Добірка наукової літератури з теми "Diagramms de phases"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Diagramms de phases".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Diagramms de phases"
Guizani, Mohamed, Hmida Zamali, and Mohamed Jemal. "Diagramme de phases LiNO3-KNO3." Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 1, no. 12 (December 1998): 787–89. http://dx.doi.org/10.1016/s1251-8069(99)80047-4.
Повний текст джерелаJéròme, B., and P. Pieranski. "Kossel diagrams of blue phases." Liquid Crystals 5, no. 3 (January 1989): 799–812. http://dx.doi.org/10.1080/02678298908026386.
Повний текст джерелаPena, P., B. Vázquez, A. Caballero, and S. De Aza. "Diagramas de equilibrio de fases cuaternarios. Métodos de representación e interpretación." Boletín de la Sociedad Española de Cerámica y Vidrio 44, no. 2 (April 30, 2005): 113–22. http://dx.doi.org/10.3989/cyv.2005.v44.i2.392.
Повний текст джерелаMusso, Jean, and Albert Sebaoun. "Diagrammes de phases assistés par ordinateur." Journal de Chimie Physique 86 (1989): 1049–60. http://dx.doi.org/10.1051/jcp/19898601049.
Повний текст джерелаMusso, Jean, and Albert Sebaoun. "Diagrammes de phases assistés par ordinateur." Journal de Chimie Physique 86 (1989): 1061–69. http://dx.doi.org/10.1051/jcp/19898601061.
Повний текст джерелаTernero Fernández, Fátima. "Determinación de diagramas de fases a partir de las curvas de energía libre-composición." JORNADAS DE FORMACIÓN E INNOVACIÓN DOCENTE DEL PROFESORADO, no. 3 (2020): 2055–78. http://dx.doi.org/10.12795/9788447231003.095.
Повний текст джерелаBrazhkin, V. V. "Metastable phases and ‘metastable’ phase diagrams." Journal of Physics: Condensed Matter 18, no. 42 (October 5, 2006): 9643–50. http://dx.doi.org/10.1088/0953-8984/18/42/010.
Повний текст джерелаBlu¨mel, Th, Peter J. Collings, H. Onusseit, and H. Stegemeyer. "Phase diagrams of the blue phases." Chemical Physics Letters 116, no. 6 (May 1985): 529–33. http://dx.doi.org/10.1016/0009-2614(85)85209-x.
Повний текст джерелаBrazhkin, Vadim V. "Metastable phases, phase transformations, and phase diagrams in physics and chemistry." Uspekhi Fizicheskih Nauk 176, no. 7 (2006): 745. http://dx.doi.org/10.3367/ufnr.0176.200607d.0745.
Повний текст джерелаPardo, M. P., M. Guittard, A. Chilouet, and A. Tomas. "Diagramme de phases gallium-soufre et études structurales des phases solides." Journal of Solid State Chemistry 102, no. 2 (February 1993): 423–33. http://dx.doi.org/10.1006/jssc.1993.1054.
Повний текст джерелаДисертації з теми "Diagramms de phases"
Condolf, Cyril. "Elaboration d’un cermet conducteur électrique à haute température." Grenoble INPG, 2005. http://www.theses.fr/2005INPG0071.
Повний текст джерелаThis thesis is devoted to the making of inert anode materials, used for aluminium electrolysis. On the basis of knowledge obtained from the cermet copper- nickel ferrite, a strategy of research was carried out in order to determine alternative chemical systems. The reading of phase diagrams is a tool of prediction for hypothetical promising compositions. Physical models of spinel conductivity and sintering, integrated into the results of thermodynamic calculation, are used to determine theoretical best zones of cermets'development, in the system Al-Co-Cr-Fe-Ni-Zn-O (FACT database). Manganese, comparable with iron and cobalt concerning the electronic structure, is not included in FACT database and Fe-Mn-Ni-0 had to be evaluated through experiments and theoretically in order to include it in our thought and to show its interest as an alloying element. Practical application was validated in the case of Cu-Al-Fe-Ni-0 and Cu-Fe-Mn-Ni-0 materials. Addition of aluminium reduces the solubility in cryolite bath, and manganese can be used as a doping element in order to enhance sintering. The potential interest of the other elements (Co,Cr and Zn) has been surveyed through a logical analysis developed during the thesis
Martin, Catherine. "Méthodes d'étude des microémulsions et étude de diagrammes pseudoternaires." Paris 5, 1992. http://www.theses.fr/1992PA05P247.
Повний текст джерелаHerrero, Bocco Bernardo. "Assessment of the ternary phase diagram on the stoichiometric and hypo-stoichiometric U-Nd-O system." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASC008.
Повний текст джерелаThis thesis concerns the experimental study and thermodynamic modeling of the behavior of advanced fuels used in current and future generation nuclear power plants. The subject of the thesis is more precisely the study of the ternary system (U-Nd-O) and for comparison purposes of (U-Ce-O). This system is particularly representative of the fission products accumulated in the fuel for high combustion rates but also of the initial atomic substitutions in the fuel by neutron poisons, used in nuclear fuels with high enrichment levels and capable of spacing out nuclear reactor outages. The study of this system presents significant challenges due to the open conflict between thermodynamic and kinetic phenomena. It is indeed an out of equilibrium system where the long-range ordering of local structures is frustrated by the negligible of atomic transport in the cation sublattice in the range of temperatures of interest for applications. During this thesis, a review of the existing literature motivated the manufacture of samples with well-defined characteristics by powder metallurgy methods and by soft chemistry methods leading to a control of dopant distributions. The results obtained by numerous characterization techniques (XRD, SEM, TEM, XAS) on samples treated thermally under oxidizing or reducing conditions have allowed a critical re-evaluation of the phase diagrams currently used. We have modelled a new phase diagram that includes new experimental results. This allows a better knowledge of the limits of use of nuclear fuels respecting optimal safety conditions
Gendron, François-Xavier. "Contribution à la discrimination chirale à l'état solide et accès aux énantiomères pures par cristallisation." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR032/document.
Повний текст джерелаThe need for access to pure enantiomers has largely increased since the nineties. Processes using crystallization are often cheaper and as efficient as other processes. Thus, the improvement of existing techniques and the need for new processes are attractive for scientist and industry. Two studies have been performed in this thesis:The first one concerns the improvement of an existing technique. Indeed, conglomerate Preferential Crystallization efficiency is well known. Nonetheless, its application to mirror image partial solid solutions is more difficult. Here is presented the first example of PC performed on a complete solid solution at high temperature which shows a solid solutions demixion at low temperature: the baclofen hydrogenomaleate salt (an API). Moreover, it is the first experimental observation of such phase equilibria and PC of mirror image solid solutions whose results are comparable to classical PC. -The second topic did not involve directly enantiomer separation but promising chiral discriminations have been obtained. The phase diagram between the racemic composition of two couples of atropisomers has been defined. Beside multiples equilibria observed, two results concerning the chiral discrimination can be highlighted: the first one is the possibility to deracemize a compound A initially not discriminated (racemic compound) inside the matrix of a compound B (which forms a stable conglomerate). The second is the observation of a new kind of chirality: Chirality Induced by Dissymmetric Distribution (CIDD)
Junius, Niels. "Développements instrumentaux pour le contrôle de la cristallisation par la dialyse : approche microfluidique et analyse aux rayons X." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY032/document.
Повний текст джерелаProtein crystallization is a key step in elucidating three-dimensional structure of proteins. This very sensitive process depends on many variables that are difficult to control precisely or simultaneously in the existing facilities. Instrumentation developments have concentrated on massive parallel experiments and sample volume reduction used by experiment. With this approach it is relatively easy to find initial crystallization conditions but their optimization to yield well diffracting crystals often proves to be more difficult.The method presented herein differs from the current paradigm, since we propose serial instead of parallel experiments based on the knowledge of phase diagrams. This project is based on a series of developments of instruments used to control and rationalize crystallisation using dialysis method, thus allowing phase diagrams exploration without consuming large quantity of protein sample.This results in a microfluidic device that allows crystallization of proteins by dialysis method, use of a continuous flow of crystallization agent and therefore continuous exchange of crystallization conditions as well as temperature control during experiment. It provides X-rays compatibility for in situ diffraction data collection of crystals grown in the microfluidic chip. This microfluidic system is based on the miniaturization of the crystallization bench which has been improved on electronics for automation, fluid transport to operate at a continuous flow, software development for the control of crystallization parameters, mechanics to improve both dialysis cell and thermoregulation, and finally by the integration of a UV system to perform in situ absorbance measurements that provide the future possibility to measure the solubility of proteins in a dialysis crystallization experiment.Finally both instrumental and methodological developments have been validated by the crystallization of several model proteins whose crystals diffracted succesfully X-rays. Furthermore understanding of the transport of species in solution by dialysis was investigated by combined experimental and theoretical approaches
Bourgeois, Natacha. "Modélisation de systèmes métal-hydrogène par couplage des méthodes DFT, CVM et Calphad." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1045/document.
Повний текст джерелаHydrogen absorption in the interstitial sites of metals is crucial for major issues such as alloy embrittlement or hydrogen storage for energy applications. This phenomenon modifies the physicochemical properties of the host metal and may lead to the formation of ordered MHy compounds called hydrides. Within this framework, the Calphad modeling method (CALculation of PHAse Diagrams) is a relevant tool for understanding and predicting the behavior of metals and alloys in the presence of hydrogen. However, there is no Calphad database centered on hydrogen for calculating phase equilibria in multi-constituent systems (ternary, quaternary…).The present thesis proposes to use a multi-scale modeling approach to study metal-hydrogen (M-H) binary systems, which are the first step in designing such a Calphad database. First, systematic DFT (Density Functional Theory) calculations were carried out for 31 binary M-H systems considering 30 potential crystal structures, resulting in 30 × 31 = 930 hydrides, stable or metastable. This high throughput approach allowed in particular to determine the enthalpies of formation at 0 K, which represent important input data for the Calphad method. New hydrides that have never been experimentally observed could be predicted at high pressure (TaH2, ZrH3 ...).Then, phonon calculations in the harmonic approximation were performed on the most stable hydrides. They allow, on the one hand, to correct the DFT calculated enthalpies of formation by considering the energy and entropy due to the atom vibrations, which are not negligible for the light hydrogen atom. On the other hand, a large-scale study focused on the modification of the free energy of formation due to hydrogen substitution by its isotopes, known as "isotopic effect". Predictions were made on the nature of this effect as function of temperature. Moreover, the random insertion of hydrogen atoms in solid solution was studied using statistical thermodynamic methods: CVM (Cluster Variation Method) and Monte-Carlo simulation. These methods have been implemented in calculation codes, applied to face centered cubic (fcc) and body-centered cubic (bcc) metals. The input data are the interactions energies between nearest neighbor atoms. They are provided by the CEM (Cluster Expansion Method) coupled with DFT calculations. A comparative study of the Ni-H and Pd-H systems revealed the specificities of the thermodynamic behaviors of both solid interstitial solutions. Furthermore, dihydrogen pressure is an important parameter because many hydrides form only at very high pressure. To improve the Calphad model accuracy at high pressure, the model of Lu et al. was applied to the condensed phases of the Ni-H, Rh-H and Mg-H systems. This model allows to determine the contribution to the free enthalpy due to the pressure force work. The input data may be both quasi-harmonic phonon calculation results and experimental data. Finally, a comprehensive Calphad model of the Ni-H system was carried out by integrating the model of Lu et al. The DFT enthalpy of formation and the mixing enthalpy determined by CEM were used as input data, to complement the available experimental data
Anzellini, Simone. "Phase diagram of iron under extreme conditions measured with time resolved methods." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066155/document.
Повний текст джерелаThis thesis concerns the study of the phase diagram of iron at extreme conditions of pressure and temperature. Iron is the main constituent of the terrestrial planetary cores. In particular, the Earth has a solid inner core and a liquid outer core which are mainly composed of iron. The accurate determination of the melting temperature of iron at the inner core boundary pressure, 330 GPa, would provide an important constraint on the temperature of the core, which is essential to understand how the dynamic Earth works. The phase diagram of iron has been investigated in laser-heated diamond anvil cell experiments up to 200 GPa using synchrotron-based fast X-ray Diffraction as a primary melting diagnostic. The obtained melting temperatures agree within the experimental uncertainties with the ones obtained from shock wave experiments and are higher than those reported by previous static experiments, where a different melting criterion was used. The apparatus, methods and metrology used in the static laser heated diamond anvil cell are discussed together with the issues encountered in static experiments at such extreme conditions. The possibility of using the X-ray diffraction signal of Re gasket for pressure calibration purpose for experiment in the multi-Mbar range is also discussed. For this purpose, Re equation of state has been measured up to 144 GPa. Finally, a preliminary test has been performed to check the possibility of using energy dispersive X-ray absorption spectroscopy as a technique complementary to fast X-ray diffraction in the investigation of the melting curve of iron
Ye, Bing. "Unconventional Quantum Phases in Strongly Correlated Systems." Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106990.
Повний текст джерелаIn this thesis, I investigated and implemented various numerical and simulation methods, including mean field theory, functional renormalization group method (fRG), density matrix renormalization group (DMRG) method etc., to find different quantum phases and quantum phase diagrams on models of correlated electronic systems. I found different phase diagrams with phases such as magnetism, superconductivity. By summarizing the strength and limitations of these methods, I investigated the projected entangled paired states (PEPS) with symmetry quantum number to sharply distinguish phases into crude classes and applied a variation of fast full update (FFU) prototype[58] to simulate different phases numerically. This method provides a promising, powerful and efficient way to simulate unconventional quantum phases and quantum phase diagrams in correlated electronic systems
Thesis (PhD) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Yaqoob, Khurram. "Experimental determination and thermodynamic modelisation of Mo-Ni-Re system." Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00805384.
Повний текст джерелаBiscarat, Jennifer. "Elaboration de membranes “vertes” de séparation gazeuse à base de gélatine : mécanismes de structuration, réticulation et relations structure-propriétés." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20213/document.
Повний текст джерелаPetroleum based raw materials shortage leads to investigate renewable raw materials for membrane elaboration. Gelatin, an abundant, industrial by-product is a biosourced polymer with filmogenic properties which makes it an educated choice for “green” membrane production. This thesis work aims at developing gelatin based membrane and studying the influence of the material structure on mechanical and thermal properties, water resistance and gas transport properties. Thus, the elaboration mechanisms by TIG/Dry-cast process were studied in details by establishing the phase diagram of the gelatin/water system. To improve the water resistance of the hydrosoluble gelatin, crosslinking is necessary. Alternative cross-linkers were tested to replace the glutaraldehyde, classified as toxic. Ferulic acid and terephthalaldehyde were promising and showed complementary characteristics. The high crystallinity level of gelatin films, related to their renaturation level, led to rather gas barrier properties. By adding an elastomer, polyetheramine, the permeability to CO2 increased from 1.4 to an outstanding 250 Barrer. The influence of the temperature and relative humidity of the gas flux on permeability was also studied
Книги з теми "Diagramms de phases"
Koohgilani, Mehran. Phase diagrams. Poole: Bournemouth University, 2001.
Знайти повний текст джерелаA, Young D. Phase diagrams of the elements. Berkeley: University of California Press, 1991.
Знайти повний текст джерелаYoung, David A. Phase diagrams ofthe elements. Berkeley: University of California Press, 1991.
Знайти повний текст джерелаGasparik, Tibor. Phase Diagrams for Geoscientists. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-5776-3.
Повний текст джерелаGasparik, Tibor. Phase Diagrams for Geoscientists. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-38352-9.
Повний текст джерелаChu-kun, Kuo. High temperature phase equilibria and phase diagrams. Oxford [England): Pergamon Press, 1990.
Знайти повний текст джерелаEngels, Hans. Phase equilibria and phase diagrams of electrolytes. Frankfurt/Main: DECHEMA, 1990.
Знайти повний текст джерелаMcHale, Anna E. Phase Diagrams and Ceramic Processes. Boston, MA: Springer US, 1998.
Знайти повний текст джерелаHafner, Jürgen. From Hamiltonians to Phase Diagrams. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83058-7.
Повний текст джерелаMcHale, Anna E. Phase Diagrams and Ceramic Processes. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-6173-3.
Повний текст джерелаЧастини книг з теми "Diagramms de phases"
Paul, Aloke, Tomi Laurila, Vesa Vuorinen, and Sergiy V. Divinski. "Thermodynamics, Phases, and Phase Diagrams." In Thermodynamics, Diffusion and the Kirkendall Effect in Solids, 1–86. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07461-0_1.
Повний текст джерелаHubberstey, P. "Phase Diagrams, Intermetallic Phases and Compounds." In Inorganic Reactions and Methods, 316. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145289.ch113.
Повний текст джерелаHubberstey, P. "Phase Diagrams, Intermetallic Phases and Compounds." In Inorganic Reactions and Methods, 322. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145289.ch121.
Повний текст джерелаde Oliveira, Mário J. "Phase Diagrams." In Equilibrium Thermodynamics, 187–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36549-2_11.
Повний текст джерелаJohn, V. B. "Phase Diagrams." In Engineering Materials, 58–91. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-10185-6_4.
Повний текст джерелаJiang, Qing, and Zi Wen. "Phase Diagrams." In Thermodynamics of Materials, 119–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14718-0_4.
Повний текст джерелаMirabel, Philippe, and Djamel Taleb. "Phase Diagrams." In Low-Temperature Chemistry of the Atmosphere, 197–217. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79063-8_9.
Повний текст джерелаWold, Aaron, and Kirby Dwight. "Phase Diagrams." In Solid State Chemistry, 54–65. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1476-9_5.
Повний текст джерелаde Oliveira, Mário J. "Phase Diagrams." In Equilibrium Thermodynamics, 201–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53207-2_11.
Повний текст джерелаGokcen, N. A., and R. G. Reddy. "Phase Diagrams." In Thermodynamics, 285–321. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1373-9_15.
Повний текст джерелаТези доповідей конференцій з теми "Diagramms de phases"
Christensen, Axel Nørlund. "PHASE DIAGRAMS." In Proceedings of the International School on Crystal Growth and Characterization of Advanced Materials. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814541589_0002.
Повний текст джерелаGoutaudier, C. "Crystal growth in condensed phase and phase diagrams." In XXXVII JEEP – 37th Conference on Phase Equilibria. Les Ulis, France: EDP Sciences, 2011. http://dx.doi.org/10.1051/jeep/201100002.
Повний текст джерелаLiu, Libin, Cristina Andersson, Johan Liu, and Y. C. Chan. "Thermodynamic Assessment of Sn-Co-Cu Lead-Free Solder Alloy." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35126.
Повний текст джерелаRietveld, I. B., R. Céolin, S. P. Velaga, and S. Basavoju. "Phenomenology of polymorphism and topological pressure-temperature diagrams: the case study acesulfame." In XXXVII JEEP – 37th Conference on Phase Equilibria. Les Ulis, France: EDP Sciences, 2011. http://dx.doi.org/10.1051/jeep/201100012.
Повний текст джерелаChau, T. T. "A Metallurgical Concept for Numerical Simulation of Arc Welding." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71654.
Повний текст джерелаIosilevski, Igor L. "Anomalous Phase Diagrams in the Simplest Plasma Models." In EQUATION-OF-STATE AND PHASE-TRANSITION ISSUES IN MODELS OF ORDINARY ASTROPHYSICAL MATTER. AIP, 2004. http://dx.doi.org/10.1063/1.1828412.
Повний текст джерелаCouvrat, N., Y. Cartigny, S. Tisse, M.-N. Petit, and G. Coquerel. "Binary phase diagram between phenanthrene and its main impurity: dibenzothiophene." In XXXVII JEEP – 37th Conference on Phase Equilibria. Les Ulis, France: EDP Sciences, 2011. http://dx.doi.org/10.1051/jeep/201100006.
Повний текст джерелаLee, SungSik, and SungHo S. Salk. "Analysis of high-T c phase diagram: pseudogap and superconducting phases." In AeroSense 2000, edited by Davor Pavuna and Ivan Bozovic. SPIE, 2000. http://dx.doi.org/10.1117/12.397866.
Повний текст джерелаKota, Bhargava Urala, Rathin Radhakrishnan Nair, Srirangaraj Setlur, Aparajita Dasgupta, Scott Broderick, Venu Govindaraju, and Krishna Rajan. "Automated Analysis of Phase Diagrams." In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2017. http://dx.doi.org/10.1109/icdar.2017.256.
Повний текст джерелаChristensen, Axel Nørlund. "PHASE DIAGRAMS IN CRYSTAL GROWTH." In Proceedings of the International School on Crystal Growth and Characterization of Advanced Materials. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814541589_0003.
Повний текст джерелаЗвіти організацій з теми "Diagramms de phases"
Edgar, Alexander Steven, Justine H. Yang, and Dali Yang. Nitroplasticizer-water phase diagram. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1477598.
Повний текст джерелаBraun, R. J., J. Zhang, J. W. Cahn, G. B. McFadden, and A. A. Wheeler. Model phase diagrams for an FCC alloy. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.ir.6463.
Повний текст джерелаKaufman, L. Calculation of Multicomponent Refractory Composite Phase Diagrams. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada192293.
Повний текст джерелаMunshi, M. Z., and Boone B. Owens. Phase Diagrams for the PEO-LiX Electrolyte System. Fort Belvoir, VA: Defense Technical Information Center, January 1987. http://dx.doi.org/10.21236/ada176303.
Повний текст джерелаSinclair, R. Application of quaternary phase diagrams to compound semiconductor processing. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10190607.
Повний текст джерелаZhang, J. M., W. W. Chen, B. Dunn, and A. J. Ardell. Phase Diagram Studies of ZnS Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada198983.
Повний текст джерелаBurakovsky, Leonid, Samuel Baty, and Dean Preston. Ab Initio Phase Diagram of Tungsten. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1739915.
Повний текст джерелаAnagnostopoulos, K. N., M. J. Bowick, and S. M. Catterall. The phase diagram of crystalline surfaces. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/176799.
Повний текст джерелаEbbinghaus, B. b., O. H. Krikorian, E. R. Vance, and M. W. Stewart. Ternary Phase Diagrams that Relate to the Plutonium Immobilization Ceramic. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/15013284.
Повний текст джерелаRoss, M. Phase diagram of Mo at high pressure and temperature. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/945864.
Повний текст джерела