Добірка наукової літератури з теми "DFRT"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "DFRT".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "DFRT"
Caspers, Patrick, Luc Bury, Bérangère Gaucher, Jutta Heim, Stuart Shapiro, Sibylle Siegrist, Anne Schmitt-Hoffmann, Laure Thenoz, and Heinrich Urwyler. "In Vitro and In Vivo Properties of Dihydrophthalazine Antifolates, a Novel Family of Antibacterial Drugs." Antimicrobial Agents and Chemotherapy 53, no. 9 (June 22, 2009): 3620–27. http://dx.doi.org/10.1128/aac.00377-09.
Повний текст джерелаHamid, Aabid, Atul Anand, and Ram Kinkar Roy. "The charge transfer limit of a chemical adduct: the role of perturbation on external potential." Physical Chemistry Chemical Physics 19, no. 17 (2017): 10905–12. http://dx.doi.org/10.1039/c7cp01208j.
Повний текст джерелаLiu, Li, and Ji Chun Tan. "Multiple Watermarks Embedding Simultaneously to Identify Image Status Based on Fractional Fourier Transform." Advanced Materials Research 341-342 (September 2011): 758–62. http://dx.doi.org/10.4028/www.scientific.net/amr.341-342.758.
Повний текст джерелаSaha, Bapan, and Pradip Kr Bhattacharyya. "Understanding reactivity, aromaticity and absorption spectra of carbon cluster mimic to graphene: a DFT study." RSC Advances 6, no. 83 (2016): 79768–80. http://dx.doi.org/10.1039/c6ra15016k.
Повний текст джерелаShishido, E., S. Higashijima, Y. Emori, and K. Saigo. "Two FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos." Development 117, no. 2 (February 1, 1993): 751–61. http://dx.doi.org/10.1242/dev.117.2.751.
Повний текст джерелаChoudhary, Nancy, and Boas Pucker. "Conserved amino acid residues and gene expression patterns associated with the substrate preferences of the competing enzymes FLS and DFR." PLOS ONE 19, no. 8 (August 28, 2024): e0305837. http://dx.doi.org/10.1371/journal.pone.0305837.
Повний текст джерелаGibreel, Amera, and Ola Sköld. "High-Level Resistance to Trimethoprim in Clinical Isolates of Campylobacter jejuni by Acquisition of Foreign Genes (dfr1 and dfr9) Expressing Drug-Insensitive Dihydrofolate Reductases." Antimicrobial Agents and Chemotherapy 42, no. 12 (December 1, 1998): 3059–64. http://dx.doi.org/10.1128/aac.42.12.3059.
Повний текст джерелаHamza, Rafik, Alzubair Hassan, Teng Huang, Lishan Ke, and Hongyang Yan. "An Efficient Cryptosystem for Video Surveillance in the Internet of Things Environment." Complexity 2019 (December 9, 2019): 1–11. http://dx.doi.org/10.1155/2019/1625678.
Повний текст джерелаLiu, Xifeng, Wen Yuan, Chaokang Gu, Wenhao Huang, and Weixin Hu. "Nature of Sigma-Type Lithium Bonding Interaction in Nanoscale." Nano LIFE 04, no. 04 (December 2014): 1441020. http://dx.doi.org/10.1142/s1793984414410207.
Повний текст джерелаBergmann, René, Mark van der Linden, Gursharan S. Chhatwal, and D. Patric Nitsche-Schmitz. "Factors That Cause Trimethoprim Resistance in Streptococcus pyogenes." Antimicrobial Agents and Chemotherapy 58, no. 4 (February 3, 2014): 2281–88. http://dx.doi.org/10.1128/aac.02282-13.
Повний текст джерелаДисертації з теми "DFRT"
Valloire, Hugo. "Développements de modes avancés de microscopie à force piézoélectrique pour films minces piézoélectriques et ferroélectriques." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY063.
Повний текст джерелаMany current applications in the microelectronics sector rely on the use of piezoelectric and ferroelectric materials in the form of thin films. For instance, MEMS devices, including sensors, actuators, and energy harvesters, take advantage of the piezoelectric properties of materials. Moreover, the discovery of the potential of certain materials for microelectronic devices has spurred significant research, as exemplified by the use of HfO2 for its ferroelectric properties in non-volatile memories like FeRAM and FeFET. In this context, various deposition techniques for piezoelectric and ferroelectric thin films are currently under optimization. Specific characterization methods for these materials are essential to evaluate the quality of their fabrication and to enhance the understanding of the underlying physical phenomena, which is critical for their integration into advanced microelectronic devices.This thesis aims to develop characterization techniques for the piezoelectric and ferroelectric properties of devices fabricated as thin films at the nanoscale. Piezoelectric force microscopy enables such analyses but is susceptible to numerous artifacts, such as electrostatic effects, which can significantly impact the results. The objective of this thesis is to develop, implement, and combine new advanced techniques based on PFM to minimize measurement artifacts by separating their contributions from those of piezoelectric and ferroelectric effects, and to characterize a wider range of material properties. For instance, the coupled PFM mode in switching spectroscopy with dual-frequency resonance tracking, developed for the first time in this thesis, maximizes the signal-to-noise ratio while reducing and measuring the influence of various artifacts. Furthermore, this mode allows the measurement of material property variations under the influence of an electric field, thus reflecting more realistic operating conditions. This mode has been extended for mapping measurements, allowing the determination of variations in the measured properties across the material surface at the nanoscale. The development of a suite of software programs played a key role in the creation of these new modes, from equipment control to advanced data analysis
Boonchun, Adisak. "First-Principles Calculation of Defect Energies in ZnO and Related Materials." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1310056351.
Повний текст джерелаMa, Weiliang. "Etude des propriétés électroniques, de transport et topologiques des composés du système n(PbTe)-m(Bi2Te3) par des méthodes de premier principe." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0615.
Повний текст джерелаOwing to their low lattice thermal conductivity, compounds of the n(PbTe)-m(Bi2Te3) homologous series have been reported in the literature with good thermoelectric properties. Among these layered chalcogenides, the Pb2Bi2Te5 compound has been evidenced with two stacking sequences termed A and B. In order to understand the differences in their properties, we have determined the electronic and the thermoelectric properties of the Pb2Bi2Te5 compound with the two different stacking sequences from a series of first principles calculations using density functional theory and analysed the electronic density of these compounds by using the quantum theory of atoms in molecules. The elastic moduli, dielectric constants, Born effective charges, and phonon dispersion within the quasi-harmonic approximation have also been calculated and based on these calculations results, the thermal conductivity has been determined by solving the Boltzmann transport equation. In order to get a comprehensive set of thermoelectric properties and explain the low lattice thermal conductivity observed in these compounds, a full theoretical study of the electronic structures, transport behaviour, and lattice dynamic properties of four chalcogenides compounds (PbTe, Bi2Te3, PbBi2Te4 and PbBi4Te7) has been performed. The lattice thermal conductivity κ_l has been evaluated by calculating the second- and third-order interatomic force constants. The band engineering approach has then been implemented by applying biaxial tensile and compressive strains on various compounds of this series, namely Bi2Te3, PbBi2Te4, PbBi4Te7 and Pb2Bi2Te5 in order to improve their TE properties
Kerber, Torsten. "Dispersionskorrekturen von DFT für Festkörperprobleme." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16634.
Повний текст джерелаIn this work, the long-range dispersion correction for density functional theory is extended to periodic boundary conditions. The influence of the dispersion correction on energy and structural parameters is shown for graphite. The calculated values of the interlayer distance and the interaction energy are in good agreement with experimental ones. By a series of cluster calculations it is shown, that the dispersion correction converges very slowly with respect to the system size. The accurate description of the dispersion interaction between graphite layers requires the usage of PBE+D method applying periodic boundary conditions or embedded cluster models. For structural parameters, the PBE+D methods compares well with the accurate but computationally very demanding [MP2:PBE+CCSD(T)] method. However, the calculated reaction energies differ remarkably. The newly developed, efficient [PBE+D + MP2 + CCSD(T)] method extends the PBE+D energy by two correction terms. The first one, the MP2 correction, rectifies the over stabilization of polar structures (PBE) by a MP2 calculation at the basis set limit. The second term verifies the MP2 correction by a CCSD(T) calculation for a small cluster model. The [PBE+D + MP2 + CCSD(T)] method is applied for the reaction of C4H8 hydro carbons witr the zeolite Ferrierite. Within the pore of a zeolite, pi complexes, butyl cations and surface alkoxides are identified as minima on the potential energy surface. The isomerization of butenes is compared to the rearrangement of linear butyl cations in the gas phase. In both cases, the rate determining step is the formation of the tertial butyl cation from a methyl bridged cation. The CCSD(T) method is for the determination of accurate energy profiles required.
Miroshnichenko, O. (Olga). "Properties of binary oxides:a DFT study." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526223018.
Повний текст джерелаTiivistelmä Titaanidioksidinanopartikkeleita käytetään lukuisissa sovelluksissa. Niiden ominaisuudet poikkeavat kiinteän TiO₂:n ominaisuuksista, ja niihin vaikuttavat pinnalle väistämättä absorboituvat aineet. Tässä työssä on tutkittu OH- ja SO₄-ryhmien vaikutusta anataasirakenteisten TiO₂-nanopartikkelien ominaisuuksiin. Tällaisia ryhmiä esiintyy yleisesti nanopartikkelien pinnalla valmistusprosessien aikana. Työssä havaittiin, että nämä ryhmät muuttavat nanopartikkelien rakenteellisia ja sähköisiä ominaisuuksia, ja siten vaikuttavat myös fotoabsorptiospektriin. Baderin varaukset voidaan laskea käyttäen tiheysfunktionaaliteoriaan perustuvista laskuista saatavaa elektronitiheyttä. Niitä voidaan käyttää atomin hapetustilan laskemiseen. Tässä työssä on osoitettu, että binääristen oksidien tapauksessa laskettujen osittaisvarauksien ja hapetustilan välillä on yhteys. Tämä yhteys voitiin osoittaa käyttämällä lineaarista regressiota. Työssä tarkastellaan myös menetelmän soveltuvuutta hapetustilojen määrittämiseen sekavalenssiyhdisteille ja pinnoille
Original papers Original publications are not included in the electronic version of the dissertation. Miroshnichenko O., Auvinen S., & Alatalo M. (2015). A DFT study of the effect of OH groups on the optical, electronic, and structural properties of TiO₂ nanoparticles. Phys. Chem. Chem. Phys., 17, 5321–5327. https://doi.org/10.1039/c4cp02789b Miroshnichenko O., Posysaev S., & Alatalo M. (2016). A DFT study of the effect of SO4 groups on the properties of TiO₂ nanoparticles. Phys. Chem. Chem. Phys., 18, 33068–33076. https://doi.org/10.1039/c6cp05681d http://jultika.oulu.fi/Record/nbnfi-fe201707037608 Posysaev S., Miroshnichenko O., Alatalo M., Le D., & Rahman T.S. (2019). Oxidation states of binary oxides from data analytics of the electronic structure. Comput. Mater. Sci., 161, 403–414. https://doi.org/10.1016/j.commatsci.2019.01.046
Ciro, Guido. "TD-DFT and TD-DFT/PCM approaches to molecular electronic excited states in gas phase and in solution." Doctoral thesis, Scuola Normale Superiore, 2011. http://hdl.handle.net/11384/85797.
Повний текст джерелаLövgren, Robin. "Four-component DFT calculations of phosphorescence parameters." Thesis, Linköping University, Computational Physics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19180.
Повний текст джерелаOscillator strengths and transition energies are calculated for several mono-substitutes of benzene and naphthalene molecules. The substituents investigated are chlorine, bromine and iodine. Calculations for these molecules are presented, at the Hartree-Fock and DFT level of theory. The functional used in DFT is CAM-B3LYP.
Rowson, Quinton Anthony. "Steady-state vibration of DFT locomotive cabs." Thesis, University of Canterbury. Mechanical Engineering, 2001. http://hdl.handle.net/10092/6624.
Повний текст джерелаKnottenbelt, Sushilla. "A DFT study of metal-metal bonding." Thesis, University of York, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424531.
Повний текст джерелаReinhold, Meike. "A DFT study of organometallic reaction mechanisms." Thesis, University of York, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247161.
Повний текст джерелаКниги з теми "DFRT"
Shimizu, Takayasu. Theoretical Investigations of the Acetylene Analogues of Group 14 Elements E2X2 (E=Si-Pb, X=F-I). Marburg: Philipps-Universität Marburg, 2011.
Знайти повний текст джерелаNeubauer, André. DFT - Diskrete Fourier-Transformation. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0.
Повний текст джерелаHeideman, Michael T. Multiplicative Complexity, Convolution, and the DFT. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3912-3.
Повний текст джерелаHeideman, Michael T. Multiplicative Complexity, Convolution, and the DFT. New York, NY: Springer New York, 1988.
Знайти повний текст джерелаS, Burrus C., ed. Multiplicative complexity, convolution, and the DFT. New York: Springer-Verlag, 1988.
Знайти повний текст джерелаHenson, Van Emden. DFTS on irregular grids: The anterpolated DFT. Monterey, Calif: Naval Postgraduate School, 1992.
Знайти повний текст джерелаBudiman, Arief Suriadi. Principles of Extreme Mechanics (XM) in Design for Reliability (DfR). Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-6720-9.
Повний текст джерелаHendriks, Richard C., Timo Gerkmann, and Jesper Jensen. DFT-Domain Based Single-Microphone Noise Reduction for Speech Enhancement. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-031-02564-8.
Повний текст джерелаWang, Francis C. Digital circuit testing: A guide to DFT and other techniques. San Diego: Academic Press, 1991.
Знайти повний текст джерелаBriggs, William L. The DFT: An owner's manual for the discrete Fourier transform. Philadelphia: Society for Industrial and Applied Mathematics, 1995.
Знайти повний текст джерелаЧастини книг з теми "DFRT"
Hamza, Rafik, Alzubair Hassan, and Akash Suresh Patil. "A Lightweight Secure IoT Surveillance Framework Based on DCT-DFRT Algorithms." In Machine Learning for Cyber Security, 271–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30619-9_19.
Повний текст джерелаPetersen, Christian. "DFR/IDFR — DFT/IDFT — FFT/IFFT (Anhang J)." In Dynamik der Baukonstruktionen, 1167–91. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-80314-6_32.
Повний текст джерелаNeubauer, André. "Einleitung." In DFT - Diskrete Fourier-Transformation, 1–2. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0_1.
Повний текст джерелаNeubauer, André. "Mathematische Strukturen." In DFT - Diskrete Fourier-Transformation, 3–15. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0_2.
Повний текст джерелаNeubauer, André. "Definition der DFT." In DFT - Diskrete Fourier-Transformation, 17–46. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0_3.
Повний текст джерелаNeubauer, André. "Eigenschaften der DFT." In DFT - Diskrete Fourier-Transformation, 47–96. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0_4.
Повний текст джерелаNeubauer, André. "Korrespondenzen der DFT." In DFT - Diskrete Fourier-Transformation, 97–123. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0_5.
Повний текст джерелаNeubauer, André. "Schnelle Fourier-Transformation." In DFT - Diskrete Fourier-Transformation, 125–39. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0_6.
Повний текст джерелаNeubauer, André. "Schnelle Faltung." In DFT - Diskrete Fourier-Transformation, 141–64. Wiesbaden: Vieweg+Teubner Verlag, 2012. http://dx.doi.org/10.1007/978-3-8348-1997-0_7.
Повний текст джерелаMcFee, Brian. "DFT invertibility." In Digital Signals Theory, 145–54. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003264859-7.
Повний текст джерелаТези доповідей конференцій з теми "DFRT"
Endrinal, Lesly, Rakesh Kinger, Wilson Pradeep, Shruti Mittal, Jehan Saujauddin, Sean Ho, Jyotika Suri, Atul Chittora, Mark Kassab, and Peter Orlando. "Solving Complex Electrical Fault Isolation Challenges with Innovative DFT Strategies." In ISTFA 2024, 125–34. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0125.
Повний текст джерелаMarkowitz, Matthew, Kevin Zelaya, and Mohammad-Ali Miri. "A Compact Photonic Architecture for General Linear Transformations." In CLEO: Fundamental Science, FW3Q.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3q.4.
Повний текст джерелаDong, Xin, Yi Zhou, Xiaoxiao Wen, and Kenneth Kin-Yip Wong. "Scalable Optical Neural Network Based on Parametric Process." In CLEO: Applications and Technology, AF2D.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.af2d.3.
Повний текст джерелаSalunke, Bharti Ahuja, and Sharad Salunke. "Analysis of encrypted images using discrete fractional transforms viz. DFrFT, DFrST and DFrCT." In 2016 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2016. http://dx.doi.org/10.1109/iccsp.2016.7754390.
Повний текст джерелаQi, Ziyuan, Tianping Huang, Rajendra Kalgaonkar, and Fahd AlGhunaimi. "A Novel and Cost-Effective Dry Friction Reducer Based Slickwater for Unconventional Reservoir Stimulation." In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215263-ms.
Повний текст джерелаQi, Z. Y., T. P. Huang, R. Kalgaonkar, and Q. Sahu. "Towards Freshwater Conservation: Seawater Based Dry Friction Reducer for Slickwater Fracturing." In SPE Conference at Oman Petroleum & Energy Show. SPE, 2024. http://dx.doi.org/10.2118/218518-ms.
Повний текст джерелаXu, L. M., Z. Y. Qi, T. P. Huang, and R. Kalgaonkar. "Sustainable Approach of Turning Oily Produced Water into Slickwater for Unconventional Reservoir Development." In SPE Water Lifecycle Management Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/219021-ms.
Повний текст джерелаHaqparast, S., D. Zeinabady, and C. R. Clarkson. "Investigating the Effect of Capillary Pressure on DFIT and DFIT-FBA Analysis." In SPE Canadian Energy Technology Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/218067-ms.
Повний текст джерелаClarkson, C. R., D. Zeinabady, B. Zanganeh, and S. Haqparast. "Learnings from Over 5 Years of Design, Implementation, and Analysis of the Modified Flowback DFIT, DFIT-FBA." In SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2025. https://doi.org/10.2118/223557-ms.
Повний текст джерелаMedlar, Michael P., and Edward C. Hensel. "Validation of an Enhanced Dispersion Algorithm for Use With the Statistical Phonon Transport Model." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-8926.
Повний текст джерелаЗвіти організацій з теми "DFRT"
Wills, Ann. DFT (and DMFT) for DFT users. Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1989140.
Повний текст джерелаDodge, D. DFTT report for Signal Analysis 2023. Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1992195.
Повний текст джерелаHenson, Van Emden. DFTS on Irregular Grids: The Anterpolated DFT. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada255187.
Повний текст джерелаSamolyuk, German D., Stanislav I. Golubov, Yury N. Osetskiy, and Roger E. Stoller. DFT STUDY REVISES INTERSTITIAL CONFIGURATIONS IN HCP Zr. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1048714.
Повний текст джерелаNelson, Tammie. DFT for design and characterization of functional materials. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1772398.
Повний текст джерелаShaw, Kaden, Maia Ketteridge, and Lan Li. Comparison of DFT Basis Sets for Organic Dyes. Peeref, July 2022. http://dx.doi.org/10.54985/peeref.2207p2702048.
Повний текст джерелаSynowczynski, Jennifer, Jan W. Andzelm, and D. G. Vlachos. DFT Study of H2 Combustion on alphaAl2O3 Supported Pt Clusters. Fort Belvoir, VA: Defense Technical Information Center, November 2008. http://dx.doi.org/10.21236/ada491362.
Повний текст джерелаHuang, Aris, Debbie Wong, Elizabeth Cassity, and Jennie Chainey. Teacher development multi-year studies: Impact of COVID-19 on teaching practices in Lao PDR, Timor-Leste and Vanuatu: A discussion paper for practitioners and policymakers. Australian Council for Educational Research, 2022. http://dx.doi.org/10.37517/978-1-74286-680-2.
Повний текст джерелаLu, Shuai, and Michael CW Kintner-Meyer. Scoping Study for Demand Respose DFT II Project in Morgantown, WV. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/936762.
Повний текст джерелаPai, Sharmila V., Cary F. Chabalowski, and Betsy M. Rice. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada351780.
Повний текст джерела