Добірка наукової літератури з теми "Device on the microstrip lines"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Device on the microstrip lines".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Device on the microstrip lines"

1

Ding, Daye, Ruozhou Li, Jing Yan, Jiang Liu, Yuming Fang, and Ying Yu. "Influence of Microcracks on Silver/Polydimethylsiloxane-Based Flexible Microstrip Transmission Lines." Applied Sciences 11, no. 1 (December 22, 2020): 5. http://dx.doi.org/10.3390/app11010005.

Повний текст джерела
Анотація:
Microcrack is commonly seen as a defect in materials that affects the performance of flexible radio frequency (RF) devices. Here, we investigate the influence of microcracks on the RF characteristics of flexible microstrip by stretching flexible microstrip that is based on polydimethylsiloxane (PDMS) substrate and an Ag microparticles/PDMS (AgMP/PDMS) composite conductor. The RF characteristics of the microstrip were monitored with a variety of tensile displacements. An equivalent circuit model of the microstrip with microcracks was proposed to reveal the mechanisms. The fitting results matched the actual measurement well. In addition, the morphology of the microcracks was characterized by SEM and the direct-current (DC) resistance was monitored. The results show that the changes in equivalent circuit element parameters (R, L, C) are due to the change in the conductive pathways, which affect the transmission and reflection of the RF signals.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Novais Schianti, Juliana, Ariana L.C. Serrano, Daniel Orquiza de Carvalho, Rafael A. Penchel, Julio Mota Pinheiro, Mario R. Gongora-Rubio, and Gustavo Pamplona Rehder. "Novel Platform for Droplet Detection and Size Measurement Using Microstrip Transmission Lines." Sensors 19, no. 23 (November 28, 2019): 5216. http://dx.doi.org/10.3390/s19235216.

Повний текст джерела
Анотація:
We propose a novel platform for detecting as well as measuring the size of individual droplets in microfluidic channels using microstrip transmission lines. The most outstanding feature of our platform is that, as opposed to previous related works, its design allows for the droplet to flow in a microfluidic channel fabricated between the top strip and the ground plane of a microstrip transmission line. This provides enhanced interaction of the electromagnetic field with the detected droplets. The proposed design allows us to measure droplet size directly from the phase of the microwave signal, without the need for a resonator. The platform is based on low temperature co-fired ceramic (LTCC), which makes it more compatible with Radiofrequency (RF) and microwave technology than platforms used in previous works. With this platform, we are able to measure droplets as small as 150 µm in radius. It is worth pointing out that our device could also be used for detection, counting and measurement of other microscopic objects.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sun, Hai. "Calculation of Transmission Characteristics of Shielded Microstrip Lines Filled with Anisotropic Left-Handed and Right-Handed Materials." Journal of Nanoelectronics and Optoelectronics 16, no. 10 (October 1, 2021): 1610–17. http://dx.doi.org/10.1166/jno.2021.3122.

Повний текст джерела
Анотація:
In this paper, the edge-based finite element formula for calculating the transmission characteristics of shielded microstrip lines filled with anisotropic materials with magnetic field as working variable is derived in detail. The filling materials include anisotropic left-handed materials and anisotropic right-handed materials, and the transmission characteristics include dominant mode cutoff wavelength and electric field structure. We mainly take Rectangular-shaped, V-shaped and Trapezoidal-shaped shielded microstrip lines as examples to calculate the transmission characteristics. The formulas and calculation examples derived in this paper have strong guiding significance for the application of anisotropic left-handed and right-handed materials in inhomogeneous transmission lines, which will further expand the use of shielded microstrip lines in optical devices such as electro-optic waveguide modulators.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ribate, Mohamed, Rachid Mandry, Jamal Zbitou, Larbi El Abdellaoui, Ahmed Errkik, Mohamed Latrach, and Ahmed Lakhssassi. "Design of L-S band broadband power amplifier using microstip lines." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 5 (October 1, 2020): 5400. http://dx.doi.org/10.11591/ijece.v10i5.pp5400-5408.

Повний текст джерела
Анотація:
This contribution introduces a novel broadband power amplifier design, operating in the frequency band ranging from 1.5 GHz to 3 GHz which cover the mainstream applications running in L and S bands. Both matching and biasing networks are synthesized by using microstrip transmission lines. In order to provide a wide bandwidth, two broadband matching techniques are deployed for this purpose, the first technique is an approximate transformation of a previously designed lumped elements matching networks into microstrip matching circuits, and the second technique is a binomial multi-sections quarter wave impedance transformer. The proposed work is based on ATF-13786 active device. The simulation results depict a maximum power gain of 16.40 dB with an excellent input and output matching across 1.5 GHz ~ 3 GHz. At 2.2 GHz, the introduced BPA achieves a saturated output power of 16.26 dBm with a PAE of 21.74%, and a 1-dB compression point of 4.5 dBm input power level. The whole circuitry is unconditionally stable over the overall bandwidth. By considering the broadband matching, the proposed design compares positively with the most recently published BPA.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zapata-Londoño, J., F. Umaña-Idárraga, J. Morales-Guerra, S. Arias-Gómez, C. Valencia-Balvin, and E. Reyes-Vera. "Differential microwave sensor based on microstrip lines loaded with a split-ring resonator for dielectric characterization of materials." Journal of Physics: Conference Series 2118, no. 1 (November 1, 2021): 012004. http://dx.doi.org/10.1088/1742-6596/2118/1/012004.

Повний текст джерела
Анотація:
Abstract In this work, we propose a microwave sensor that allows the characterization of dielectric materials based on a differential configuration. A microstrip permittivity sensor of the surrounding material is proposed using a split ring-resonator to measure differentially. The geometry was optimized and was numerically analyzed using CST STUDIO. The numerical analysis of the metamaterial unit cells is carried out first, to determine the operating band. After that, the metamaterial cell was employed to design the differential microstrip permittivity sensor. The obtained results reveal that the proposed sensor has the capability to characterize different materials whose relative dielectric permittivity’s are in the range of 9.8 to 80 with great performance. The device has a total size of 86 mm × 60 mm and operates around 3 GHz. In this band, the sensor reaches a sensibility of 2.89 MHz and a Q-factor of 70.15. Thus, this work shows a compact, reusable, label-free, and non-destructive microwave sensing device and paves the way for high accuracy sensing of the dielectric properties of different materials due to its high- Q-factor as well as high sensitivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Князев, Н. С., А. И. Малкин та В. А. Чечеткин. "Методика измерения потерь в направляемых линиях передачи в миллиметровом диапазоне частот". Письма в журнал технической физики 48, № 5 (2022): 36. http://dx.doi.org/10.21883/pjtf.2022.05.52155.18981.

Повний текст джерела
Анотація:
An experimental method was developed to determine losses in microstrip and coplanar transmission lines for devices operating in the frequency range 77 - 81 GHz. The parameters of the scattering matrices are obtained using a vector network analyzer and frequency upconverters. The calculation of losses in waveguide-coplanar and coplanar-microstrip junctions is made.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Xia Li, Qing Zhang, and Shu Yan. "Design of an Active Phase Conjugation Circuit for Retrodirective Array in UHF Band." Applied Mechanics and Materials 43 (December 2010): 201–6. http://dx.doi.org/10.4028/www.scientific.net/amm.43.201.

Повний текст джерела
Анотація:
An active phase conjugation circuit of retrodirective array which can be used in UHF band (890-960MHz) has been designed. Circuit of the retrodirective array consists of filters, mixers, dividers and other microwave devices. In this paper, microstrip filters and mixers are primarily designed. Divided matching circuit will be designed appropriate on the basis of the antenna element. Filters consist of microstrip coupled lines to conform with microstrip antenna arrays; to suppress the effect of RF input signals to output transmitted signals, selecting the image-rejection mixers. Simulation results of ADS show that all of the designed active devices display good performances.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Savenkov, G. G., V. P. Razinkin, and V. A. Khrustalev. "WIDEBAND UHF LOADS BASED ON STEPPED-HETEROGENEOUS LINES WITH LOSSES." Issues of radio electronics, no. 4 (April 20, 2018): 68–72. http://dx.doi.org/10.21778/2218-5453-2018-4-68-72.

Повний текст джерела
Анотація:
The relevance of wideband load devices application in the modern UHF equipment is described in this paper. The basic structure and principle of operation of microstrip load are described. Design methods of high power wideband UHF loads in a series connection of line segments with increasing value of dissipative losses are considered in this paper. The stepped-heterogeneous loads frequency properties analysis based on one-dimensional transmission lines theory and numeric electrodynamic modelling is carried out. It was shown, that considered loads based on large length transmit lines with dissipative losses have good matching quality on high frequencies, which worsen with frequency reduction. Frequency characteristics, calculated via numeric electrodynamic modelling method of one-step and two-step centimeter wavelength microstrip loads are represented. A convergence of modelling and theoretic characteristics is shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Ruozhou, Jing Yan, Yuming Fang, Xingye Fan, Linkun Sheng, Daye Ding, Xiaoxing Yin, and Ying Yu. "Laser-Scribed Lossy Microstrip Lines for Radio Frequency Applications." Applied Sciences 9, no. 3 (January 26, 2019): 415. http://dx.doi.org/10.3390/app9030415.

Повний текст джерела
Анотація:
Laser-direct writing has become an alternative method to fabricate flexible electronics, whereas the resistive nature of laser-scribed conductors may distort the radio-frequency characteristics of circuits for high-frequency applications. We demonstrate that the transmission characteristics of microstrip lines are insensitive to the resistance of laser-scripted conductors when the sheet resistance is not above 0.32 Ω/□. On the other hand, the transmission and reflection characteristics of the MS lines can be simply modified through the accommodation of the resistance of the conductors, because a laser can trigger the sintering and melting of laser produced silver nanostructures. This could provide an alternative way to fabricate radio frequency (RF) resistors and promote their applications to flexible radio-frequency devices and systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

UEDA, TETSUZO, YASUHIRO UEMOTO, TSUYOSHI TANAKA, and DAISUKE UEDA. "GaN TRANSISTORS FOR POWER SWITCHING AND MILLIMETER-WAVE APPLICATIONS." International Journal of High Speed Electronics and Systems 19, no. 01 (March 2009): 145–52. http://dx.doi.org/10.1142/s0129156409006199.

Повний текст джерела
Анотація:
We review our state-of-the-art GaN -based device technologies for power switching at low frequencies and for future millimeter-wave communication systems. These two applications are emerging in addition to the power amplifiers at microwave frequencies which have been already commercialized for cellular base stations. Technical issues of the power switching GaN device include lowering the fabrication cost, normally-off operation and further increase of the breakdown voltages extracting full potential of GaN -based materials. We establish flat and crack-free epitaxial growth of GaN on Si which can reduce the chip cost. Our novel device structure called Gate Injection Transistor (GIT) achieves normally-off operation with high enough drain current utilizing conductivity modulation. Here we also present the world highest breakdown voltage of 10400V in AlGaN / GaN HFETs. In this paper, we also present high frequency GaN -based devices for millimeter-wave applications. Short-gate MIS-HFETs using in-situ SiN as gate insulators achieve high fmax up to 203GHz. Successful integration of low-loss microstrip lines with via-holes onto sapphire enables compact 3-stage K -band amplifier MMIC of which the small-signal gain is as high as 22dB at 26GHz. The presented devices are promising for the two future emerging applications demonstrating high enough potential of GaN -based transistors.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Device on the microstrip lines"

1

Pomarnacki, Raimondas. "Investigation of the electrodynamic retard devices using parallel computer systems." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20120106_101019-38158.

Повний текст джерела
Анотація:
An analysis using numerical methods can calculate electrical and construction characteristics parameters of microwave devices quite accurately. However, numerical methods require a lot of computation resources and time for calculations to be made. Rapid perfection of the computer technologies and software with implementation of the numerical methods has laid down the conditions to the rapid design of the microwave devices using computers.
Disertacijoje nagrinėjamos mikrobangų įtaisų analizės ir sintezės proble-mos, taikant lygiagrečiąsias kompiuterines sistemas. Pagrindiniai tyrimo objektai yra daugialaidės mikrojuostelinės linijos ir meandrinės mikrojuostelinės vėlinimo linijos. Šie objektai leidžia perduoti, sinchronizuoti bei vėlinti siunčiamus signalus ir yra neatsiejama dalis daugelio mikrobangų prietaisų. Jų operatyvi ir tiksli analizė bei sintezė sąlygoja įtaisų kūrimo spartinimą. Pagrindinis disertacijos tikslas – sukurti lygiagrečiąsias metodikas ir algoritmus, skirtus sparčiai ir tiksliai atlikti minėtų linijų analizę ir sintezę. Sukurtų algoritmų ir metodikų taikymo sritis – mikrobangų įtaisų modeliavimo ir automatizuoto projektavimo progra-minė įranga.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

SILVA, Leonardo Morais da. "Projeto de Acopladores Híbridos em Quadratura compactos por meio de linhas de transmissões artificiais." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/19878.

Повний текст джерела
Анотація:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-20T14:10:52Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação_Leonardo_digital.pdf: 8248572 bytes, checksum: 8eaff05e901397f38f65a651841ef367 (MD5)
Made available in DSpace on 2017-07-20T14:10:52Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação_Leonardo_digital.pdf: 8248572 bytes, checksum: 8eaff05e901397f38f65a651841ef367 (MD5) Previous issue date: 2015-01-22
CAPES
O presente trabalho aborda o desenvolvimento e a implementação de acopladores híbridos em quadratura mais compactos e com largura de banda e desempenho similares as do acoplador branch-line convencional. Para isso, fez-se uso de uma classe de estruturas denominadas linhas de transmissão artificiais (LTA). Uma nova estrutura desse tipo, composta por três linhas de transmissão conectadas em cascata, é analisada e utilizada neste trabalho. Foram derivadas equações matemáticas para o projeto deste tipo de estrutura que podem ser utilizadas para obter LTAs com uma matriz de espalhamento idêntica, para uma dada frequência de operação, a de uma linha de transmissão com uma impedância característica e comprimento elétrico quaisquer. Essa técnica foi aplicada no projeto de acopladores híbridos em quadratura em microfita para as bandas GSM em 920 MHz e ISM em 2.45 GHz usando-se o substrato FR-4 com espessura de 1.6 mm. Obteve-se dispositivos com áreas aproximadamente 70% menor do que a área do acoplador branch-line convencional operando em 920 MHz e aproximadamente 50% menor do que o acoplador de 2.45 GHz. Os acopladores obtidos foram simulados, fabricados e medidos, mostrando que os seus desempenhos são comparáveis aos dos acopladores convencionais. A técnica desenvolvida neste trabalho é geral o suficiente para ser aplicada ao projeto de outros dispositivos que usem trechos de linhas de transmissão.
This thesis is concerned with the design and implementation of compact hybrid couplers with similar bandwidth and performance to the conventional branch-line coupler. To achieve this, a class of structures, called artificial transmission line (ATL), was used. A new structure of this type, made of three transmission lines connected in cascade, is analyzed and used. Mathematical equations have been derived for the design of this type of structure that can be used to obtain ATLs with an identical scattering matrix, for a given frequency of operation, to that of a transmission line with a given characteristic impedance and electrical length. This technique was applied in the design of microstrip quadrature hybrid couplers for the 920 MHz GSM band and for the 2.45 GHz ISM band using a 1.6 mm-thick FR-4 substrate. These couplers have surface areas approximately 70% smaller than the area of the conventional branch-line coupler operating at 920 MHz and approximately 50% for the 2.45 GHz coupler. The couplers obtained were simulated, manufactured and tested, showing that their performances are comparable to the conventional coupler. The technique developed here is general enough to be applied to the design of other devices using transmission line sections.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Simpson, John P. "Radiation from microstrip transmission lines." Thesis, University of Ottawa (Canada), 1988. http://hdl.handle.net/10393/5435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Luong, Duc Long. "Aide à la conception de lignes microrubans à onde lente sur substrat structuré dans les bandes RF et millimétriques : applications aux coupleurs et dispositifs passifs non-réciproques." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSES007/document.

Повний текст джерела
Анотація:
L’objectif de ces travaux est pour d’apporter des solutions innovantes à la réalisation de dispositifs passifs performants et compacts, susceptibles d’intéresser les concepteurs de circuits RF et millimétriques. Ces dispositifs sont basés notamment sur des lignes microrubans à ondes lentes sur substrat structuré, que cela soit sur PCB avec des vias borgnes pour la RF, ou nanostructurés sur membranes à nanofils pour le millimétrique. Les travaux complets comprennent (i) une analyse de la topologie, (ii) un développement du modèle équivalent validée par des simulations électromagnétiques (HFSSTM) et des mesures sur PCB et sur des membranes brésiliennes en millimétrique, (iii) des abaques de conceptions et (iv) des applications à la conception des nouveaux dispositifs passifs miniaturisés. Notre lignes offrent une grande souplesse de conception et peuvent être placées indifféremment sur le substrat structuré sans modification de leurs paramètres électriques. Un nouveau coupleur hybride miniaturisé par l’utilisation de cette ligne est présenté comme une preuve de concept. Pour aller plus loin, une étude comparable des structures de lignes microrubans couplées à ondes lentes est développée. Le principe du couplage sur substrat structuré est d’abord exposé avec une présentation de ses avantages et inconvénients, puis un modèle est également proposé dans le but de réaliser un coupleur co-directif 0-dB miniaturisé par l’utilisation de ces lignes. De plus, un des parties essentielles de ces travaux concerne l’utilisation de la structure microruban à onde lente pour la miniaturisation de dispositifs passifs non-réciproques : un nouvel isolateur microruban compact avec l’introduction de vias dans le ferrite et une nouvelle conception de circulateur miniaturisé sur le substrat ferrite-diélectrique avec un réseau de vias borgnes
This work focuses on providing innovate solutions into the realization of high-quality and compact passive devices for designer on RF and millimeter-wave bands. These devices are based on slow-wave microstrip lines on structured substrate, either on PCB with blind vias for RF applications, or on metallic nanowire membrane. The complete works include (i) an analysis of topology, (ii) a development of equivalent model validated by the electromagnetic simulations (HFSSTM) and the measurements, (iii) design charts and (iv) applications on design of novel miniaturized passive devices. These transmission lines give the flexibility for designers and capability to be indifferently placed on structured substrate without any impact on their electrical parameters. A novel miniaturized hybrid coupler using this line is proposed, as a proof of concept. In the other hand, a comparable study on the structure of slow-wave coupled microstrip lines is developed. The principal of coupling on structured substrate is shown for their advantages and drawbacks and then an electrical model is also proposed in order to realize a miniaturized 0-dB forward-wave directional coupler using these lines. Moreover, an essential part of this thesis concerns the utilization of the slow-wave microstrip structure to miniaturize the non-reciprocal passive devices: a novel microstrip isolator with the introduction of vias inside the ferrite and a novel design of the miniaturized circulator on a ferrite-dielectric substrate with blind vias
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Apaydin, Nil. "Novel Implementations of Coupled Microstrip Lines on Magnetic Substrates." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373897365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tang, Guanghua. "High temperature thin film superconductors and microstrip spiral delay lines." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-01242009-063221/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dumbell, Keith David. "Theoretical and experimental investigation of shield effects in microstrip." Thesis, University of Bath, 1989. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wong, Man Fai. "A novel compact microstrip type composite right/left handed transmission line (CRLH TL) and its applications /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?mphil-ee-b23750467f.pdf.

Повний текст джерела
Анотація:
Thesis (M.Phil.)--City University of Hong Kong, 2009.
"Submitted to Department of Electronic Engineering in partial fulfillment of the requirements for the degree of Master of Philosophy." Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mustafa, Incebacak. "Design Of Series-fed Printed Slot Antenna Arrays Excited By Microstrip Lines." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612447/index.pdf.

Повний текст джерела
Анотація:
Series-fed printed slot antenna arrays excited by microstrip lines are low profile, easy to manufacture, low cost structures that found use in applications that doesn&rsquo
t require high power levels with having advantage of easy integration with microwave front-end circuitry. In this thesis, design and analysis of microstrip line fed slot antenna arrays are investigated. First an equivalent circuit model that ignores mutual coupling effects between slots is studied. A 6-element array is designed by using this equivalent circuit model. From the measurement and electromagnetic simulation results of this array, it is concluded that mutual coupling effects should be considered in order to achieve a successful design that meets the design specifications related to the main beam direction and sidelobe levels of the antenna. Next, an improved equivalent circuit model proposed for stripline fed slot antenna arrays is studied. It is observed that, the mutual coupling effects are incorporated into the equivalent model through the utilization of active impedance concept. Finally, the design equations proposed in the improved equivalent circuit model are derived for the microstrip line fed slot antenna array structure. To demonstrate the validity and the accuracy of the derived design equations, results obtained by the proposed analysis method are compared with simulation and measurement results. It is concluded that the proposed method successfully predicts the radiation pattern of the array by including the mutual coupling effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tan, Song. "Design of compact and dual-band microwave microstrip balun /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20TAN.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Device on the microstrip lines"

1

Garg, Ramesh. Microstrip lines and slotlines. 3rd ed. Boston: Artech House, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gardiol, Fred E. Microstrip circuits. New York: Wiley, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schrader, David H. Microstrip circuit analysis. Upper Saddle River, N.J: Prentice Hall PTR, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Trinogga, L. A. Practical microstrip circuit design. New York: E. Horwood, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Practical microstrip design and applications. Boston, MA: Artech House, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Edwards, T. C. Foundations for microstrip circuit design. 2nd ed. Chichester, West Sussex, England: Wiley, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Design of nonplanar microstrip antennas and transmission lines. New York: Wiley, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A, Zakarevičius R., ed. Microwave engineering using microstrip circuits. New York: Prentice Hall, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

B, Steer M., and Edwards T. C, eds. Foundations of interconnect and microstrip design. 3rd ed. Chichester: John Wiley, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hong, Jia-Sheng. Microstrip filters for RF/microwave applications. 2nd ed. Hoboken, N.J: Wiley, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Device on the microstrip lines"

1

Culbertson, J. C., H. S. Newman, U. Strom, J. M. Pond, D. B. Chrisey, J. S. Horwitz, and S. A. Wolf. "Light Detection Using High-T c Microstrip Lines." In Superconducting Devices and Their Applications, 180–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hessel, A. "Broadbanding Guide Lines of Strip-Element Microstrip Phased Arrays." In Directions for the Next Generation of MMIC Devices and Systems, 131–44. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1480-4_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gupta, Samuder, Subhash Chander, and Ashok Kumar. "A Method to Characterize Microstrip Lines for Design of MMICs up to 40 GHz." In Physics of Semiconductor Devices, 149–51. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marqués, R., and F. Mesa. "2-D Integral Spectral Domain Analysis of Leaky Modes in Covered and Uncovered Microstrip Lines." In Directions for the Next Generation of MMIC Devices and Systems, 299–306. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1480-4_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Awang, Zaiki. "Microstrip and Related Transmission Lines." In Microwave Systems Design, 101–46. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4451-24-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Edwards, T. C., and M. B. Steer. "Parallel-Coupled Lines and Directional Couplers." In Foundations of Interconnect and Microstrip Design, 269–314. West Sussex, England: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118894514.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ohshima, Shigetoshi, Katsuro Okuyama, Kunio Sawaya, and Keisuke Noguchi. "Surface Resistance of the BSCCO Microstrip Lines." In Advances in Superconductivity IV, 965–68. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-68195-3_211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carin, Lawrence. "Leaky-Waves on Multiconductor Microstrip Transmission Lines." In Directions in Electromagnetic Wave Modeling, 319–27. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3677-6_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kiang, Jean-Fu, Hsiao-Lun Hsu, and Yuan-Shun Cheng. "Microstrip Lines with a Periodically Corrugated Ground Plane." In Novel Technologies for Microwave and Millimeter — Wave Applications, 231–55. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4156-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kanade, Tarun Kumar, Alok Rastogi, Sunil Mishra, and Vijay D. Chaudhari. "Analysis of Rectangular Microstrip Array Antenna Fed Through Microstrip Lines with Change in Width." In Advances in Intelligent Systems and Computing, 487–96. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2008-9_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Device on the microstrip lines"

1

Vitkov, M. G., and E. M. Chistov. "Using of bridge microstrip directional coupler with short-circuit lines in power control device." In 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Letavin, Denis A. "Compact Dual-Frequency Microstrip Branch-Line Coupler Using Artificial Transmission Lines." In 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2018. http://dx.doi.org/10.1109/edm.2018.8434988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Unnikrishnan, Divya, Darine Kaddour, and Smail Tedjini. "Microstrip transmission lines and antennas on Molded Interconnect Devices materials." In 2013 13th Mediterranean Microwave Symposium (MMS). IEEE, 2013. http://dx.doi.org/10.1109/mms.2013.6663072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rejaei, B., K. T. Ng, C. Floerkemeier, N. P. Pham, L. Nanver, and J. N. Burghartz. "Integrated Transmission Lines on High-Resistivity Silicon: Coplanar Waveguides or Microstrips?" In 30th European Solid-State Device Research Conference. IEEE, 2000. http://dx.doi.org/10.1109/essderc.2000.194814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Odagawa, Hiroyuki, Takaoki Taniguchi, Yoshifumi Shimoshio, Yoshitada Iyama, Ichirou Oota, and Kazuhiko Yamanouchi. "Low loss wide band microwave filters using SAW devices combined with microstrip lines." In 2011 IEEE International Ultrasonics Symposium (IUS). IEEE, 2011. http://dx.doi.org/10.1109/ultsym.2011.0328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Li, Konstantin Lomakin, Alexander Job, Robert Suess-Wolf, Gerald Gold, and Jorg Franke. "Simulation Assisted Characterization of Attenuation at Microstrip Transmission Lines fabricated by Laser Direct Structuring." In 2021 14th International Congress Molded Interconnect Devices (MID). IEEE, 2021. http://dx.doi.org/10.1109/mid50463.2021.9361617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Belousov, Anton O., Alexander M. Zabolotsky, and Timur T. Gazizov. "Experimental confirmation of the modal filtration in four- and five-conductor microstrip lines." In 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2017. http://dx.doi.org/10.1109/edm.2017.7981705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Solomko, Valentyn, Oguzhan Oezdamar, Robert Weigel, and Amelie Hagelauer. "Model of Substrate Capacitance of MOSFET RF Switch Inspired by Inverted Microstrip Line." In ESSDERC 2021 - IEEE 51st European Solid-State Device Research Conference (ESSDERC). IEEE, 2021. http://dx.doi.org/10.1109/essderc53440.2021.9631806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rana, Md Masud, Md Rabiul Islam, Md Kamal Hosain, and Abbas Z. Kouzani. "Parametric investigation and measurement of near end and far end crosstalk in multiconductor microstrip transmission lines." In 2011 International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). IEEE, 2011. http://dx.doi.org/10.1109/asemd.2011.6145105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Suhara, Michihiko, Akito Shimizu, and Tsugunori Okumura. "Dispersion Design of a Left-Handed Microstrip Line with Planar Double-Stub and Split-Ring Structures for Leaky Wave Radiation toward Functional RF Wireless Interconnect." In 2007 65th Annual Device Research Conference. IEEE, 2007. http://dx.doi.org/10.1109/drc.2007.4373660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Device on the microstrip lines"

1

Johnk, Robert T. Crosstalk between microstrip transmission lines. Gaithersburg, MD: National Institute of Standards and Technology, 1993. http://dx.doi.org/10.6028/nist.ir.5015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hill, D. A. Radiated emissions and immunity of microstrip transmission lines :. Gaithersburg, MD: National Bureau of Standards, 1995. http://dx.doi.org/10.6028/nist.tn.1377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Elsherbeni, Atef Z., Vicente Rodriguez-Pereyra, and Charles E. Smith. The Effect of an Air Gap on the Coupling Between Two Planar Microstrip Lines. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії