Добірка наукової літератури з теми "Decomposition for BV functions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Decomposition for BV functions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Decomposition for BV functions"

1

Bianchini, Stefano, and Daniela Tonon. "A decomposition theorem for $BV$ functions." Communications on Pure and Applied Analysis 10, no. 6 (May 2011): 1549–66. http://dx.doi.org/10.3934/cpaa.2011.10.1549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Song, Yingqing, Xiaoping Yang, and Zhenghai Liu. "DECOMPOSITION OF BV FUNCTIONS IN CARNOT-CARATHÉODORY SPACES." Acta Mathematica Scientia 23, no. 4 (October 2003): 433–39. http://dx.doi.org/10.1016/s0252-9602(17)30485-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

del Álamo, Miguel, and Axel Munk. "Total variation multiscale estimators for linear inverse problems." Information and Inference: A Journal of the IMA 9, no. 4 (March 2, 2020): 961–86. http://dx.doi.org/10.1093/imaiai/iaaa001.

Повний текст джерела
Анотація:
Abstract Even though the statistical theory of linear inverse problems is a well-studied topic, certain relevant cases remain open. Among these is the estimation of functions of bounded variation ($BV$), meaning $L^1$ functions on a $d$-dimensional domain whose weak first derivatives are finite Radon measures. The estimation of $BV$ functions is relevant in many applications, since it involves minimal smoothness assumptions and gives simplified, interpretable cartoonized reconstructions. In this paper, we propose a novel technique for estimating $BV$ functions in an inverse problem setting and provide theoretical guaranties by showing that the proposed estimator is minimax optimal up to logarithms with respect to the $L^q$-risk, for any $q\in [1,\infty )$. This is to the best of our knowledge the first convergence result for $BV$ functions in inverse problems in dimension $d\geq 2$, and it extends the results of Donoho (1995, Appl. Comput. Harmon. Anal., 2, 101–126) in $d=1$. Furthermore, our analysis unravels a novel regime for large $q$ in which the minimax rate is slower than $n^{-1/(d+2\beta +2)}$, where $\beta$ is the degree of ill-posedness: our analysis shows that this slower rate arises from the low smoothness of $BV$ functions. The proposed estimator combines variational regularization techniques with the wavelet-vaguelette decomposition of operators.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Parasidis, I. N., and E. Providas. "Factorization method for solving nonlocal boundary value problems in Banach space." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 103, no. 3 (September 30, 2021): 76–86. http://dx.doi.org/10.31489/2021m3/76-86.

Повний текст джерела
Анотація:
This article deals with the factorization and solution of nonlocal boundary value problems in a Banach space of the abstract form B1u = Au − SΦ(u) − GΨ(A0u) = f, u ∈ D(B1),where A, A0 are linear abstract operators, S, G are vectors of functions, Φ, Ψ are vectors of linear bounded functionals, and u, f are functions. It is shown that the operator B1 under certain conditions can be factorized into a product of two simpler lower order operators as B1 = BB0. Then the solvability and the unique solution of the equation B1u = f easily follow from the solvability conditions and the unique solutions of the equations Bv = f and B0u = v. The universal technique proposed here is essentially different from other factorization methods in the respect that it involves decomposition of both the equation and boundary conditions and delivers the solution in closed form. The method is implemented to solve ordinary and partial Fredholm integro-differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tang, Liming, and Chuanjiang He. "Multiscale Image Representation and Texture Extraction Using Hierarchical Variational Decomposition." Journal of Applied Mathematics 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/107120.

Повний текст джерела
Анотація:
In order to achieve a mutiscale representation and texture extraction for textured image, a hierarchical(BV,Gp,L2)decomposition model is proposed in this paper. We firstly introduce the proposed model which is obtained by replacing the fixed scale parameter of the original(BV,Gp,L2)decomposition with a varying sequence. And then, the existence and convergence of the hierarchical decomposition are proved. Furthermore, we show the nontrivial property of this hierarchical decomposition. Finally, we introduce a simple numerical method for the hierarchical decomposition, which utilizes gradient decent for energy minimization and finite difference for the associated gradient flow equations. Numerical results show that the proposed hierarchical(BV,Gp,L2)decomposition is very appropriate for multiscale representation and texture extraction of textured image.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anzellotti, G., S. Delladio, and G. Scianna. "BV Functions over rectifiable currents." Annali di Matematica Pura ed Applicata 170, no. 1 (December 1996): 257–96. http://dx.doi.org/10.1007/bf01758991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Williams, Stephen A., and Richard C. Scalzo. "Differential games and BV functions." Journal of Differential Equations 59, no. 3 (September 1985): 296–313. http://dx.doi.org/10.1016/0022-0396(85)90143-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

sci, global. "Gaussian BV Functions and Gaussian BV Capacity on Stratified Groups." Analysis in Theory and Applications 37, no. 3 (June 2021): 311–29. http://dx.doi.org/10.4208/ata.2021.lu80.03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Araujo, Jesuś. "Linear isometries between spaces of functions of bounded variation." Bulletin of the Australian Mathematical Society 59, no. 2 (April 1999): 335–41. http://dx.doi.org/10.1017/s0004972700032949.

Повний текст джерела
Анотація:
Given two subsets X and Y of ℝ each with at least two points, we describe the surjective linear isometries between the spaces of functions of bounded variation BV(X) and BV(Y): namely, if T : BV(X) → BV(Y) is such an isometry, then there exist α ∈ ℂ, |α| = 1, and a monotonic bijective map h : Y → X such that (Tf)(y) = αf(h(y)) for every f ∈ BV(X) and every y ∈ Y.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cheng, Yong, Yahan Yang, Zao Jiang, Longjun Xu та Chenglun Liu. "Fabrication and Characterization of a Novel Composite Magnetic Photocatalyst β-Bi2O3/BiVO4/MnxZn1−xFe2O4 for Rhodamine B Degradation under Visible Light". Nanomaterials 10, № 4 (21 квітня 2020): 797. http://dx.doi.org/10.3390/nano10040797.

Повний текст джерела
Анотація:
β-Bi2O3/BiVO4/MnxZn1−xFe2O4 (BV/MZF) composite magnetic photocatalyst was first synthesized using the hydrothermal and calcination method. BV/MZF was a mesoporous material with most probable pore size and specific surface area of 18 nm and 17.84 m2/g, respectively. Due to its high saturation magnetization (2.67 emu/g), the BV/MZF composite can be easily separated and recovered from solution under an external magnetic field. The results of photo-decomposition experiments show that the decomposition rate of Rhodamine B (RhB) by BV/MZF can reach 92.6% in 3 h under visible light. After three cycles, BV/MZF can still maintain structural stability and excellent pollutant degradation effect. In addition, analysis of the photocatalytic mechanism of BV/MZF for RhB shows that the p-n heterojunction formed in BV/MZF plays a vital role in its photocatalytic performance. This work has potential application in the future for solving environmental pollution.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Decomposition for BV functions"

1

Tonon, Daniela. "Regularity results for Hamilton-Jacobi equations." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De, Cicco Virginia. "Some Lower Semicontinuity and Relaxation Results for Functionals Defined on BV (Ω)". Doctoral thesis, SISSA, 1992. http://hdl.handle.net/20.500.11767/4325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

BUFFA, Vito. "BV Functions in Metric Measure Spaces: Traces and Integration by Parts Formulæ." Doctoral thesis, Università degli studi di Ferrara, 2018. http://hdl.handle.net/11392/2488124.

Повний текст джерела
Анотація:
Questa tesi fornisce una panoramica sulla teoria delle funzioni Sobolev e BV nel contesto degli spazi metrici con misura. Vengono messe a confronto diverse caratterizzazioni di tali spazi al fine di evidenziarne le interconnessioni e le condizioni che garantiscono l'equivalenza delle definizioni. Dunque, si discute la struttura differenziale introdotta da N. Gigli in un articolo del 2014 per dare una nuova definizione di funzioni BV nel setting RCD(K,\infty) attraverso opportuni campi vettoriali. Di seguito, nel contesto metrico doubling con disuguaglianza di Poincaré, si danno nuove formule di integrazione per parti utilizzando campi a "divergenza-misura" per trattare poi il problema delle tracce delle funzioni BV. Si confronta la teoria delle "rough traces" (riadattata al presente setting, cfr. V. Maz'ya) con l'operatore di traccia definito mediante punti di Lebesgue, trovando le condizioni in cui le due caratterizzazioni coincidono.
This thesis offers a survey on the theory of Sobolev and BV functions in the setting of metric measure spaces. We compare different characterizations of such spaces in order to emphasize their relationships along with the conditions which ensure the equivalence of the definitions. Then, we discuss the differential structure introduced by N. Gigli in a paper of 2014 to give a new definition of BV functions in the RCD(K,\infty) setting, making use of suitable vector fileds. Later, in the metric doubling setting with Poincaré inequality, we give new integration by parts formulæ via "divergence-measure" vector fields to attack the issue of traces of BV functions. We compare the theory of "rough traces" (re-adapted to the present setting, cfr. V. Maz'ya) with the trace operator defined via Lebesgue points, finding the conditions under which the two characterizations coincide.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Korey, Michael Brian. "A decomposition of functions with vanishing mean oscillation." Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2592/.

Повний текст джерела
Анотація:
A function has vanishing mean oscillation (VMO) on R up(n) if its mean oscillation - the local average of its pointwise deviation from its mean value - both is uniformly bounded over all cubes within R up(n) and converges to zero with the volume of the cube. The more restrictive class of functions with vanishing lower oscillation (VLO) arises when the mean value is replaced by the minimum value in this definition. It is shown here that each VMO function is the difference of two functions in VLO.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lanagan, Gareth Daniel Edward. "Weather forecast error decomposition using rearrangements of functions." Thesis, Aberystwyth University, 2012. http://hdl.handle.net/2160/b489892f-7607-4125-90fb-46d8376edf8f.

Повний текст джерела
Анотація:
This thesis applies rearrangement and optimal mass transfer theory to weather forecast error decomposition. Errors in weather forecasting are often due to displacement of key features; conventional error scores do not necessarily favour good forecasts, nor are they descriptive of how the forecast failed. We study forecast error decomposition, where error is split into an error due to displacement and an error due to differences in qualitative features. In its simple formulation, we seek re-arrangements of the forecast which are a best fit to the actual data, and then find the “least kinetic energy” of a notional velocity transporting the forecast to a best fit. In mathematical terms, we are characterising those elements of a set of rearrangements which are closest (in the sense of L2) to a prescribed square integrable function, and seeking the least 2-Wasserstein distance squared between the forecast and the closest displaced forecasts. We demonstrate that there are closest rearrangements, and characterise this set; the best fitting rearrangements are determined up to rearrangement on the level sets of positive size of the prescribed function. Displacement error is calculated by finding the minimum value of an optimal mass transfer problem; we review previous work, demonstrating the connection with transport of the forecast to the best fit. A problem with the simple formulation of forecast error decomposition is that because the qualitative features error is taken first, an error in qualitative features may be penalise as a large displacement error. We conclude this thesis by considering a formulation which minimises both errors simultaneously.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

CAMFIELD, CHRISTOPHER SCOTT. "Comparison of BV Norms in Weighted Euclidean Spaces and Metric Measure Spaces." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1211551579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Soneji, Parth. "Lower semicontinuity and relaxation in BV of integrals with superlinear growth." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:c7174516-588e-46ae-93dc-56d4a95f1e6f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shillam, Laura-Lee. "Structural diversity and decomposition functions of volcanic soils at different stages of development." Thesis, University of Stirling, 2008. http://hdl.handle.net/1893/444.

Повний текст джерела
Анотація:
During a volcanic eruption, the extrusion of lava onto surfaces destroys biological activity creating virgin land surfaces. Through time this new land will be subject to soil formation and colonisation under relatively similar climatic conditions and parent materials. Soils formed from volcanic deposits present a unique opportunity to study microbial community development. Soils at different developmental stages and differing in vegetation cover were selected from four locations on the slopes of Mount Etna, Sicily. Three main research objectives were determined in order to test the hypothesis that the microbial communities from soils at later stages of development would have a greater biomass, be more diverse, be more efficient at utilising carbon sources and recover from an environmental disturbance at a greater rate. A field experiment was conducted to ascertain the long term in situ catabolic abilities of the microbial communities in each soil and to establish the effects of litter mixing on decomposition rate. Litter bags containing either Genista aetnensis (Etnean Broom), Pinus nigra (Corsican Pine) or a mixture of the two were buried at each of the sites and their decomposition monitored over a 2.5 year period. PLFA diversity, community composition and function was assessed for each of the soils. The soils were also subject to a disturbance and the recovery of key community parameters was monitored over a six month period in order to establish each soil community’s resistance and resilience to disturbance. A laboratory experiment was conducted in order to investigate functional diversity and decomposition functions of each soil community using a range of simple and complex substrates. The relationship between PLFA diversity and functional diversity was also investigated. No correlation was found between soil C and N contents, microbial biomass or soil respiration and soil developmental stage and there was no detectable difference in litter bag mass loss between the soil types. No non- additive effects were noted in mixed litters. The more developed soil had a greater PLFA diversity and PLFA biomass however the more developed soil was not more resistant or resilient to disturbance. Developed soils showed greater catabolic diversity compared with less developed soils broadly correlating with PLFA diversity. Despite increased PLFA diversity and functional diversity in the more developed soils, residue decomposition in situ was unaffected. Reduced PLFA diversity and community complexity did not result in reduced function. Soils at different developmental stages had similar catabolic responses and were able to degrade simple and complex substrates to a similar degree. Microbial diversity in soil has the potential to be very high thus resulting in a high rate of functional redundancy i.e. many species within the same community which have the same functional role. It is possible that only a few key functional groups present within the soil community contribute to the main decomposition function within the soil and were able to maintain function during perturbation. Both Etna soils had similar PLFA’s present in similar concentrations and these groups in general were maintained during disturbance. This suggests that total microbial community diversity may not be as important to community function as the presence of key functional groups.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

MENEGATTI, GIORGIO. "Sobolev classes and bounded variation functions on domains of Wiener spaces, and applications." Doctoral thesis, Università degli studi di Ferrara, 2018. http://hdl.handle.net/11392/2488305.

Повний текст джерела
Анотація:
The main thread of this work is the bounded variation (BV) functions in abstract Wiener spaces (a topic in infinite-dimensional analysis). In the first Part of this work, we present some known results, and we introduce the concepts of Wiener space, of Sobolev space in Wiener spaces, of BV functions (and finite perimeter sets) in Wiener spaces, and of BV functions in convex sets of Wiener spaces (by following the definition in V. I. Bogachev, A. Y. Pilipenko, A. V. Shaposhnikov, “Sobolev Functions on Infinite-dimensional domains”, J. Math. Anal. Appl., 2014); moreover, we introduce the trace theory on subsets of a Wiener space (by following P. Celada, A. Lunardi, “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 2014), and the concept of Mosco convergence. In the second Part we present some new results. In Chapter 6, we consider a subset O of a Wiener space which satisfies a regularity condition, and we prove that a function in W^{1,2}(O) has null trace if and only if it is the limit of a sequence of functions with support contained in O. The main chapter is Chapter 7, which is devoted to the extension in the Wiener spaces setting of a result given in the section 8 of (V. Barbu, M. Röckner, “Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise”, Arch. Ration. Mech. Anal., 2013): if O is a convex bounded set with regular boundary in R^{d} and L is the Laplace operator in O with null Dirichlet boundary condition, then the normalized resolvent of L is contractive in sense L^1 respect to the gradient. We extend this result to the case of L Ornstein-Uhlenbeck operator in O with null Dirichlet boundary condition, with Gaussian measure (by using the results of Chapter 6): in this case O must satisfy a condition (which we call Gaussian convexity) which takes the place of the convexity in the Gaussian setting. Moreover, we extend the result also to the case of: L Laplace operator in an open convex O with null Neumann boundary condition, with Lebesgue measure; L Ornstein-Uhlenbeck operator in an open convex O with null Neumann boundary condition, with Gaussian measure. In the last part of Chapter 7, we use the preceding results to give an alternative definition of BV function (in the case L^2(O)). In Chapter 8, let X the set of continuous functions on [0,1] with starting point 0, provided with the measure induced by the Brownian motion with starting point 0; it is a Wiener space. For every A subset of X, we define Ξ_A, set of functions in X with image in A. In (M. Hino, H. Uchida, “Reflecting Ornstein–Uhlenbeck processes on pinned path spaces”, Res. Inst. Math. Sci. (RIMS), 2008) it is proved that, if d ≥ 2 and A is an open subset of R^d which satisfies an uniform outer ball condition then Ξ_A has finite perimeter in the sense of Gaussian measure. We present a weaker condition on A (in dimension sufficiently great) such that Ξ_A has finite perimeter: in particular, A can be the complement of a convex unbounded symmetric cone.
L’argomento principale di questo lavoro sono le funzioni a variazione limitata (BV) in spazi di Wiener astratti (un argomento di analisi infinito-dimensionale). Nella prima parte di questo lavoro, presentiamo alcuni risultati noti, e introduciamo i concetti di spazi di Wiener, di classi di Sobolev su spazi di Wiener, di funzioni BV (e insiemi di perimetro finito) in spazi di Wiener, e di funzioni BV in sottoinsiemi convessi di Spazi di Wiener (seguendo la definizione in V. I. Bogachev, A. Y. Pilipenko, A. V. Shaposhnikov, “Sobolev Functions on Infinite-dimensional domains”, J. Math. Anal. Appl., 2014); inoltre, introduciamo la teoria delle tracce su sottoinsiemi di uno spazio di Wiener( seguendo P. Celada, A. Lunardi, “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 2014), e il concetto di convergenza di Mosco. Nella seconda parte presentiamo alcuni risultati originali. Nel capitolo 6, consideriamo un sottoinsieme O di uno spazio di Wiener che soddisfa a una condizione di regolarità, e proviamo che una funzione in W^{1,2} (O) ha traccia nulla se e solo se è il limite di una sequenza di funzioni con supporto contenuto in O. Il capitolo principale è il 7, che è dedicato all'estensione all'ambito degli spazi di Wiener di un risultato dato nella sezione 8 di (V. Barbu, M. Röckner, “Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise”, Arch. Ration. Mech. Anal., 2013): se O è un insieme convesso limitato con frontiera regolare in R^{d} e L è l'operatore di Laplace in O con condizione al bordo di Dirichlet nulla, allora il risolvente normalizzato di L è contrattivo nel senso L^1 rispetto al gradiente. Estendiamo questo risultato al caso di L operatore di Ornstein-Uhlenbeck in O con condizione al bordo di Dirichlet nulla, con misura gaussiana (usando i risultati del Capitolo 6): in questo caso O deve soddisfare una condizione (che chiamiamo convessità Gaussiana) che nel caso gaussiano prende il posto della convessità. Inoltre, estendiamo il risultato anche al caso di: L operatore di Laplace in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura di Lebesgue; L operatore in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura gaussiana. Nell'ultima parte del Capitolo 7, usiamo i precedenti risultati per dare una definizione alternativa di funzione BV in O (nel caso L^2(O) ). Nel Capitolo 8, sia X l'insieme delle funzioni continue in R^d su [ 0,1 ] con punti di partenza nell’origine fornito della misura indotta dal moto browniano con punto di partenza nell’origine; è uno spazio di Wiener. Per ogni A sottoinsieme di X, definiamo Ξ_A, insieme delle funzioni in X con immagine in A. In (M. Hino, H. Uchida, “Reflecting Ornstein–Uhlenbeck processes on pinned path spaces”, Res. Inst. Math. Sci. (RIMS), 2008) viene dimostrato che, se d ≥ 2 e A è un insieme aperto in R^d che soddisfa una condizione di uniforme palla esterna, allora Ξ_A ha perimetro finito nel senso della misura gaussiana. Presentiamo una condizione più debole su A (in dimensione sufficientemente grande) tale che Ξ_A ha perimetro finito: in particolare, A può essere il complementare di un cono convesso illimitato simmetrico.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Amato, Stefano. "Some results on anisotropic mean curvature and other phase transition models." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4859.

Повний текст джерела
Анотація:
The present thesis is divided into three parts. In the first part, we analyze a suitable regularization — which we call nonlinear multidomain model — of the motion of a hypersurface under smooth anisotropic mean curvature flow. The second part of the thesis deals with crystalline mean curvature of facets of a solid set of R^3 . Finally, in the third part we study a phase-transition model for Plateau’s type problems based on the theory of coverings and of BV functions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Decomposition for BV functions"

1

Cheverry, Christophe. Systèmes de lois de conservation et stabilité BV. [Paris, France]: Société mathématique de France, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Giuseppe, Buttazzo, and Michaille Gérard, eds. Variational analysis in Sobolev and BV spaces: Applications to PDEs and optimization. Philadelphia: Society for Industrial and Applied Mathematics, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Billings, S. A. Decomposition of generalised frequency response functions for non-linear systems using symbolic computation. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Serge, Lang, ed. Heat Eisenstein series on SL[subscript n](C). Providence, R.I: American Mathematical Society, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jorgenson, Jay. Heat Eisenstein series on SL[subscript n](C). Providence, R.I: American Mathematical Society, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jorgenson, Jay. Spherical Inversion on SLn(R). New York, NY: Springer New York, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stengel, Bernhard von. Eine Dekompositionstheorie für mehrstellige Funktionen mit Anwendungen in Systemtheorie und Operations Research. Frankfurt am Main: A. Hain, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Moeglin, Colette. Spectral decomposition and Eisenstein series: Une paraphrase de l'écriture. Cambridge: Cambridge University Press, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Macías, Sergio. Topics on continua. Boca Raton: Chapman & Hall/CRC, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

V, Efimov A., and Skvort͡s︡ov V. A, eds. Walsh series and transforms: Theory and applications. Dordrecht [Netherlands]: Kluwer Academic Publishers, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Decomposition for BV functions"

1

Kannan, R., and Carole King Krueger. "Spaces of BV and AC Functions." In Universitext, 216–45. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4613-8474-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bressan, Alberto, and Marta Lewicka. "Shift Differentials of Maps in BV Spaces." In Nonlinear Theory of Generalized Functions, 47–61. Boca Raton: Routledge, 2022. http://dx.doi.org/10.1201/9780203745458-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rudeanu, Sergiu. "Decomposition of Boolean functions." In Lattice Functions and Equations, 289–302. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0241-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kozen, Dexter, Susan Landau, and Richard Zippel. "Decomposition of algebraic functions." In Lecture Notes in Computer Science, 80–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58691-1_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Telcs, András, and Vincenzo Vespri. "A Quantitative Lusin Theorem for Functions in BV." In Geometric Methods in PDE’s, 81–87. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-02666-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Danner, George E. "Diagrammatic Decomposition of Corporate Functions." In The Executive's How-To Guide to Automation, 45–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99789-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Griffith, N., and D. Partridge. "Self-Organizing Decomposition of Functions." In Multiple Classifier Systems, 250–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45014-9_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uchiyama, Akihito. "Atomic decomposition from S-functions." In Springer Monographs in Mathematics, 61–69. Tokyo: Springer Japan, 2001. http://dx.doi.org/10.1007/978-4-431-67905-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Begehr, H. "Integral Decomposition of Differentiable Functions." In Proceedings of the Second ISAAC Congress, 1301–12. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0271-1_55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eidelman, Yuli, Vitali Milman, and Antonis Tsolomitis. "Functions of operators; spectral decomposition." In Graduate Studies in Mathematics, 105–18. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/066/07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Decomposition for BV functions"

1

Saito, Takahiro, Yuki Ishii, Haruya Aizawa, and Takashi Komatsu. "Noise suppression approach with the BV- L 1 nonlinear image decomposition." In Electronic Imaging 2008, edited by Jeffrey M. DiCarlo and Brian G. Rodricks. SPIE, 2008. http://dx.doi.org/10.1117/12.761112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saito, Takahiro, Daisuke Yamada, and Takashi Komatsu. "Digital camera IP-pipeline based on BV-G color-image decomposition." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5413836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wojcik, Anthony S. "Decomposition Of Digital Switching Functions." In OE LASE'87 and EO Imaging Symp (January 1987, Los Angeles), edited by Raymond Arrathoon. SPIE, 1987. http://dx.doi.org/10.1117/12.939921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hel-Or, Y., and P. C. Teo. "Canonical decomposition of steerable functions." In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/cvpr.1996.517165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wirski, Robert T., and Krzysztof W. Wawryn. "QR decomposition of rational matrix functions." In Signal Processing (ICICS). IEEE, 2009. http://dx.doi.org/10.1109/icics.2009.5397546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bertacco and Damiani. "The disjunctive decomposition of logic functions." In Proceedings of IEEE International Conference on Computer Aided Design (ICCAD). IEEE, 1997. http://dx.doi.org/10.1109/iccad.1997.643371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sasao, Tsutomu. "Linear decomposition of index generation functions." In 2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2012. http://dx.doi.org/10.1109/aspdac.2012.6165060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Liren, and Necmiye Ozay. "Tight decomposition functions for mixed monotonicity." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9030065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shahinfar, Farbod, Sebastiano Miano, Alireza Sanaee, Giuseppe Siracusano, Roberto Bifulco, and Gianni Antichi. "The case for network functions decomposition." In CoNEXT '21: The 17th International Conference on emerging Networking EXperiments and Technologies. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3485983.3493349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bronstein, Manuel, and Bruno Salvy. "Full partial fraction decomposition of rational functions." In the 1993 international symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/164081.164114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Decomposition for BV functions"

1

Wan, Wei. A New Approach to the Decomposition of Incompletely Specified Functions Based on Graph Coloring and Local Transformation and Its Application to FPGA Mapping. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії