Добірка наукової літератури з теми "Data-rich environments"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Data-rich environments".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Data-rich environments"
Bharadwaj, Neeraj, and Charles H. Noble. "Innovation in Data-Rich Environments." Journal of Product Innovation Management 32, no. 3 (March 3, 2015): 476–78. http://dx.doi.org/10.1111/jpim.12266.
Повний текст джерелаWedel, Michel, and P. K. Kannan. "Marketing Analytics for Data-Rich Environments." Journal of Marketing 80, no. 6 (November 2016): 97–121. http://dx.doi.org/10.1509/jm.15.0413.
Повний текст джерелаBharadwaj, Neeraj, and Charles Noble. "Finding Innovation in Data Rich Environments." Journal of Product Innovation Management 34, no. 5 (August 2, 2017): 560–64. http://dx.doi.org/10.1111/jpim.12407.
Повний текст джерелаBell, Kathleen P., and Timothy J. Dalton. "Spatial Economic Analysis in Data-Rich Environments." Journal of Agricultural Economics 58, no. 3 (September 2007): 487–501. http://dx.doi.org/10.1111/j.1477-9552.2007.00123.x.
Повний текст джерелаMiller, Harvey J., and Jiawei Han. "Discovering geographic knowledge in data rich environments." ACM SIGKDD Explorations Newsletter 1, no. 2 (January 2000): 105–7. http://dx.doi.org/10.1145/846183.846208.
Повний текст джерелаMedeiros, Marcelo C., and Gabriel F. R. Vasconcelos. "Forecasting macroeconomic variables in data-rich environments." Economics Letters 138 (January 2016): 50–52. http://dx.doi.org/10.1016/j.econlet.2015.11.017.
Повний текст джерелаCubadda, Gianluca, and Alain Hecq. "Testing for common autocorrelation in data-rich environments." Journal of Forecasting 30, no. 3 (June 9, 2010): 325–35. http://dx.doi.org/10.1002/for.1186.
Повний текст джерелаDong, John Qi. "Online Information Practices for User Innovation in Data-Rich Environments." Academy of Management Proceedings 2016, no. 1 (January 2016): 11729. http://dx.doi.org/10.5465/ambpp.2016.11729abstract.
Повний текст джерелаBERTOLI, GIUSEPPE, SANDRO CASTALDO, PAOLA CILLO, GABRIELE TROILO, and GIANMARIO VERONA. "Guest Editorial: Knowledge and trust in data-rich business environments." Sinergie Italian Journal of Management 40, no. 1 (April 30, 2022): 11–14. http://dx.doi.org/10.7433/s117.2022.01.
Повний текст джерелаLee, Ickjai, and Vladimir Estivill-Castro. "Fast Cluster Polygonization and its Applications in Data-Rich Environments." GeoInformatica 10, no. 4 (December 2006): 399–422. http://dx.doi.org/10.1007/s10707-006-0340-x.
Повний текст джерелаДисертації з теми "Data-rich environments"
Drobek, Marc. "Data-driven system dynamics modelling : model formulation and KPI prediction in data-rich environments." Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725834.
Повний текст джерелаNilekar, Shirish K. "A system-oriented analysis of team decision making in data rich environments." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/90698.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 78-80).
The information processing view of organizations [1] and subsequent works highlight the primary role of information processing in the effective functioning of markets and organizations. With the current wave of "big data" and related technologies, data-oriented decision making is being widely discussed [2] as a means of using this vast amount of available data for better decisions which can lead to improved business results. The focus of many of these studies is at the organization level. However, decisions are made by teams of individuals and this is a complex socio-technical process. The quality of a decision depends on many factors including technical capabilities for data analysis and human factors like team dynamics, cognitive capabilities of the individuals and the team. In this thesis, we developed a systems theory based framework for decision making and identified four socio technical factors viz., data analytics, data sensing, power distribution, and conflict level which affect the quality of decisions made by teams. We then conducted "thought experiments" to investigate the relative contribution of each of these factors to the quality of decisions. Our experiments and subsequent analyses show that while improved data analytics does result in better decisions, human factors have an out-sized contribution to the quality of decisions, even in data rich environments. Moreover, when the human factors in a team improve, the predictability of the positive impacts due to improvements in technical capabilities of the team also increases.
by Shirish K. Nilekar.
S.M. in Engineering and Management
Lasky, Alan. "Slipstream, a data rich production environment." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/68242.
Повний текст джерелаBarsoum, Fady [Verfasser]. "Econometric Modelling in a Mixed-Frequency and Data-Rich Environment / Fady Barsoum." Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1112944699/34.
Повний текст джерелаAhmadi, Pooyan Amir. "Essays in empirical macroeconomics with application to monetary policy in a data-rich environment." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2010. http://dx.doi.org/10.18452/16153.
Повний текст джерелаThis thesis consists of four self-contained chapters. The first chapter provides an introduction with a literature overview. In Chapter 2 we estimate the effects of monetary policy shocks in a Bayesian Factor- Augmented vector autoregression (BFAVAR). We propose to employ as an identification strategy sign restrictions on the impulse response function of pertinent variables according to conventional wisdom. The key strength of our factor based approach is that sign restrictions can be imposed on many variables in order to pin down the impact of monetary policy shocks. Thus an exact identification of shocks can be approximated and monitored. In chapter 3 the role of monetary policy during the interwar Great Depression is analyzed. The prominent role of monetary policy in the U.S. interwar depression has been conventional wisdom since Friedman and Schwartz [1963]. This paper attempts to capture the pertinent dynamics through a BFAVAR methodology of the previous chapter. We find the effects of monetary policy shocks and the systematic component to have been moderate. Our results caution against a predominantly monetary interpretation of the Great Depression. This final chapter 4 analyzes macroeconomic dynamics within the Euro area. To tackle the questions at hand I propose a novel approach to jointly estimate a factor-based DSGE model and a structural dynamic factor model that simultaneously captures the rich interrelations in a parsimonious way and explicitly involves economic theory in the estimation procedure. To identify shocks I employ both sign restrictions derived from the estimated DSGE model and the implied restrictions from the DSGE model rotation. I find a high degree of comovement across the member countries, homogeneity in the monetary transmission mechanism and heterogeneity in transmission of technology shocks. The suggested approach results in a factor generalization of the DSGE-VAR methodology of Del Negro and Schorfheide [2004].
Neumann, Bradley C. "Is All Open Space Created Equal? A Hedonic Application within a Data-Rich GIS Environment." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/NeumannBC2005.pdf.
Повний текст джерелаvon, Wenckstern Michael. "Web applications using the Google Web Toolkit." Master's thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2013. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-115009.
Повний текст джерелаDiese Diplomarbeit beschreibt die Erzeugung desktopähnlicher Anwendungen mit dem Google Web Toolkit und die Umwandlung klassischer Java-Programme in diese. Das Google Web Toolkit ist eine Open-Source-Entwicklungsumgebung, die Java-Code in browserunabhängiges als auch in geräteübergreifendes HTML und JavaScript übersetzt. Vorgestellt wird der Großteil des GWT Frameworks inklusive des Java zu JavaScript-Compilers sowie wichtige Sicherheitsaspekte von Internetseiten. Um zu zeigen, dass auch komplizierte graphische Oberflächen mit dem Google Web Toolkit erzeugt werden können, wird das bekannte Brettspiel Agricola mittels Model-View-Presenter Designmuster implementiert. Zur Ermittlung der richtigen Technologie für das nächste Webprojekt findet ein Vergleich zwischen dem Google Web Toolkit und JavaServer Faces statt
Avasarala, Viswanath. "Multi-agent systems for data-rich, information-poor environments." 2006. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-1506/index.html.
Повний текст джерелаAmankwah-Amoah, J., and Samuel Adomako. "Big Data Analytics and Business Failures in Data-Rich Environments: An Organizing Framework." 2018. http://hdl.handle.net/10454/16746.
Повний текст джерелаIn view of the burgeoning scholarly works on big data and big data analytical capabilities, there remains limited research on how different access to big data and different big data analytic capabilities possessed by firms can generate diverse conditions leading to business failure. To fill this gap in the existing literature, an integrated framework was developed that entailed two approaches to big data as an asset (i.e. threshold resource and distinctive resource) and two types of competences in big data analytics (i.e. threshold competence and distinctive/core competence). The analysis provides insights into how ordinary big data analytic capability and mere possession of big data are more likely to create conditions for business failure. The study extends the existing streams of research by shedding light on decisions and processes in facilitating or hampering firms’ ability to harness big data to mitigate the cause of business failures. The analysis led to the categorization of a number of fruitful avenues for research on data-driven approaches to business failure.
Amir, Ahmadi Pooyan [Verfasser]. "Essays in empirical macroeconomics with application to monetary policy in a data-rich environment / von Pooyan Amir Ahmadi." 2009. http://d-nb.info/1008017671/34.
Повний текст джерелаКниги з теми "Data-rich environments"
Bernanke, Ben. Monetary policy in a data-rich environment. Cambridge, MA: National Bureau of Economic Research, 2001.
Знайти повний текст джерелаJean, Boivin. DSGE models in a data-rich environment. Cambridge, Mass: National Bureau of Economic Research, 2006.
Знайти повний текст джерелаMazzoni, Stefania, and Franca Pecchioli, eds. The Uşaklı Höyük Survey Project (2008-2012). Florence: Firenze University Press, 2016. http://dx.doi.org/10.36253/978-88-6655-902-3.
Повний текст джерелаVerloo, Nanke, and Luca Bertolini, eds. Seeing the City. NL Amsterdam: Amsterdam University Press, 2020. http://dx.doi.org/10.5117/9789463728942.
Повний текст джерелаGupta, Manisha, Deergha Sharma, and Himani Gupta. Revolutionizing Business Practices Through Artificial Intelligence and Data-Rich Environments. IGI Global, 2022.
Знайти повний текст джерелаGupta, Manisha, Deergha Sharma, and Himani Gupta, eds. Revolutionizing Business Practices Through Artificial Intelligence and Data-Rich Environments. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-4950-9.
Повний текст джерелаGupta, Manisha, Deergha Sharma, and Himani Gupta. Revolutionizing Business Practices Through Artificial Intelligence and Data-Rich Environments. IGI Global, 2022.
Знайти повний текст джерелаGupta, Manisha, Deergha Sharma, and Himani Gupta. Revolutionizing Business Practices Through Artificial Intelligence and Data-Rich Environments. IGI Global, 2022.
Знайти повний текст джерелаGupta, Manisha, Deergha Sharma, and Himani Gupta. Revolutionizing Business Practices Through Artificial Intelligence and Data-Rich Environments. IGI Global, 2022.
Знайти повний текст джерелаGupta, Manisha, Deergha Sharma, and Himani Gupta. Revolutionizing Business Practices Through Artificial Intelligence and Data-Rich Environments. IGI Global, 2022.
Знайти повний текст джерелаЧастини книг з теми "Data-rich environments"
Romero, David, Ovidiu Noran, and Peter Bernus. "Green Virtual Enterprise Breeding Environments Enabling the RESOLVE Framework." In Collaboration in a Data-Rich World, 603–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65151-4_53.
Повний текст джерелаLee, Ickjai. "Geospatial Clustering in Data-Rich Environments: Features and Issues." In Lecture Notes in Computer Science, 336–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11554028_47.
Повний текст джерелаLee, Ickjai. "Data Mining Coupled Conceptual Spaces for Intelligent Agents in Data-Rich Environments." In Lecture Notes in Computer Science, 42–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11554028_7.
Повний текст джерелаGao, Song, Yu Liu, Yuhao Kang, and Fan Zhang. "User-Generated Content: A Promising Data Source for Urban Informatics." In Urban Informatics, 503–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8983-6_28.
Повний текст джерелаBernardi, Mauro, Giovanni Bonaccolto, Massimiliano Caporin, and Michele Costola. "Volatility Forecasting in a Data Rich Environment." In Macroeconomic Forecasting in the Era of Big Data, 127–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31150-6_5.
Повний текст джерелаArosio, Laura. "What People Leave Behind Online: Digital Traces and Web-Mediated Documents for Social Research." In Frontiers in Sociology and Social Research, 311–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11756-5_20.
Повний текст джерелаUtz, Wilfrid, and Robert Woitsch. "A Model-Based Environment for Data Services: Energy-Aware Behavioral Triggering Using ADOxx." In Collaboration in a Data-Rich World, 265–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65151-4_25.
Повний текст джерелаBallarino, Andrea, Carlo Brondi, Alessandro Brusaferri, and Guido Chizzoli. "The CPS and LCA Modelling: An Integrated Approach in the Environmental Sustainability Perspective." In Collaboration in a Data-Rich World, 543–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65151-4_48.
Повний текст джерелаGilworth, Bob. "Starting Points and Journeys: Careers and Employability in a Data-Rich Environment." In The SAGE Handbook of Graduate Employability, 452–74. 1 Oliver's Yard, 55 City Road London EC1Y 1SP: SAGE Publications Ltd, 2023. http://dx.doi.org/10.4135/9781529791082.n27.
Повний текст джерелаWipf, Heinz. "Safety Versus Security in Aviation." In The Coupling of Safety and Security, 29–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47229-0_4.
Повний текст джерелаТези доповідей конференцій з теми "Data-rich environments"
Karafili, Erisa, Emil C. Lupu, Alan Cullen, Bill Williams, Saritha Arunkumar, and Seraphin Calo. "Improving data sharing in data rich environments." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258270.
Повний текст джерелаBreitkreutz, David, and Ickjai Lee. "Voronoi representation for areal data processing in data-rich environments." In 2009 IEEE International Conference on Intelligence and Security Informatics. IEEE, 2009. http://dx.doi.org/10.1109/isi.2009.5137291.
Повний текст джерелаHong, Shenda, Cao Xiao, Trong Nghia Hoang, Tengfei Ma, Hongyan Li, and Jimeng Sun. "RDPD: Rich Data Helps Poor Data via Imitation." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/817.
Повний текст джерелаDeLuca, V. William, Aaron Clark, Jeremy Ernst, and Nasim Lari. "Work in progress: Data-rich learning environments for engineering education." In 2011 Frontiers in Education Conference (FIE). IEEE, 2011. http://dx.doi.org/10.1109/fie.2011.6142698.
Повний текст джерелаde Sousa, Bruno, and Dulce Gomes. "Facing the challenges from different realities: e-learning approaches for Africa and Europe." In Teaching Statistics in a Data Rich World. International Association for Statistical Education, 2017. http://dx.doi.org/10.52041/srap.17603.
Повний текст джерелаDe Giusti, Giovanna. "Using digital tools to engage Kenyan development students with data." In Teaching Statistics in a Data Rich World. International Association for Statistical Education, 2017. http://dx.doi.org/10.52041/srap.17602.
Повний текст джерелаLee, Wei Ching. "Understanding Adult Learning Participation and Problem Solving in Technology-Rich Environments Through International Survey Data." In 2020 AERA Annual Meeting. Washington DC: AERA, 2020. http://dx.doi.org/10.3102/1576975.
Повний текст джерелаBruce, Mary. "The Use of Random Data in Online Discussion Boards to Promote Student Understanding of Sampling Distributions." In IASE 2021 Satellite Conference: Statistics Education in the Era of Data Science. International Association for Statistical Education, 2022. http://dx.doi.org/10.52041/iase.hirmq.
Повний текст джерелаShort, Adam R., Zachary Mimlitz, and Douglas L. Van Bossuyt. "Autonomous System Design and Controls Design for Operations in High Risk Environments." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60144.
Повний текст джерелаPocquette, Nicholas, Hwasung Yeom, Hemant Agiwal, Frank Pfefferkorn, Kumar Sridharan, Kenneth Ross, John Kessler, and Gary Cannel. "Cold Spray Process to Mitigate Potential Stress-Corrosion Cracking in Used Nuclear Fuel Storage Canisters." In ITSC2021, edited by F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau, et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0623.
Повний текст джерелаЗвіти організацій з теми "Data-rich environments"
Boivin, Jean, and Marc Giannoni. DSGE Models in a Data-Rich Environment. Cambridge, MA: National Bureau of Economic Research, December 2006. http://dx.doi.org/10.3386/t0332.
Повний текст джерелаBernanke, Ben, and Jean Boivin. Monetary Policy in a Data-Rich Environment. Cambridge, MA: National Bureau of Economic Research, July 2001. http://dx.doi.org/10.3386/w8379.
Повний текст джерелаBoivin, Jean, and Marc Giannoni. DSGE Models in a Data-Rich Environment. Cambridge, MA: National Bureau of Economic Research, December 2006. http://dx.doi.org/10.3386/w12772.
Повний текст джерелаNeyedley, K., J. J. Hanley, Z. Zajacz, and M. Fayek. Accessory mineral thermobarometry, trace element chemistry, and stable O isotope systematics, Mooshla Intrusive Complex (MIC), Doyon-Bousquet-LaRonde mining camp, Abitibi greenstone belt, Québec. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328986.
Повний текст джерелаDownes, Jane, ed. Chalcolithic and Bronze Age Scotland: ScARF Panel Report. Society for Antiquaries of Scotland, September 2012. http://dx.doi.org/10.9750/scarf.09.2012.184.
Повний текст джерелаAndrabi, Tahir, Natalie Bau, Jishnu Das, and Asim I. Khwaja. Heterogeneity in School Value-Added and the Private Premium. Research on Improving Systems of Education (RISE), November 2022. http://dx.doi.org/10.35489/bsg-risewp_2022/116.
Повний текст джерелаBonfil, David J., Daniel S. Long, and Yafit Cohen. Remote Sensing of Crop Physiological Parameters for Improved Nitrogen Management in Semi-Arid Wheat Production Systems. United States Department of Agriculture, January 2008. http://dx.doi.org/10.32747/2008.7696531.bard.
Повний текст джерелаBorch, Thomas, Yitzhak Hadar, and Tamara Polubesova. Environmental fate of antiepileptic drugs and their metabolites: Biodegradation, complexation, and photodegradation. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597927.bard.
Повний текст джерелаKing, E. L., A. Normandeau, T. Carson, P. Fraser, C. Staniforth, A. Limoges, B. MacDonald, F. J. Murrillo-Perez, and N. Van Nieuwenhove. Pockmarks, a paleo fluid efflux event, glacial meltwater channels, sponge colonies, and trawling impacts in Emerald Basin, Scotian Shelf: autonomous underwater vehicle surveys, William Kennedy 2022011 cruise report. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331174.
Повний текст джерелаChefetz, Benny, and Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7592117.bard.
Повний текст джерела