Добірка наукової літератури з теми "Differential equations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Differential equations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Differential equations"

1

Tabor, Jacek. "Differential equations in metric spaces." Mathematica Bohemica 127, no. 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andres, Jan, and Pavel Ludvík. "Topological entropy and differential equations." Archivum Mathematicum, no. 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laksmikantham, V. "Set differential equations versus fuzzy differential equations." Applied Mathematics and Computation 164, no. 2 (May 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Parasidis, I. N. "EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS." Eurasian Mathematical Journal 10, no. 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chrastinová, Veronika, and Václav Tryhuk. "Parallelisms between differential and difference equations." Mathematica Bohemica 137, no. 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tumajer, František. "Controllable systems of partial differential equations." Applications of Mathematics 31, no. 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kurzweil, Jaroslav, and Alena Vencovská. "Linear differential equations with quasiperiodic coefficients." Czechoslovak Mathematical Journal 37, no. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sergey, Piskarev, and Siegmund Stefan. "UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS." Eurasian Journal of Mathematical and Computer Applications 10, no. 3 (September 27, 2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Повний текст джерела
Анотація:
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Džurina, Jozef. "Comparison theorems for functional differential equations." Mathematica Bohemica 119, no. 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saltas, Vassilios, Vassilios Tsiantos, and Dimitrios Varveris. "Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform." European Journal of Mathematics and Statistics 4, no. 3 (June 14, 2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Повний текст джерела
Анотація:
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Differential equations"

1

Yantır, Ahmet Ufuktepe Ünal. "Oscillation theory for second order differential equations and dynamic equations on time scales/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.

Повний текст джерела
Анотація:
In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove existence and uniqueness of solutions of SPIDEs, we give a comparison principle and we suggest an approximation scheme for the non-local integral operators. Regarding SPDEs, we use techniques motivated by the work of De Giorgi, Nash, and Moser, in order to derive global and local supremum estimates, and a weak Harnack inequality.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zheng, Ligang. "Almost periodic differential equations." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5766.

Повний текст джерела
Анотація:
In this thesis, we will study almost periodic differential equations. The motivation to study such a subject is mainly due to its wide applications. We will focus our attention on the topics of boundedness, almost periodicity, disconjugacy and the non-existence of periodic solutions for the n-body problem. Our main investigation in chapter 1 deals with Bohr almost periodic differential equations. In chapter 2, we will study Stepanov almost periodic differential equations, which is a wider class than Bohr's class and we will give a general Floquet theorem in some special cases. We devote our effort in the last chapter to the special n-body problem-if the configuration remains similar throughout the motion and show some applications of oscillation theory of differential equations to the n-body problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kopfová, Jana. "Differential equations involving hysteresis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ29055.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MARINO, GISELA DORNELLES. "COMPLEX ORDINARY DIFFERENTIAL EQUATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10175@1.

Повний текст джерела
Анотація:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Neste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas.
In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Berntson, B. K. "Integrable delay-differential equations." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566618/.

Повний текст джерела
Анотація:
Delay-differential equations are differential-difference equations in which the derivatives and shifts are taken with respect to the same variable. This thesis is concerned with these equations from the perspective of the theory of integrable systems, and more specifically, Painlevé equations. Both the classical Painlevé equations and their discrete analogues can be obtained as deautonomizations of equations solved by two-parameter families of elliptic functions. In analogy with this paradigm, we consider autonomous delay-differential equations solved by elliptic functions, delay-differential extensions of the Painlevé equations, and the interrelations between these classes of equations. We develop a method to identify delay-differential equations that admit families of elliptic solutions with at least two degrees of parametric freedom and apply it to two natural 16-parameter families of delay-differential equations. Some of the resulting equations are related to known models including the differential-difference sine-Gordon equation and the Volterra lattice; the corresponding new solutions to these and other equations are constructed in a number of examples. Other equations we have identified appear to be new. Bäcklund transformations for the classical Painlevé equations provide a source of delay-differential Painlevé equations. These transformations were previously used to derive discrete Painlevé equations. We use similar methods to identify delay-differential equations with continuum limits to the first classical Painlevé equation. The equations we identify are solved by elliptic functions in particular limits corresponding to the autonomous limit of the classical first Painlevé equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dodds, Niall. "Non-local differential equations." Thesis, University of Dundee, 2005. https://discovery.dundee.ac.uk/en/studentTheses/9eda08aa-ba49-455f-94b1-36870a1ad956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Trenn, Stephan. "Distributional differential algebraic equations." Ilmenau Univ.-Verl, 2009. http://d-nb.info/99693197X/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Thompson, Jeremy R. (Jeremy Ray). "Physical Motivation and Methods of Solution of Classical Partial Differential Equations." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.

Повний текст джерела
Анотація:
We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Differential equations"

1

Zhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.

Повний текст джерела
Анотація:
The textbook presents the theory of ordinary differential equations constituting the subject of the discipline "Differential equations". Studied topics: differential equations of first, second, arbitrary order; differential equations; integration of initial and boundary value problems; stability theory of solutions of differential equations and systems. Introduced the basic concepts, proven properties of differential equations and systems. The article presents methods of analysis and solutions. We consider the applications of the obtained results, which are illustrated on a large number of specific tasks. For independent quality control mastering the course material suggested test questions on the theory, exercises and tasks. It is recommended that teachers, postgraduates and students of higher educational institutions, studying differential equations and their applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rahmani-Andebili, Mehdi. Differential Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07984-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barbu, Viorel. Differential Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45261-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Constanda, Christian. Differential Equations. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50224-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ross, Clay C. Differential Equations. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-3949-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tikhonov, Andrei N., Adelaida B. Vasil’eva, and Alexei G. Sveshnikov. Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82175-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Constanda, Christian. Differential Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7297-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Struthers, Allan, and Merle Potter. Differential Equations. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20506-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sánchez, David A., and David A. Sánchez. Differential equations. 2nd ed. Reading, Mass: Addison-Wesley Pub. Co., 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brown, Courtney. Differential Equations. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2007. http://dx.doi.org/10.4135/9781412983914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Differential equations"

1

Weltner, Klaus, Sebastian John, Wolfgang J. Weber, Peter Schuster, and Jean Grosjean. "Differential Equations." In Mathematics for Physicists and Engineers, 275–322. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54124-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kinzel, Wolfgang, and Georg Reents. "Differential Equations." In Physics by Computer, 115–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Berck, Peter, and Knut Sydsæter. "Differential equations." In Economists’ Mathematical Manual, 47–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02678-6_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol, and Heiner Muehlig. "Differential Equations." In Handbook of Mathematics, 485–549. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hu, Pei-Chu, and Chung-Chun Yang. "Differential equations." In Meromorphic Functions over Non-Archimedean Fields, 115–38. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9415-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Martínez-Guerra, Rafael, Oscar Martínez-Fuentes, and Juan Javier Montesinos-García. "Differential Equations." In Algebraic and Differential Methods for Nonlinear Control Theory, 125–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12025-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Holden, K., and A. W. Pearson. "Differential Equations." In Introductory Mathematics for Economics and Business, 319–63. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oberguggenberger, Michael, and Alexander Ostermann. "Differential Equations." In Analysis for Computer Scientists, 251–66. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-446-3_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tiller, Michael. "Differential Equations." In Introduction to Physical Modeling with Modelica, 17–37. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1561-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lynch, Stephen. "Differential Equations." In Dynamical Systems with Applications using MAPLE, 13–34. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4899-2849-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Differential equations"

1

Yoshizawa, T., and J. Kato. "Functional Differential Equations." In International Symposium on Functional Differential Equations. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

MALGRANGE, B. "DIFFERENTIAL ALGEBRAIC GROUPS." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GRANGER, MICHEL. "BERNSTEIN-SATO POLYNOMIALS AND FUNCTIONAL EQUATIONS." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Magalhães, L., C. Rocha, and L. Sanchez. "Equadiff 95." In International Conference on Differential Equations. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Perelló, C., C. Simó, and J. Solà-Morales. "Equadiff 91." In International Conference on Differential Equations. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

NARVÁEZ MACARRO, L. "D-MODULES IN DIMENSION 1." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CASTRO JIMÉNEZ, FRANCISCO J. "MODULES OVER THE WEYL ALGEBRA." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

LÊ, DŨNG TRÁNG, and BERNARD TEISSIER. "GEOMETRY OF CHARACTERISTIC VARIETIES." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DELABAERE, E. "SINGULAR INTEGRALS AND THE STATIONARY PHASE METHODS." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

JAMBU, MICHEL. "HYPERGEOMETRIC FUNCTIONS AND HYPERPLANE ARRANGEMENTS." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Differential equations"

1

Knorrenschild, M. Differential-algebraic equations as stiff ordinary differential equations. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6980335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dresner, L. Nonlinear differential equations. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/5495671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gear, C. W. Differential algebraic equations, indices, and integral algebraic equations. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6307619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shearer, Michael. Nonlinear Differential Equations and Mechanics. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada398262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cohen, Donald S. Differential Equations and Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, May 1989. http://dx.doi.org/10.21236/ada208637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tewarson, Reginald P. Numerical Methods for Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada177283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yan, Xiaopu. Singularly Perturbed Differential/Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada288365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tewarson, Reginald P. Numerical Methods for Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada162722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cohen, Donald S. Differential Equations and Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada237722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wiener, Joseph. Boundary Value Problems for Differential and Functional Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada187378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії