Добірка наукової літератури з теми "Data"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Data".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Data"
Migdał-Najman, Kamila, and Krzysztof Najman. "BIG DATA = CLEAR + DIRTY + DARK DATA." Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, no. 469 (2017): 131–39. http://dx.doi.org/10.15611/pn.2017.469.13.
Повний текст джерелаRakholiya, Kalpesh R., and Dr Dhaval Kathiriya. "Data Mining for Moving Object Data." Indian Journal of Applied Research 2, no. 3 (October 1, 2011): 111–13. http://dx.doi.org/10.15373/2249555x/dec2012/34.
Повний текст джерелаArputhamary, B., and L. Arockiam. "Data Integration in Big Data Environment." Bonfring International Journal of Data Mining 5, no. 1 (February 10, 2015): 01–05. http://dx.doi.org/10.9756/bijdm.8001.
Повний текст джерелаChomboon, K., N. Kaoungku, K. Kerdprasop, and N. Kerdprasop. "Data Mining in Semantic Web Data." International Journal of Computer Theory and Engineering 6, no. 6 (December 2014): 472–75. http://dx.doi.org/10.7763/ijcte.2014.v6.912.
Повний текст джерелаZvyagin, L. S. "DATA MINING: BIG DATA AND DATA SCIENCE." SOFT MEASUREMENTS AND COMPUTING 5, no. 54 (2022): 81–90. http://dx.doi.org/10.36871/2618-9976.2022.05.006.
Повний текст джерелаRemize, Michel. "La data pour dada." Archimag N°310, no. 10 (December 1, 2017): 1. http://dx.doi.org/10.3917/arma.310.0001.
Повний текст джерелаGültepe, Yasemin. "Querying Bibliography Data Based on Linked Data." Journal of Software 10, no. 8 (August 2015): 1014–20. http://dx.doi.org/10.17706//jsw.10.8.1014-1020.
Повний текст джерелаSharma, Mansi, Palak Mittal, Nidhi Garg, and Prateek Jain. "Data Analysis FIFA World Cup Data Set." Indian Journal of Science and Technology 12, no. 39 (October 20, 2019): 1–4. http://dx.doi.org/10.17485/ijst/2019/v12i39/145565.
Повний текст джерелаYerbulatov, Sultan. "Data Security and Privacy in Data Engineering." International Journal of Science and Research (IJSR) 13, no. 4 (April 5, 2024): 232–36. http://dx.doi.org/10.21275/es24318121241.
Повний текст джерелаReddy Desani, Nithin. "Enhancing Data Governance through AI - Driven Data Quality Management and Automated Data Contracts." International Journal of Science and Research (IJSR) 12, no. 8 (August 5, 2023): 2519–25. http://dx.doi.org/10.21275/es23812104904.
Повний текст джерелаДисертації з теми "Data"
Riminucci, Stefania. "COVID-19,Open data e data visualization:interazione con dati epidemiologici." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21577/.
Повний текст джерелаMondaini, Luca. "Data Visualization di dati spazio-temporali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16853/.
Повний текст джерелаYu, Wenyuan. "Improving data quality : data consistency, deduplication, currency and accuracy." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8899.
Повний текст джерелаLong, Christopher C. "Data Processing for NASA's TDRSS DAMA Channel." International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/611474.
Повний текст джерелаPresently, NASA's Space Network (SN) does not have the ability to receive random messages from satellites using the system. Scheduling of the service must be done by the owner of the spacecraft through Goddard Space Flight Center (GSFC). The goal of NASA is to improve the current system so that random messages, that are generated on board the satellite, can be received by the SN. The messages will be requests for service that the satellites control system deems necessary. These messages will then be sent to the owner of the spacecraft where appropriate action and scheduling can take place. This new service is known as the Demand Assignment Multiple Access system (DAMA).
Budd, Chris. "Data Protection and Data Elimination." International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596395.
Повний текст джерелаData security is becoming increasingly important in all areas of storage. The news services frequently have stories about lost or stolen storage devices and the panic it causes. Data security in an SSD usually involves two components: data protection and data elimination. Data protection includes passwords to protect against unauthorized access and encryption to protect against recovering data from the flash chips. Data elimination includes erasing the encryption key and erasing the flash. Telemetry applications frequently add requirements such as write protection, external erase triggers, and overwriting the flash after the erase. This presentation will review these data security features.
Furrier, Sean Alexander, and Sean Alexander Furrier. "Communicating Data: Data-Driven Storytelling." Thesis, The University of Arizona, 2017. http://hdl.handle.net/10150/624989.
Повний текст джерелаChitondo, Pepukayi David Junior. "Data policies for big health data and personal health data." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2479.
Повний текст джерелаHealth information policies are constantly becoming a key feature in directing information usage in healthcare. After the passing of the Health Information Technology for Economic and Clinical Health (HITECH) Act in 2009 and the Affordable Care Act (ACA) passed in 2010, in the United States, there has been an increase in health systems innovations. Coupling this health systems hype is the current buzz concept in Information Technology, „Big data‟. The prospects of big data are full of potential, even more so in the healthcare field where the accuracy of data is life critical. How big health data can be used to achieve improved health is now the goal of the current health informatics practitioner. Even more exciting is the amount of health data being generated by patients via personal handheld devices and other forms of technology that exclude the healthcare practitioner. This patient-generated data is also known as Personal Health Records, PHR. To achieve meaningful use of PHRs and healthcare data in general through big data, a couple of hurdles have to be overcome. First and foremost is the issue of privacy and confidentiality of the patients whose data is in concern. Secondly is the perceived trustworthiness of PHRs by healthcare practitioners. Other issues to take into context are data rights and ownership, data suppression, IP protection, data anonymisation and reidentification, information flow and regulations as well as consent biases. This study sought to understand the role of data policies in the process of data utilisation in the healthcare sector with added interest on PHRs utilisation as part of big health data.
BRASCHI, GIACOMO. "La circolazione dei dati e l'analisi big data." Doctoral thesis, Università degli studi di Pavia, 2019. http://hdl.handle.net/11571/1244327.
Повний текст джерелаDescription of the legal instruments that regulate the circulation of data and analysis of possible legislative developments desirable to favor the circulation of data
Perovich, Laura J. (Laura Jones). "Data Experiences : novel interfaces for data engagement using environmental health data." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95612.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-81).
For the past twenty years, the data visualization movement has reworked the way we engage with information. It has brought fresh excitement to researchers and reached broad audiences. But what comes next for data? I seek to create example "Data Experiences" that will contribute to developing new spaces of information engagement. Using data from Silent Spring Institute's environmental health studies as a test case, I explore Data Experiences that are immersive, interactive, and aesthetic. Environmental health datasets are ideal for this application as they are highly relevant to the general population and have appropriate complexity. Dressed in Data will focus on the experience of an individual with her/his own environmental health data while BigBarChart focuses on the experience of the community with the overall dataset. Both projects seek to present opportunities for nontraditional learning, community relevance, and social impact.
by Laura J. Perovich.
S.M.
Wang, Yi. "Data Management and Data Processing Support on Array-Based Scientific Data." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1436157356.
Повний текст джерелаКниги з теми "Data"
Cooper, Richard, and Jessie Kennedy, eds. Data Management. Data, Data Everywhere. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73390-4.
Повний текст джерелаJakarta Raya (Indonesia). Badan Kesatuan Bangsa., ed. Kumpulan data: Data kerawanan, data narkoba, data tawuran pelajar. [Jakarta]: Badan Kesatuan Bangsa, Prop. DKI Jakarta, 2002.
Знайти повний текст джерелаMonino, Jean-Louis, and Soraya Sedkaoui. Big Data, Open Data and Data Development. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119285199.
Повний текст джерелаZhu, Zhen. Data Warehousing, Data Lakes and Data Lakehouses. Edited by Aeron Zentner. 2455 Teller Road, Thousand Oaks California 91320 United States: SAGE Publications, Inc., 2024. http://dx.doi.org/10.4135/9781071937471.
Повний текст джерелаPanchal, Ajay G. Data mining economic data. Manchester: UMIST, 1998.
Знайти повний текст джерелаAutodata, ed. Diesel data: Technical data. Maidenhead: Autodata Limited, 1992.
Знайти повний текст джерелаPress, Scripps College, and ArjoWiggins (Firm), eds. Good data, bad data. [Claremont, California]: Scripps College Press, 2014.
Знайти повний текст джерелаAndrews, D. F., and A. M. Herzberg. Data. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5098-2.
Повний текст джерелаHerian, Robert. Data. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001.
Повний текст джерелаTyagi, Amit Kumar. Data Science and Data Analytics. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003111290.
Повний текст джерелаЧастини книг з теми "Data"
Pastore y Piontti, Ana, Nicola Perra, Luca Rossi, Nicole Samay, and Alessandro Vespignani. "DATA, DATA, AND MORE DATA." In Charting the Next Pandemic, 11–28. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93290-3_2.
Повний текст джерелаDomokos, László. "Data About Data." In Physical Property Prediction in Organic Chemistry, 11–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-74140-1_3.
Повний текст джерелаFurner, Jonathan. "“Data”: The data." In Information Cultures in the Digital Age, 287–306. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14681-8_17.
Повний текст джерелаLuckin, Rose, Karine George, and Mutlu Cukurova. "Data, data everywhere." In AI for School Teachers, 33–48. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003193173-3.
Повний текст джерелаBahman, Zohuri, and Mossavar-Rahmani Farhang. "Data Warehousing, Data Mining, Data Modeling, and Data Analytics." In A Model to Forecast Future Paradigms, 73–109. Includes bibliographical references and index. | Contents: Volume 1. Introduction to knowledge is power in four dimensions: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9781003000662-3.
Повний текст джерелаBusulwa, Richard, and Nina Evans. "Data, data management, data analytics, and data science technologies." In Digital Transformation in Accounting, 183–96. Abingdon, Oxon ; New York, NY : Routledge, 2021. | Series: Business & digital transformation: Routledge, 2021. http://dx.doi.org/10.4324/9780429344589-18.
Повний текст джерелаIrti, Claudia. "Personal Data, Non-personal Data, Anonymised Data, Pseudonymised Data, De-identified Data." In Services and Business Process Reengineering, 49–57. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3049-1_5.
Повний текст джерелаHerian, Robert. "Being in data." In Data, 67–88. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001-4.
Повний текст джерелаHerian, Robert. "Proximate data – a conclusion." In Data, 111–25. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001-6.
Повний текст джерелаHerian, Robert. "Introduction." In Data, 1–14. Milton Park, Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2021. http://dx.doi.org/10.4324/9781003162001-1.
Повний текст джерелаТези доповідей конференцій з теми "Data"
Zhang, Xiaofeng, Zhangyang Wang, Dong Liu, and Qing Ling. "DADA: Deep Adversarial Data Augmentation for Extremely Low Data Regime Classification." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8683197.
Повний текст джерелаYi, Zhang, Zhao Hongkai, Wei Yongyu, Xia Yulian, and Zhang Xiaoyan. "Improved DataX Data Synchronization Technique for Distribution Grid Data Middleware Implementation." In 2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). IEEE, 2024. http://dx.doi.org/10.1109/eebda60612.2024.10485928.
Повний текст джерелаAlfred, Rayner. "DARA: Data Summarisation with Feature Construction." In 2008 Second Asia International Conference on Modelling & Simulation (AMS). IEEE, 2008. http://dx.doi.org/10.1109/ams.2008.131.
Повний текст джерелаHunger, Casen, Lluis Vilanova, Charalampos Papamanthou, Yoav Etsion, and Mohit Tiwari. "DATS - Data Containers for Web Applications." In ASPLOS '18: Architectural Support for Programming Languages and Operating Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3173162.3173213.
Повний текст джерелаKoehler, Martin, Alex Bogatu, Cristina Civili, Nikolaos Konstantinou, Edward Abel, Alvaro A. A. Fernandes, John Keane, Leonid Libkin, and Norman W. Paton. "Data context informed data wrangling." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258015.
Повний текст джерелаLeadbetter, Adam, Damian Smyth, Robert Fuller, Eoin O'Grady, and Adam Shepherd. "Where big data meets linked data: Applying standard data models to environmental data streams." In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840943.
Повний текст джерелаAshok, Vikas, and Ravi Mukkamala. "Data mining without data." In the 10th annual ACM workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2046556.2046578.
Повний текст джерелаCassavia, Nunziato, Pietro Dicosta, Elio Masciari, and Domenico Saccà. "Data Preparation for Tourist Data Big Data Warehousing." In Special Session on Knowledge Discovery meets Information Systems: Experiences and Lessons Learned Dealing with Real-life Scenarios. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0005144004190426.
Повний текст джерелаSanchez, Susan M. "DATA FARMING: BETTER DATA, NOT JUST BIG DATA." In 2018 Winter Simulation Conference (WSC). IEEE, 2018. http://dx.doi.org/10.1109/wsc.2018.8632383.
Повний текст джерелаLokesh, M., A. Keerthi Devi, U. Dinesh Chowdary, P. V. N. S. Divya Lakshmi, and G. Rama Koteswara Rao. "Data Redundancy, Data Phishing, and Data Cloud Backup." In 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT). IEEE, 2023. http://dx.doi.org/10.1109/icecct56650.2023.10179679.
Повний текст джерелаЗвіти організацій з теми "Data"
Martin, Mark, Lance Vowell, Ian King, and Chris Augustus. Automated Data Cleansing in Data Harvesting and Data Migration. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/949761.
Повний текст джерелаP.L. Cloke. Data Qualification Report For: Thermodynamic Data File, DATA0.YMP.R0 For Geochemical Code, EQ3/6? Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/899946.
Повний текст джерелаRussell, H. A. J., N. Benoit, and D. Paradis. Data collection and data sources. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/298871.
Повний текст джерелаMusick, R., T. Critchlow, M. Ganesh, Z. Fidelis, A. Zemla, and T. Slezak. Data Foundry: Data Warehousing and Integration for Scientific Data Management. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/793555.
Повний текст джерелаZhang, Jovan Yang, Hari Viswanathan, Jeffery Hyman, and Richard Middleton. Data Analytics of Hydraulic Fracturing Data. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1304742.
Повний текст джерелаBishop, Bradley Wade. Data from Data Services Librarians Study. University of Tennessee, Knoxville Libraries, April 2020. http://dx.doi.org/10.7290/m29yhy5qen.
Повний текст джерелаBishop, Bradley Wade. Data from Data Management Plan Compliance. University of Tennessee, Knoxville Libraries, January 2020. http://dx.doi.org/10.7290/pebuwhcq7l.
Повний текст джерелаDosch, Brianne, and Tyler Martindate. Data from Business Journals Data Sharing. University of Tennessee, Knoxville Libraries, 2019. http://dx.doi.org/10.7290/pyxdnl2g0z.
Повний текст джерелаTafolla, Tanya, Eappen Nelluvelil, Jacob Moore, Daniel Dunning, Nathaniel Morgan, and Robert Robey. MATAR: Data-Oriented Sparse Data Representation. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1773304.
Повний текст джерелаHoitink, D. J., and K. W. Burk. Climatological data summary 1994, with historical data. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/90676.
Повний текст джерела