Зміст
Добірка наукової літератури з теми "Densité – Dynamique – Modèles mathématiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Densité – Dynamique – Modèles mathématiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Densité – Dynamique – Modèles mathématiques"
Micheli, Giuseppe A. "Cycles post-transitionnels et modèles proie-prédateur." Articles 17, no. 2 (October 24, 2008): 153–73. http://dx.doi.org/10.7202/600637ar.
Повний текст джерелаJauze, Jean-Michel. "L’urbanisation de l’Île de la Réunion : évolution et modèles de villes." Cahiers de géographie du Québec 42, no. 116 (April 12, 2005): 195–221. http://dx.doi.org/10.7202/022737ar.
Повний текст джерелаHOCH, T., P. PRADEL, and J. AGABRIEL. "Modélisation de la croissance de bovins : évolution des modèles et applications." INRAE Productions Animales 17, no. 4 (October 5, 2004): 303–14. http://dx.doi.org/10.20870/productions-animales.2004.17.4.3605.
Повний текст джерелаOpatowski, L., M. Domenech de Cellès, S. Souissi, L. Kardaś-Słoma, L. Temime, and D. Guillemot. "Contribution des modèles mathématiques à la compréhension de la dynamique de diffusion des bactéries multi-résistantes à l’hôpital." Journal des Anti-infectieux 15, no. 4 (December 2013): 193–203. http://dx.doi.org/10.1016/j.antinf.2013.09.002.
Повний текст джерелаMalavoi, J., and Y. Souchon. "Hydrologie et dynamique hydroécologique des cours d'eau." Revue des sciences de l'eau 5, no. 2 (April 12, 2005): 247–61. http://dx.doi.org/10.7202/705131ar.
Повний текст джерелаBournet, P. E., D. Dartus, B. Tassin, and B. Vincon-Leite. "Ondes internes du lac du Bourget: analyse des observations par des modèles linéaires." Revue des sciences de l'eau 9, no. 2 (April 12, 2005): 247–66. http://dx.doi.org/10.7202/705252ar.
Повний текст джерелаBROSSARD, L., N. QUINIOU, J. Y. DOURMAD, and J. VAN MILGEN. "Prise en compte de la variabilité individuelle dans la modélisation de la réponse des porcs en croissance aux apports alimentaires." INRAE Productions Animales 25, no. 1 (March 31, 2012): 17–28. http://dx.doi.org/10.20870/productions-animales.2012.25.1.3192.
Повний текст джерелаDUCROT, C., J. CABARET, S. TOUZEAU, D. ABRIAL, C. JACOB, H. QUIQUAMPOIX, J. GROSCLAUDE, and L. GRUNER. "Epidémiologie de la tremblante et de l’Encéphalopathie Spongiforme Bovine en France." INRAE Productions Animales 17, HS (December 20, 2004): 67–76. http://dx.doi.org/10.20870/productions-animales.2004.17.hs.3630.
Повний текст джерелаKafka, Victor, Sylvie Gauthier, and Yves Bergeron. "Fire impacts and crowning in the boreal forest: study of a large wildfire in western Quebec." International Journal of Wildland Fire 10, no. 2 (2001): 119. http://dx.doi.org/10.1071/wf01012.
Повний текст джерелаCanivet, Guy. "La Convergence des Systèmes Juridiques du Point de Vue du Droit Privé Français." European Review of Private Law 11, Issue 1 (February 1, 2003): 50–65. http://dx.doi.org/10.54648/erpl2003004.
Повний текст джерелаДисертації з теми "Densité – Dynamique – Modèles mathématiques"
Saudreau, Marc. "Analyse de la dynamique des jets à densité variable en écoulement cocourant pulsé." Toulouse, INPT, 2002. http://www.theses.fr/2002INPT002H.
Повний текст джерелаHermet, Patrick. "Modélisation de la dynamique vibrationnelle des oligothiophènes." Montpellier 2, 2004. http://www.theses.fr/2004MON20168.
Повний текст джерелаCouto-Barba, Laurent. "Contribution à la simulation du mélange turbulent par la schématisation de fonctions densité de probabilité." Pau, 2005. http://www.theses.fr/2005PAUU3014.
Повний текст джерелаThis thesis considers a method which simplifies the mixing at different levels, depending on turbulence length and time scales. The analysis is here restricted to the case of homogeneous and isotropic turbulent flows. The model is based on elementary fluid particles considered in their different levels of neighborhoods. For each vicinity level, a specific mixing model is applied. The approach takes into account - from small to high length scales - laminar diffusion (Fick diffusion process), internal mixing into fluid particle (Kerstein model, 1988), external mixing between fluid particles contained into a same eulerian volume (inspired from the LMSE model developpef by Dopazo, 1974, or from the Curl model,1963) and turbulent dispersion (where lagrangian moves are computed). An internal clock organizes the sequence of applications of the different models. Each one is applied instantaneously at different periodic times. Two different cases have been studied. The first case is the time evolution of mixing between two components initially introduced in two different areas. The numerical results have been compared to those of Direct Numerical Simulations by Eswaran & Pope (1988). The time evolution of Probability Density Functions, and the evolutions of variance, symetry coefficient and flatness coefficient have been compared. A parametrical study of the parameter governing the sequence of application of the different models has been performed. The second case considers thermal mixing layers emitted from one or two hot films placed inside a grid turbulence with uniform mean flow. Numerical results are in qualitative agreement with the experimental results by Warhaft (1984)
Reveillon, Julien. "Simulation dynamique des grandes structures appliquée aux flammes turbulentes non-prémélangées." Rouen, 1996. http://www.theses.fr/1996ROUES071.
Повний текст джерелаBeyer, Robert. "Modélisation téléonomique de la dynamique de croissance des plantes à partir du concept de densité foliairé." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC037/document.
Повний текст джерелаFunctional-structural plant growth models (FSPMs) have emerged as the synthesis of mechanistic process-based models, and geometry-focussed architectural models. In terms of spatial scale, these models can essentially be divided into small-scale models featuring a topological architecture – often facing data-demanding parametrisations, parameter sensitivity, as well as computational heaviness, which imposes problematic limits to the age and size of individuals than can be simulated – and large-scale models based on a description of crown shape in terms of rigid structures such as empirical crown envelopes – commonly struggling to allow for spatial variability and plasticity in crown structure and shape in response to local biotic or abiotic growth conditions.In response to these limitations, and motivated not least by the success-story of spatial density approaches in theoretical populations ecology, the spatial distribution of foliage in plants in this thesis is characterised in terms of spatial leaf density, which allows for a completely local description that is a priori unrestricted in terms of plasticity, while being robust and computationally efficient. The thesis presents dynamic growth models specifically developed for crops and trees, exploring different mathematical frameworks in continuous and discrete time, while critically discussing their conceptual suitability and exploring analytical simplifications and solutions to accelerate simulations.The law of Beer-Lambert on the passing of light though an absorbing medium allows to infer the local light conditions based on which local biomass production can be computed via a radiation use efficiency. A key unifying mechanism of the different models is the local expansion of leaf density in the direction of the light gradient, which coincides with the direction most promising with regard to future biomass productivity. This aspect falls into the line of teleonomic and optimization-oriented plant growth models, and allows to set aside the otherwise complex modelling of branching processes. The principle induces an expansive horizontal and upward-directed motion of foliage. Moreover, it mechanistically accounts for a slow-down of the horizontal expansion as soon as a neighbouring competitor's crown is reached, since the appropriate region is already shaded, implying a corresponding adaptation of the light gradient. This automatically results in narrower crowns in scenarios of increased competition, ultimately decreasing biomass production and future growth due to lesser amount of intercepted light. In an extension, the impact of water availability is incorporated into the previously light-only dependency of biomass production by means of a novel hydraulic model describing the mechanistic balancing of leaf water potential and transpiration in the context of stomatal control. The allocation of produced biomass to other plant compartments such as roots and above-ground wood, e.g. by means of the pipe model theory, is readily coupled to leaf density dynamics.Simulation results are compared against a variety of empirical observations, ranging from long-term forest inventory data to laser-recorded spatial data, covering multiple abiotic environmental conditions and growth resources as well as stand densities and thus degrees of competition. The models generate a series of complex emergent properties including the realistic prediction of biometric growth parameters, the spontaneous adaptability and plasticity of crown morphologies in different competitive scenarios, the empirically documented insensitivity of height to stand density, the accurate deceleration of height growth, as well as popular allometric relationships – altogether demonstrating the potential of leaf density based approaches for efficient and robust plant growth modelling
Ibrahim, Hassan. "Analyse de systèmes parabolique/Hamilton-Jacobi modélisant la dynamique de densités de dislocations en domaine borné." Phd thesis, Ecole des Ponts ParisTech, 2008. http://pastel.archives-ouvertes.fr/pastel-00004186.
Повний текст джерелаMartínez, von Dossow Carlos. "Modélisation, analyse et contrôle de la croissance microalgale en cultures à haute densité." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS255.pdf.
Повний текст джерелаMicroalgae are photosynthetic microorganisms with a high biotechnological potential. They have many industrial applications, including biofuel and wastewater treatment. Nevertheless, controlling optimal growth conditions for full-scale outdoor cultivation of microalgae is challenging. Mathematical models based on differential equations are of great help to better manage these nonlinear and dynamical systems. The aim of this thesis is to better understand how different factors such as the availability of light and nutrients affect microalgae growth in high density cultures. In a first part, we study the impacts of photo-inhibition and medium turbidity when microalgae growth is only limited by light. Then, we analyse the long-term behaviour of a microalgae population accounting both for nutrient and light limitations. We determine the conditions to avoid population extinction. In particular, we show that continuous periodic culture operation (periodic dilution rate and nutrient supply) under periodic fluctuations of environmental conditions (such as the light source or temperature) leads to a periodic behavior. In a third part, we show how to maximize microalgae productivity. We determine a strategy for shading outdoor cultures to protect microalgae from excess light. We also find the optimal incident light for photobioreactors operated at steady state. In the context of wastewater treatment, we determine numerically the optimal depth of a culture limited by light and nutrient. Finally, the last part of this work proposes and validates a mathematical model accounting for light, nitrogen, and phosphorus limitations, including photoacclimation dynamics
Fekih-Salem, Radouane. "Modèles Mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2013. http://tel.archives-ouvertes.fr/tel-00940100.
Повний текст джерелаOussaily, Aya. "Étude théorique et numérique des systèmes modélisant la dynamique des densités des dislocations." Thesis, Compiègne, 2021. https://bibliotheque.utc.fr/Default/doc/SYRACUSE/2021COMP2634.
Повний текст джерелаIn this thesis, we are interested in the theoretical and numerical studies of dislocations densities. Dislocations are linear defects that move in crystals when those are subjected to exterior stress. More generally, the dynamics of dislocations densities are described by a system of transport equations where the velocity field depends non locally on the dislocations densities. First, we are interested in the study of a one dimensional submodel of a (2 × 2) Hamilton-Jacobi system introduced by Groma and Balogh in 1999, proposed in the two dimensional case. For this system, we prove global existence and uniqueness results. Adding to that, considering nondecreasing initial data, we study this problem numerically by proposing a finite difference implicit scheme for which we show the convergence. Then, inspired by the first work, we show a more general theory which allows us to get similar results of existence and uniqueness of solution in the case of one dimensional eikonal systems. By considering nondecreasing initial data, we study this problem numerically. Under certain conditions on the velocity, we propose a finite difference implicit scheme allowing us to calculate the discrete solution and simulate then the dislocations dynamics via this model
Wu, Yi. "Topology optimization in structural dynamics : vibrations, fracture resistance and uncertainties." Thesis, Paris Est, 2022. http://www.theses.fr/2022PESC2007.
Повний текст джерелаThe objective of this thesis is to develop density based-topology optimization methods for several challenging dynamic structural problems. First, we propose a normalization strategy for elastodynamics to obtain optimized material distributions of the structures that reduces frequency response and improves the numerical stabilities of the bi-directional evolutionary structural optimization (BESO). Then, to take into account uncertainties in practical engineering problems, a hybrid interval uncertainty model is employed to efficiently model uncertainties in dynamic structural optimization. A perturbation method is developed to implement an uncertainty-insensitive robust dynamic topology optimization in a form that greatly reduces the computational costs. In addition, we introduce a model of interval field uncertainty into dynamic topology optimization. The approach is applied to single material, composites and multi-scale structures topology optimization. Finally, we develop a topology optimization for dynamic brittle fracture structural resistance, by combining topology optimization with dynamic phase field fracture simulations. This framework is extended to design impact-resistant structures. In contrast to stress-based approaches, the whole crack propagation is taken into account into the optimization process
Книги з теми "Densité – Dynamique – Modèles mathématiques"
La programmation linéaire dans les modèles de production. Paris: Masson, 1988.
Знайти повний текст джерелаTyre and vehicle dynamics. Oxford: Butterworth-Heinemann, 2002.
Знайти повний текст джерелаDynamic modeling in the health sciences. New York: Springer, 1998.
Знайти повний текст джерелаN, Shirer Hampton, ed. Nonlinear hydrodynamic modeling: A mathematical introduction. Berlin: Springer-Verlag, 1987.
Знайти повний текст джерелаH, Busse F., and Müller S. C. 1949-, eds. Evolution of spontaneous structures in dissipative continuous systems. Berlin: Springer, 1998.
Знайти повний текст джерелаDiscrete dynamical systems: Theory and applications. Oxford [England]: Clarendon Press, 1990.
Знайти повний текст джерелаGeometrical theory of dynamical systems and fluid flows. Singapore: World Scientific, 2005.
Знайти повний текст джерелаW, Shyy, ed. Computational techniques for complex transport phenomena. Cambridge: Cambridge University Press, 1997.
Знайти повний текст джерелаKecman, V. State-space models of lumped and distributed systems. Berlin: Springer-Verlag, 1988.
Знайти повний текст джерелаLes, Oxley, and Potter Simon M, eds. Surveys in economic dynamics. Oxford: Blackwell, 2000.
Знайти повний текст джерела