Добірка наукової літератури з теми "Deep neural networks (DNNs)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Deep neural networks (DNNs)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Deep neural networks (DNNs)"
Galván, Edgar. "Neuroevolution in deep neural networks." ACM SIGEVOlution 14, no. 1 (April 2021): 3–7. http://dx.doi.org/10.1145/3460310.3460311.
Повний текст джерелаZhang, Lei, Shengyuan Zhou, Tian Zhi, Zidong Du, and Yunji Chen. "TDSNN: From Deep Neural Networks to Deep Spike Neural Networks with Temporal-Coding." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1319–26. http://dx.doi.org/10.1609/aaai.v33i01.33011319.
Повний текст джерелаDíaz-Vico, David, Jesús Prada, Adil Omari, and José Dorronsoro. "Deep support vector neural networks." Integrated Computer-Aided Engineering 27, no. 4 (September 11, 2020): 389–402. http://dx.doi.org/10.3233/ica-200635.
Повний текст джерелаCai, Chenghao, Yanyan Xu, Dengfeng Ke, and Kaile Su. "Deep Neural Networks with Multistate Activation Functions." Computational Intelligence and Neuroscience 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/721367.
Повний текст джерелаVerpoort, Philipp C., Alpha A. Lee, and David J. Wales. "Archetypal landscapes for deep neural networks." Proceedings of the National Academy of Sciences 117, no. 36 (August 25, 2020): 21857–64. http://dx.doi.org/10.1073/pnas.1919995117.
Повний текст джерелаXu, Xiangxiang, Shao-Lun Huang, Lizhong Zheng, and Gregory W. Wornell. "An Information Theoretic Interpretation to Deep Neural Networks." Entropy 24, no. 1 (January 17, 2022): 135. http://dx.doi.org/10.3390/e24010135.
Повний текст джерелаMarrow, Scythia, Eric J. Michaud, and Erik Hoel. "Examining the Causal Structures of Deep Neural Networks Using Information Theory." Entropy 22, no. 12 (December 18, 2020): 1429. http://dx.doi.org/10.3390/e22121429.
Повний текст джерелаShu, Hai, and Hongtu Zhu. "Sensitivity Analysis of Deep Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4943–50. http://dx.doi.org/10.1609/aaai.v33i01.33014943.
Повний текст джерелаNakamura, Kensuke, Bilel Derbel, Kyoung-Jae Won, and Byung-Woo Hong. "Learning-Rate Annealing Methods for Deep Neural Networks." Electronics 10, no. 16 (August 22, 2021): 2029. http://dx.doi.org/10.3390/electronics10162029.
Повний текст джерелаXu, Shenghe, Shivendra S. Panwar, Murali Kodialam, and T. V. Lakshman. "Deep Neural Network Approximated Dynamic Programming for Combinatorial Optimization." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 02 (April 3, 2020): 1684–91. http://dx.doi.org/10.1609/aaai.v34i02.5531.
Повний текст джерелаДисертації з теми "Deep neural networks (DNNs)"
Michailoff, John. "Email Classification : An evaluation of Deep Neural Networks with Naive Bayes." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-37590.
Повний текст джерелаTong, Zheng. "Evidential deep neural network in the framework of Dempster-Shafer theory." Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2661.
Повний текст джерелаDeep neural networks (DNNs) have achieved remarkable success on many realworld applications (e.g., pattern recognition and semantic segmentation) but still face the problem of managing uncertainty. Dempster-Shafer theory (DST) provides a wellfounded and elegant framework to represent and reason with uncertain information. In this thesis, we have proposed a new framework using DST and DNNs to solve the problems of uncertainty. In the proposed framework, we first hybridize DST and DNNs by plugging a DSTbased neural-network layer followed by a utility layer at the output of a convolutional neural network for set-valued classification. We also extend the idea to semantic segmentation by combining fully convolutional networks and DST. The proposed approach enhances the performance of DNN models by assigning ambiguous patterns with high uncertainty, as well as outliers, to multi-class sets. The learning strategy using soft labels further improves the performance of the DNNs by converting imprecise and unreliable label data into belief functions. We have also proposed a modular fusion strategy using this proposed framework, in which a fusion module aggregates the belief-function outputs of evidential DNNs by Dempster’s rule. We use this strategy to combine DNNs trained from heterogeneous datasets with different sets of classes while keeping at least as good performance as those of the individual networks on their respective datasets. Further, we apply the strategy to combine several shallow networks and achieve a similar performance of an advanced DNN for a complicated task
Buratti, Luca. "Visualisation of Convolutional Neural Networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Знайти повний текст джерелаLiu, Qian. "Deep spiking neural networks." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/deep-spiking-neural-networks(336e6a37-2a0b-41ff-9ffb-cca897220d6c).html.
Повний текст джерелаLi, Dongfu. "Deep Neural Network Approach for Single Channel Speech Enhancement Processing." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34472.
Повний текст джерелаShuvo, Md Kamruzzaman. "Hardware Efficient Deep Neural Network Implementation on FPGA." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2792.
Повний текст джерелаSquadrani, Lorenzo. "Deep neural networks and thermodynamics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Знайти повний текст джерелаMancevo, del Castillo Ayala Diego. "Compressing Deep Convolutional Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217316.
Повний текст джерелаAbbasi, Mahdieh. "Toward robust deep neural networks." Doctoral thesis, Université Laval, 2020. http://hdl.handle.net/20.500.11794/67766.
Повний текст джерелаIn this thesis, our goal is to develop robust and reliable yet accurate learning models, particularly Convolutional Neural Networks (CNNs), in the presence of adversarial examples and Out-of-Distribution (OOD) samples. As the first contribution, we propose to predict adversarial instances with high uncertainty through encouraging diversity in an ensemble of CNNs. To this end, we devise an ensemble of diverse specialists along with a simple and computationally efficient voting mechanism to predict the adversarial examples with low confidence while keeping the predictive confidence of the clean samples high. In the presence of high entropy in our ensemble, we prove that the predictive confidence can be upper-bounded, leading to have a globally fixed threshold over the predictive confidence for identifying adversaries. We analytically justify the role of diversity in our ensemble on mitigating the risk of both black-box and white-box adversarial examples. Finally, we empirically assess the robustness of our ensemble to the black-box and the white-box attacks on several benchmark datasets.The second contribution aims to address the detection of OOD samples through an end-to-end model trained on an appropriate OOD set. To this end, we address the following central question: how to differentiate many available OOD sets w.r.t. a given in distribution task to select the most appropriate one, which in turn induces a model with a high detection rate of unseen OOD sets? To answer this question, we hypothesize that the “protection” level of in-distribution sub-manifolds by each OOD set can be a good possible property to differentiate OOD sets. To measure the protection level, we then design three novel, simple, and cost-effective metrics using a pre-trained vanilla CNN. In an extensive series of experiments on image and audio classification tasks, we empirically demonstrate the abilityof an Augmented-CNN (A-CNN) and an explicitly-calibrated CNN for detecting a significantly larger portion of unseen OOD samples, if they are trained on the most protective OOD set. Interestingly, we also observe that the A-CNN trained on the most protective OOD set (calledA-CNN) can also detect the black-box Fast Gradient Sign (FGS) adversarial examples. As the third contribution, we investigate more closely the capacity of the A-CNN on the detection of wider types of black-box adversaries. To increase the capability of A-CNN to detect a larger number of adversaries, we augment its OOD training set with some inter-class interpolated samples. Then, we demonstrate that the A-CNN trained on the most protective OOD set along with the interpolated samples has a consistent detection rate on all types of unseen adversarial examples. Where as training an A-CNN on Projected Gradient Descent (PGD) adversaries does not lead to a stable detection rate on all types of adversaries, particularly the unseen types. We also visually assess the feature space and the decision boundaries in the input space of a vanilla CNN and its augmented counterpart in the presence of adversaries and the clean ones. By a properly trained A-CNN, we aim to take a step toward a unified and reliable end-to-end learning model with small risk rates on both clean samples and the unusual ones, e.g. adversarial and OOD samples.The last contribution is to show a use-case of A-CNN for training a robust object detector on a partially-labeled dataset, particularly a merged dataset. Merging various datasets from similar contexts but with different sets of Object of Interest (OoI) is an inexpensive way to craft a large-scale dataset which covers a larger spectrum of OoIs. Moreover, merging datasets allows achieving a unified object detector, instead of having several separate ones, resultingin the reduction of computational and time costs. However, merging datasets, especially from a similar context, causes many missing-label instances. With the goal of training an integrated robust object detector on a partially-labeled but large-scale dataset, we propose a self-supervised training framework to overcome the issue of missing-label instances in the merged datasets. Our framework is evaluated on a merged dataset with a high missing-label rate. The empirical results confirm the viability of our generated pseudo-labels to enhance the performance of YOLO, as the current (to date) state-of-the-art object detector.
Lu, Yifei. "Deep neural networks and fraud detection." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-331833.
Повний текст джерелаКниги з теми "Deep neural networks (DNNs)"
Aggarwal, Charu C. Neural Networks and Deep Learning. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94463-0.
Повний текст джерелаMoolayil, Jojo. Learn Keras for Deep Neural Networks. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4240-7.
Повний текст джерелаCaterini, Anthony L., and Dong Eui Chang. Deep Neural Networks in a Mathematical Framework. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75304-1.
Повний текст джерелаModrzyk, Nicolas. Real-Time IoT Imaging with Deep Neural Networks. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5722-7.
Повний текст джерелаFingscheidt, Tim, Hanno Gottschalk, and Sebastian Houben, eds. Deep Neural Networks and Data for Automated Driving. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4.
Повний текст джерелаIba, Hitoshi. Evolutionary Approach to Machine Learning and Deep Neural Networks. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0200-8.
Повний текст джерелаTetko, Igor V., Věra Kůrková, Pavel Karpov, and Fabian Theis, eds. Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30484-3.
Повний текст джерелаLu, Le, Yefeng Zheng, Gustavo Carneiro, and Lin Yang, eds. Deep Learning and Convolutional Neural Networks for Medical Image Computing. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42999-1.
Повний текст джерелаLu, Le, Xiaosong Wang, Gustavo Carneiro, and Lin Yang, eds. Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13969-8.
Повний текст джерелаGraupe, Daniel. Deep Learning Neural Networks. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/10190.
Повний текст джерелаЧастини книг з теми "Deep neural networks (DNNs)"
Sotoudeh, Matthew, and Aditya V. Thakur. "SyReNN: A Tool for Analyzing Deep Neural Networks." In Tools and Algorithms for the Construction and Analysis of Systems, 281–302. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72013-1_15.
Повний текст джерелаZhong, Ziyuan, Yuchi Tian, and Baishakhi Ray. "Understanding Local Robustness of Deep Neural Networks under Natural Variations." In Fundamental Approaches to Software Engineering, 313–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71500-7_16.
Повний текст джерелаGhayoumi, Mehdi. "Deep Neural Networks (DNNs) for Images Analysis." In Deep Learning in Practice, 109–51. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025818-6.
Повний текст джерелаGhayoumi, Mehdi. "Deep Neural Networks (DNNs) Fundamentals and Architectures." In Deep Learning in Practice, 77–107. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025818-5.
Повний текст джерелаGhayoumi, Mehdi. "Deep Neural Networks (DNNs) for Virtual Assistant Robots." In Deep Learning in Practice, 153–73. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025818-7.
Повний текст джерелаJyothsna, P. V., Greeshma Prabha, K. K. Shahina, and Anu Vazhayil. "Detecting DGA Using Deep Neural Networks (DNNs)." In Communications in Computer and Information Science, 695–706. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5826-5_55.
Повний текст джерелаChan, Robin, Svenja Uhlemeyer, Matthias Rottmann, and Hanno Gottschalk. "Detecting and Learning the Unknown in Semantic Segmentation." In Deep Neural Networks and Data for Automated Driving, 277–313. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4_10.
Повний текст джерелаGannamaneni, Sujan Sai, Maram Akila, Christian Heinzemann, and Matthias Woehrle. "The Good and the Bad: Using Neuron Coverage as a DNN Validation Technique." In Deep Neural Networks and Data for Automated Driving, 383–403. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4_14.
Повний текст джерелаHashemi, Atiye Sadat, Andreas Bär, Saeed Mozaffari, and Tim Fingscheidt. "Improving Transferability of Generated Universal Adversarial Perturbations for Image Classification and Segmentation." In Deep Neural Networks and Data for Automated Driving, 171–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4_6.
Повний текст джерелаXiao, Cao, and Jimeng Sun. "Deep Neural Networks (DNN)." In Introduction to Deep Learning for Healthcare, 41–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82184-5_4.
Повний текст джерелаТези доповідей конференцій з теми "Deep neural networks (DNNs)"
FONTES, ALLYSON, and FARJAD SHADMEHRI. "FAILURE PREDICTION OF COMPOSITE MATERIALS USING DEEP NEURAL NETWORKS." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35822.
Повний текст джерелаSahoo, Doyen, Quang Pham, Jing Lu, and Steven C. H. Hoi. "Online Deep Learning: Learning Deep Neural Networks on the Fly." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/369.
Повний текст джерелаRuan, Wenjie, Xiaowei Huang, and Marta Kwiatkowska. "Reachability Analysis of Deep Neural Networks with Provable Guarantees." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/368.
Повний текст джерелаGu, Shuqin, Yuexian Hou, Lipeng Zhang, and Yazhou Zhang. "Regularizing Deep Neural Networks with an Ensemble-based Decorrelation Method." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/301.
Повний текст джерелаLiu, Yang, Rui Hu, and Prasanna Balaprakash. "Uncertainty Quantification of Deep Neural Network-Based Turbulence Model for Reactor Transient Analysis." In ASME 2021 Verification and Validation Symposium. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/vvs2021-65045.
Повний текст джерелаLuo, Ping. "EigenNet: Towards Fast and Structural Learning of Deep Neural Networks." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/338.
Повний текст джерелаGuidotti, Dario. "Safety Analysis of Deep Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/675.
Повний текст джерелаAulich, Marcel, Fabian Küppers, Andreas Schmitz, and Christian Voß. "Surrogate Estimations of Complete Flow Fields of Fan Stage Designs via Deep Neural Networks." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91258.
Повний текст джерелаAmthor, Manuel, Erik Rodner, and Joachim Denzler. "Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets." In British Machine Vision Conference 2016. British Machine Vision Association, 2016. http://dx.doi.org/10.5244/c.30.116.
Повний текст джерелаChen, Huili, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. "DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural Networks." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/647.
Повний текст джерелаЗвіти організацій з теми "Deep neural networks (DNNs)"
Yu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang, and Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.
Повний текст джерелаTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, January 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Повний текст джерелаIdakwo, Gabriel, Sundar Thangapandian, Joseph Luttrell, Zhaoxian Zhou, Chaoyang Zhang, and Ping Gong. Deep learning-based structure-activity relationship modeling for multi-category toxicity classification : a case study of 10K Tox21 chemicals with high-throughput cell-based androgen receptor bioassay data. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41302.
Повний текст джерелаKoh, Christopher Fu-Chai, and Sergey Igorevich Magedov. Bond Order Prediction Using Deep Neural Networks. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557202.
Повний текст джерелаTalathi, S. S. Deep Recurrent Neural Networks for seizure detection and early seizure detection systems. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1366924.
Повний текст джерелаThulasidasan, Sunil, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, and Sarah E. Michalak. On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1525811.
Повний текст джерелаArmstrong, Derek Elswick, and Joseph Gabriel Gorka. Using Deep Neural Networks to Extract Fireball Parameters from Infrared Spectral Data. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1623398.
Повний текст джерелаEllis, Austin, Lenz Fielder, Gabriel Popoola, Normand Modine, John Stephens, Aidan Thompson, and Sivasankaran Rajamanickam. Accelerating Finite-Temperature Kohn-Sham Density Functional Theory with Deep Neural Networks. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1817970.
Повний текст джерелаEllis, John, Attila Cangi, Normand Modine, John Stephens, Aidan Thompson, and Sivasankaran Rajamanickam. Accelerating Finite-temperature Kohn-Sham Density Functional Theory\ with Deep Neural Networks. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1677521.
Повний текст джерелаStevenson, G. Analysis of Pre-Trained Deep Neural Networks for Large-Vocabulary Automatic Speech Recognition. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1289367.
Повний текст джерела