) the S(3) transition in the 1-0 band of HD has been recorded for the first time and its intensity measured (S=2.5×10-27 cm/molecule), (ii) the position and intensity of the highly forbidden O(14) quadrupolar electric transition of the 2-0 band of N2 have also been newly determined.The two last chapters are devoted to the characterization of the CO2 absorption, in the centre of the transparency window, and of the water vapor absorption. In both cases, we not only studied the allowed transitions of the monomer, but also the continuum absorption. This latter correspond to a weak background absorption varying slowly with the wave length. The self-continuum cross-sections of the water vapor continuum were measured in many spectral points through the transparency window with a much better accuracy compared to existing measurements. These CRDS data constitute a valuable data set to validate the reference model (MT_CKD) for the continuum which is implemented in most of the atmospheric radiative transfer codes
Cheng, Hao. "Etude d'absorption chimique du dioxyde de carbone : transfert de masse en écoulement diphasique dans un minicanal et conception d'un nouvel absorbeur multicanaux." Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU4030.
Повний текст джерелаMicro/minichannel devices show great interests for their potential in efficient CO2 chemical absorption in the context of the carbon capture. This PhD these aims to characterize and investigate the transport mechanisms involved in chemical reactionaccompanied two-phase mass transfer in minichannel, and to design and develop novel miniaturized CO2 absorbers featuring intensified structures and optimized absorption performances. Firstly, bubble dynamics within a T-junction straight minichannel were optically observed, showing that the chemical reaction tends to suppress bubble breakup while promoting its shrinkage. Then, the velocity field and CO2 concentration field in the liquid slug were determined using PTV and pH-sensitive colorimetry, respectively, permitting the development of a modified unit-cell mass transfer model that incorporates the effects of flow recirculation and chemical reaction. Further enhancement was achieved by embedding a spiral distributed baffle structure into the minichannel, leading to a significant increase in mass transfer coefficient with only a minor rise in pressure drop. Finally, building on this intensification measure, a novel design for an integrated multichannel CO2 absorber was proposed, featuring paralleling units of conjugated double-helix cross minichannels (Codohec). A lab-scale module of this design was realized, and its absorption performance was comprehensively evaluated, highlighting various advantages including a high mass transfer coefficient, acceptable energy consumption, high remove rate, and large CO2 treatment capacity. These findings may provide new insights into the underlying transport mechanisms of chemical reaction-accompanied gas-liquid mass transfer and contribute to the design and optimization of highly efficient miniaturized CO2 absorbers for industry applications
Книги з теми "Dioxyde de carbone – Absorption"
Abbasi, Saeed Ahmed. Flow distribution and carbon dioxide absorption in packed beds. Salford: University of Salford, 1988.
Знайти повний текст джерелаSchellhorn, Martin. Transientes Absorptionsverhalten von Metallen in der Startphase des Laserschweissprozesses. Koln: DFVLR, 1987.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Optical properties of CO ice and CO snow in the ultraviolet, visible, and infrared: Final report on NASA grant NAGW-1734. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаWarren, Stephen G. Optical properties of CO ́ice and CO ́snow in the ultraviolet, visible, and infrared: Final report on NASA grant NAGW-1734. [Washington, DC: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаEdwards, John C. Mathematical model of absorption of carbon dioxide by rescue breathing apparatus scrubber. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1987.
Знайти повний текст джерелаSymposium: Carbon Dioxide and Vegetation: Advanced International Approaches for Absorption of CO₂ and Responses to CO₂ (1999 Tsukuba Kenkyū Gakuen Toshi, Japan). Carbon Dioxide and Vegetation: Advanced International Approaches for Absorption of CO₂ and Responses to CO₂: The 13th Global Environment Tsukuba. [Tsukuba, Japan]: Center for Global Environmental Research, National Institute for Environmental Studies, Ministry of the Environment, 2001.
Знайти повний текст джерелаSitthiosoth, S. The molecular design of a new solvent for the absorption of carbon dioxide. Birmingham: Aston University. Department of Chemical Engineering, 1987.
Знайти повний текст джерелаAttalla, Moetaz I. Recent advances in post-combustion CO₂ capture chemistry. Washington, DC: American Chemical Society, 2012.
Знайти повний текст джерелаBorysow, Aleksandra. Modeling of collision induced absorption spectra of CO₂-CO₂ pairs for planetary atmosphere of Venus. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаBorysow, Aleksandra. Modeling of collision induced absorption spectra of CO₂-CO₂ pairs for planetary atmosphere of Venus. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаЧастини книг з теми "Dioxyde de carbone – Absorption"
de Morais, Michele Greque, Gabriel Martins da Rosa, Luiza Moraes, Thaisa Duarte Santos, and Jorge Alberto Vieira Costa. "Microalgae Biotechnology and Chemical Absorption as Merged Techniques to Decrease Carbon Dioxide in the Atmosphere." In Sustainable Utilization of Carbon Dioxide, 91–109. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2890-3_4.
Повний текст джерелаWatanabe, Yoshiyuki, Satoshi Konishi, Keiichi Ishihara, and Tetsuo Tezuka. "Evaluation of Carbon Dioxide Absorption by Forest in Japan." In Zero-Carbon Energy Kyoto 2010, 25–31. Tokyo: Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53910-0_3.
Повний текст джерелаMüller, W., H. Piazena, and Peter Vaupel. "From Sun to Therapeutic wIRA." In Water-filtered Infrared A (wIRA) Irradiation, 17–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92880-3_2.
Повний текст джерелаNakanishi, Tomoko M. "Visualization of 14C-labeled Gas Fixation in a Plant." In Novel Plant Imaging and Analysis, 169–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_5.
Повний текст джерелаAhmad, Abdul Latif, Sunarti Abd Rahman, and W. James Noel Fernando. "Absorption of Carbon Dioxide through Flat-Sheet Membranes Using Various Aqueous Liquid Absorbents." In Sustainable Membrane Technology for Energy, Water, and Environment, 203–9. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118190180.ch17.
Повний текст джерелаKunugi, Tomoaki, and Shin-Ichi Satake. "Direct Numerical Simulation of Turbulent Free Surface Flow with Carbon-Dioxide Gas Absorption." In Gas Transfer at Water Surfaces, 77–82. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm127p0077.
Повний текст джерелаBudzianowski, Wojciech M. "Assessment of Thermodynamic Efficiency of Carbon Dioxide Separation in Capture Plants by Using Gas–Liquid Absorption." In Green Energy and Technology, 13–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47262-1_2.
Повний текст джерела"Émissions de dioxyde de carbone." In Panorama des statistiques de l'OCDE 2013. OECD, 2013. http://dx.doi.org/10.1787/factbook-2013-70-fr.
Повний текст джерелаMahboobi, Sohail K., and Faraz Mahmood. "Carbon Dioxide Absorption." In Basic Anesthesia Review, edited by Alaa Abd-Elsayed, 85–86. Oxford University PressNew York, 2024. http://dx.doi.org/10.1093/med/9780197584569.003.0032.
Повний текст джерела"Émissions de dioxyde de carbone (CO2)." In Panorama de l'environnement 2013, 24–27. OECD, 2014. http://dx.doi.org/10.1787/9789264221802-6-fr.
Повний текст джерелаТези доповідей конференцій з теми "Dioxyde de carbone – Absorption"
Shokri, Abolfazl, and Arash Kamran-Pirzaman. "Optimizing energy of carbon dioxide absorption in distilled water using ultrasonic system through response surface methodology." In 2024 9th International Conference on Technology and Energy Management (ICTEM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/ictem60690.2024.10632013.
Повний текст джерелаMuresan, Vlad, Mihail Abrudean, Tiberiu Colosi, Zoltan Kovendi, Mihaela-Ligia Unguresan, and Iulia Clitan. "Modeling and Simulation of the Carbone Dioxide Absorption Process in Ethanolamine Solution." In 2015 20th International Conference on Control Systems and Computer Science (CSCS). IEEE, 2015. http://dx.doi.org/10.1109/cscs.2015.121.
Повний текст джерелаAukauloo, Ally. "S'inspirer de la nature pour produire de l'énergie. Photosynthèse artificielle à l'Université Paris-Saclay." In MOlecules and Materials for the ENergy of TOMorrow. MSH Paris-Saclay Éditions, 2021. http://dx.doi.org/10.52983/nova3845.
Повний текст джерелаConde, Olga M., Sergio Garcia, Roberto Garcia, Adolfo Cobo, and Jose Miguel Lopez-Higuera. "Novel multipass absorption cell for carbon dioxide detection." In Environmental and Industrial Sensing, edited by Michael A. Marcus and Brian Culshaw. SPIE, 2002. http://dx.doi.org/10.1117/12.456099.
Повний текст джерелаUysal, Duygu, Javid Safarov, Özkan Murat Doğan, Egon Hassel, and Bekir Zühtü Uysal. "Total Carbon Dioxide Absorption Capacity of Calcium Acetate Solution." In 10TH International Conference on Sustainable Energy and Environmental Protection. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-064-6.3.
Повний текст джерелаKachelmyer, A. L., R. E. Knowlden, and W. E. Keicher. "Atmospheric Distortion of Wideband Carbon Dioxide Laser Waveforms." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/clr.1987.wc3.
Повний текст джерелаAref'ev, Vladimir N., Yu I. Baranov, and K. N. Visheratin. "Measurements of carbon dioxide absorption coefficients with a CO laser." In High Resolution Molecular Spectroscopy: 11th Symposium and School, edited by Alexander I. Nadezhdinskii, Yu V. Ponomarev, and Leonid N. Sinitsa. SPIE, 1994. http://dx.doi.org/10.1117/12.166209.
Повний текст джерелаZhang, Jiuyi, Yong Meng Sua, Jiayang Chen, Jeevanandha Ramanathan, Chao Tang, Yongxiang Hu, and Yu-Ping Huang. "Atmospheric Carbon Dioxide Absorption Measurement using Integrated Lithium Niobate Nanophotonics." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.aw2s.5.
Повний текст джерелаHeaps, William S. "Measurement of carbon dioxide column via space-borne laser absorption." In Remote Sensing, edited by Upendra N. Singh and Gelsomina Pappalardo. SPIE, 2007. http://dx.doi.org/10.1117/12.746734.
Повний текст джерелаWooldridge, Margaret S. "Temperature Measurements via Narrow Line Laser Absorption of Carbon Dioxide." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0136.
Повний текст джерелаЗвіти організацій з теми "Dioxyde de carbone – Absorption"
Hobbs, D. T. Absorption of carbon dioxide in waste tanks. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/10141728.
Повний текст джерелаJohn T. Cullinane. THERMODYNAMICS AND KINETICS OF AQUEOUS PIPERAZINE WITH POTASSIUM CARBONATE FOR CARBON DIOXIDE ABSORPTION. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/839556.
Повний текст джерелаLiang Hu. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/890991.
Повний текст джерелаLiang Hu and Adeyinka A. Adeyiga. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/825592.
Повний текст джерелаLiang Hu. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/901079.
Повний текст джерелаLiang Hu, Jr Victor Roberts, and Monica J. Wood. Carbon Dioxide Separation from Flue Gas By Phase Enhanced Absorption. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/861526.
Повний текст джерелаTim Fout. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/945929.
Повний текст джерелаOGDEN DM and KIRCH NW. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/919542.
Повний текст джерелаBiener, J. Enhanced Biomimetic Three-Dimensional Nanoporous Gyroid Membrane for High Efficiency Carbon Dioxide Absorption. Office of Scientific and Technical Information (OSTI), April 2023. http://dx.doi.org/10.2172/1971300.
Повний текст джерелаMcClung, Aaron, and Marc Portnoff. Absorption/Desorption based high efficiency Supercritical Carbon Dioxide Power Cycles - Final Scientific/Technical Report. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1474410.
Повний текст джерела