Добірка наукової літератури з теми "Cyclage batterie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cyclage batterie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cyclage batterie":

1

Henschel, Sebastian, Philipp-Tobias Dörner, Florian Kößler, and Jürgen Fleischer. "Mechanische Zelldemontage für das direkte Recycling/Mechanical battery cell disassembly for direct end-of-life battery recycling." wt Werkstattstechnik online 113, no. 07-08 (2023): 278–81. http://dx.doi.org/10.37544/1436-4980-2023-07-08-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Die Ziele der Verkehrswende führen zu einem stetig steigenden Bedarf an Lithium-Ionen-Batterien. Damit diese am Ende ihres Lebenszyklus in einigen Jahren nicht als Abfall anfallen, sondern die darin enthaltenen wertvollen Rohstoffe weiter genutzt werden können, ist ein effektives Recycling im Sinne der Kreislaufwirtschaft notwendig. Hierzu wird in diesem Beitrag ein Konzept zur mechanischen Demontage von Batteriezellen als Grundstein für ein direktes Recycling vorgestellt. The goals of the transportation revolution are leading to a steadily increasing demand for lithium-ion batteries. To prevent the valuable raw materials in these batteries from ending up as waste as soon as the batteries‘ life cycle ends in a few years and to ensure that these materials continue to be used, effective recycling in the sense of a circular economy is necessary. To this end, this paper presents an appraoch for mechanically disassembling battery cells as a cornerstone for direct recycling.
2

Hao, Shuai. "Studies on the Performance of Two Dimensional AlSi as the Anodes of Li Ion Battery." Solid State Phenomena 324 (September 20, 2021): 109–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently, two-dimensional (2D) materials have been rapidly developed and they provided a wide application on the anode of the batteries, reducing the adverse effect of traditional ion batteries including low capacity, short cycle life, low charging rate and poor safety mainly coming from the use of graphite anode. The current report investigates the anode performances of AlSi, a new 2D material exfoliated from NaAlSi, for Li ion batterys (LIBs) through density functional theory (DFT) calculations and gives quantitative discussions on the Li ion valences, binding energies and open-circuit voltages of 2D AlSi anode. The results indicate that 2D AlSi performs great as a novel anode due to the moderate adhesion to Li and low barrier for ion diffusion. Furthermore, our research results illustrate a broad application prospect on the new anode inventions as well as reducing useless consumption on the batteries by the practice of AlSi anode.
3

Yuan, Yuan. "Comparative Studies on Monolayer and Bilayer Phosphorous as the Anodes of Li Ion Battery." Key Engineering Materials 896 (August 10, 2021): 61–66. http://dx.doi.org/10.4028/www.scientific.net/kem.896.61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recently, two-dimensional (2D) material developed rapidly and provided a wide application on the anode of the batteries, reducing the adverse effect of traditional ion batteries such as low capacity, short cycle life, slow charging and poor safety mainly coming from the use of graphite anode. The current report investigates the anode performances of phosphorus, a new 2D material in electrochemistry field, with monolayer and bilayer structure for Li ion batterys (LIBs) through density functional theory (DFT) calculations and gives a comparison on the Li ion valences, binding energies and open-circuit voltages between the two structures. The results indicate that bilayer phosphorus perform better as a novel anode due to the stronger adhesion to Li and lower barrier for ion diffusion. Furthermore, our research results illustrate a broad application prospect on the new anode inventions as well as reducing useless consumption on the batteries by the practice of bilayer phosphorus anode.
4

Chen, Chun Ming, Hung Wei Hsieh, Yu Lin Juan, Tsair Rong Chen, and Peng Lai Chen. "Automatic Battery Testing Platform for Series-Connected Lead Acid Batteries." Advanced Materials Research 1014 (July 2014): 220–23. http://dx.doi.org/10.4028/www.scientific.net/amr.1014.220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, an automatic testing platform was developed. A complete charging and discharging cycle for the series-connected lead-acid batteries is carried out by the testing platform to record the capacity, charging efficiency, and other relative data of the batteries. A microcontroller unit (MCU) is used to replace the common DAQ card for cost reduction. The voltage and current of the batteries are sampled by the MCU and saved by the software LabVIEW on the personal computer. The charging and discharging procedures are automatically switched by the software LabVIEW according to the state of the batteries. A complete testing data can be provided by the LabVIEW at the end of the testing cycle. New and old battery modules are both tested with the proposed platform and another reliable testing system to evaluate the validity of the proposed system.
5

Rakhimov, Ergashali, Diyorbek Khoshimov, Shuxrat Sultonov, Fozilbek Jamoldinov, Abdumannob Imyaminov, and Bahrom Omonov. "Battery technologies: exploring different types of batteries for energy storage." BIO Web of Conferences 84 (2024): 05034. http://dx.doi.org/10.1051/bioconf/20248405034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Battery technologies play a crucial role in energy storage for a wide range of applications, including portable electronics, electric vehicles, and renewable energy systems. This comprehensive article examines and compares various types of batteries used for energy storage, such as lithium-ion batteries, lead-acid batteries, flow batteries, and sodium-ion batteries. Detailed discussions on their characteristics, advantages, limitations, recent advancements, and key performance metrics provide valuable insights into the selection and implementation of these battery technologies for diverse energy storage needs. The article also includes a comparative analysis with concrete numbers and tables, showcasing energy density, cycle life, self-discharge rates, temperature sensitivity, and cost. By exploring the latest literature and research in battery technologies, this article aims to provide stakeholders with up-to-date information for making informed decisions regarding the adoption of battery technologies in energy storage systems.
6

Ye, Hualin, Lu Ma, Yu Zhou, Lu Wang, Na Han, Feipeng Zhao, Jun Deng, Tianpin Wu, Yanguang Li, and Jun Lu. "Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries." Proceedings of the National Academy of Sciences 114, no. 50 (November 27, 2017): 13091–96. http://dx.doi.org/10.1073/pnas.1711917114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many problems associated with Li–S and Na–S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li–S and Na–S batteries. In Li–S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 °C. MoS3 can also be used as the cathode material of even more challenging Na–S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.
7

Liu, Yongtao, Chunmei Zhang, Zhuo Hao, Xu Cai, Chuanpan Liu, Jianzhang Zhang, Shu Wang, and Yisong Chen. "Study on the Life Cycle Assessment of Automotive Power Batteries Considering Multi-Cycle Utilization." Energies 16, no. 19 (September 28, 2023): 6859. http://dx.doi.org/10.3390/en16196859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article utilizes the research method of the Life Cycle Assessment (LCA) to scrutinize Lithium Iron Phosphate (LFP) batteries and Ternary Lithium (NCM) batteries. It develops life cycle models representing the material, energy, and emission flows for power batteries, exploring the environmental impact and energy efficiency throughout the life cycles of these batteries. The life cycle assessment results of different power battery recycling process scenarios are compared and analyzed. This study focuses on retired LFP batteries to assess the environmental and energy efficiency during the cascade utilization stage, based on a 50% Single-Cell Conversion Rate (CCR). The findings of the research reveal that, in terms of resource depletion and environmental emission potential, LFP batteries exhibit lower impacts compared to NCM batteries. The use of hydrometallurgy in recovering LFP power batteries leads to minimal life cycle resource consumption and environmental emission potential. During the cascade utilization stage of LFP batteries, significant benefits are noted, including a 76% reduction in mineral resource depletion (ADP e) and an 83% reduction in fossil energy depletion (ADP f), alongside notable reductions in various environmental impact factors. Simultaneously, considering the sensitivity of life cycle assessment indicators and their benefit percentages to different CCRs, it is observed that ODP exhibits the highest sensitivity to CCR changes, while evaluation indicators such as HTP, AP, and GWP show relatively lower sensitivity. This study can provide an effective reference for the establishment of an energy saving and emission reduction evaluation system of power batteries.
8

Deb, A. "Battered Woman Syndrome: Prospect of Situating It Within Criminal Law in India." BRICS Law Journal 8, no. 4 (December 6, 2021): 103–35. http://dx.doi.org/10.21684/2412-2343-2021-8-4-103-135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In patriarchal cultures, like the one prevalent in India, rigid, polarised and hierarchical gender roles work to establish a strong normative relationship between gender and the treatment of offenders committing violent crimes such as homicide. While most of the common law countries have already undergone a social change towards making their criminal laws more gender-sensitive by accommodating the experiences of battered women, the situation in India is quite different. Indian courts have recognised Battered Woman Syndrome very recently in only three cases, much differently than courts in other jurisdictions. While in other countries, Battered Woman Syndrome has been adduced by the advocates of battered women to support defence pleas, Indian Courts have resorted to it only to explain the effects of a battering relationship. The fact that Battered Woman Syndrome has only been recognised in such a small number of cases and the lack of scholarship in this particular area clearly resonates the resistance of the Indian criminal law towards women’s accounts of their experiences. Drawing on the example of the three cases, the author makes an attempt to put forth feminist legal arguments and offer a fresh perspective on the possibility of using Battered Woman Syndrome as a defence to address the concerns of battered women who end the cycle of violence by ending the lives of the abuser in a “kill or be killed” situation. Since Battered Woman Syndrome as a subject has been extensively researched in other common law countries, the present study limits itself to the Indian jurisdiction only. This paper also challenges the effectiveness of the existing defences under the Indian Penal Code, 1860 in accommodating the cases of battered women, and highlights the need for the introduction of a new justificatory defence as a plausible solution.
9

Hu, Hai-Yan, Ning Xie, Chen Wang, Fan Wu, Ming Pan, Hua-Fei Li, Ping Wu, et al. "Enhancing the Performance of Motive Power Lead-Acid Batteries by High Surface Area Carbon Black Additives." Applied Sciences 9, no. 1 (January 7, 2019): 186. http://dx.doi.org/10.3390/app9010186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effects of carbon black specific surface area and morphology were investigated by characterizing four different carbon black additives and then evaluating the effect of adding them to the negative electrode of valve-regulated lead–acid batteries for electric bikes. Low-temperature performance, larger current discharge performance, charge acceptance, cycle life and water loss of the batteries with carbon black were studied. The results show that the addition of high-performance carbon black to the negative plate of lead–acid batteries has an important effect on the cycle performance at 100% depth-of-discharge conditions and the cycle life is 86.9% longer than that of the control batteries. The excellent performance of the batteries can be attributed to the high surface area carbon black effectively inhibiting the sulfation of the negative plate surface and improving the charge acceptance of the batteries.
10

Zhang, Kai, Jianxiang Yin, and Yunze He. "Acoustic Emission Detection and Analysis Method for Health Status of Lithium Ion Batteries." Sensors 21, no. 3 (January 21, 2021): 712. http://dx.doi.org/10.3390/s21030712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The health detection of lithium ion batteries plays an important role in improving the safety and reliability of lithium ion batteries. When lithium ion batteries are in operation, the generation of bubbles, the expansion of electrodes, and the formation of electrode cracks will produce stress waves, which can be collected and analyzed by acoustic emission technology. By building an acoustic emission measurement platform of lithium ion batteries and setting up a cycle experiment of lithium ion batteries, the stress wave signals of lithium ion batteries were analyzed, and two kinds of stress wave signals which could characterize the health of lithium ion batteries were obtained: a continuous acoustic emission signal and a pulse type acoustic emission signal. The experimental results showed that during the discharge process, the amplitude of the continuous acoustic emission signal decreased with the increase of the cycle times of batteries, which could be used to characterize performance degradation; there were more pulse type acoustic emission signals in the first cycle of batteries, less in the small number of cycles, and slowly increased in the large number of cycles, which was in line with the bathtub curve and could be used for aging monitoring. The research on the health of lithium ion batteries by acoustic emission technology provides a new idea and method for detecting the health lithium ion batteries.

Дисертації з теми "Cyclage batterie":

1

Ahouari, Hania. "Exploration de nouveaux matériaux d'électrodes positives à base de polyanions carboxylates (oxalates, malonates et carbonates) et de métaux de transition." Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0027/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse, nous avons exploré toute une palette de composés à base de métaux de transition et de polyanions carboxylates (oxalates, malonates et carbonates) préparés via des procédés éco-efficaces. La synthèse du composé oxalate de fer (III) (Fe2(C2O4)3·4H2O) dont nous en avons élucidé pour la première fois la structure cristalline en combinant les techniques de diffraction des rayons X et neutrons, fait l'objet de la première partie de cette étude. Ce composé cristallise dans une maille triclinique (P -1) et il présente des propriétés électrochimiques intéressantes (98 mAh/g à 3.35 V vs. Li+/Li0). Dans cette quête pour de meilleurs matériaux, nous avons exploré la famille des oxalates Na2M2(C2O4)3·2H2O, dont la synthèse avait été déjà rapportée, mais sans qu'aucune activité électrochimique ne puisse être détectée. En revanche, le remplacement du groupement oxalate par un groupement malonate nous a permis d’obtenir pour la première fois plusieurs membres de la famille (Na2M(H2C3O4)2·nH2O (n=0, 2), M= Mn, Fe, Co, Ni, Zn et Mg) dont nous avons résolu leurs structures cristallines correspondantes. Cependant, comme dans le cas des oxalates, ces phases ne dévoilent aucune activité électrochimique vis-à-vis du lithium, bien qu'elles présentent des propriétés magnétiques intéressantes. Enfin nous avons conclu ce travail par la synthèse de composés appartenant à la famille des fluorocarbonates KMCO3F (M= Ca et Mn) en utilisant la voie tout solide. La phase au calcium, déjà rapportée dans la littérature, a fait l'objet d'une étude en température qui nous a permis de mettre en évidence pour la première fois la formation d'une phase haute température (KCaCO3F-HT), pour T≥320°C, dont nous avons résolu la structure. Finalement, l'utilisation du Mn au lieu du Ca a conduit à l'obtention d'une nouvelle phase (KMnCO3F) qui cristallise dans une maille hexagonale (P -6 c 2)
This thesis has focused on the exploration of new compounds based on 3d-metal and carboxylate polyanions (oxalates, malonates and carbonates) prepared through different sustainable synthetic approaches. In the first part, we report a new synthetic route to prepare the iron (III) oxalate compound (Fe2(C2O4)3·4H2O) and solve its crystal structure through combined X-ray and neutron powder diffraction. The compound crystallizes within a triclinic cell (P-1) and exhibits attractive electrochemical properties (98 mAh/g at 3.35 V vs. Li+/Li0). Motivated by this finding we pursued our quest for new positive electrode materials. We prepared by hydrothermal synthesis single crystals of sodium 3d-metal oxalates Na2M2(C2O4)3·2H2O, which are widely investigated in the literature for their magnetic properties. Unfortunately, these phases are electrochemically inactive versus lithium. Thereafter, we extended the synthesis towards the malonate family and we reported for the first time several members (Na2M(H2C3O4)2·nH2O (n= 0, 2), M= Mn, Fe, Co, Ni, Zn et Mg). These systems present rich crystal chemistry together with interesting antiferromagnetic properties but as in the case of the oxalates, they are not electrochemically active versus lithium. Finally, we synthesized two members of fluorocarbonates compounds KMCO3F (M= Ca and Mn) using solid state process. We succeeded in the preparation of the calcium member, already reported in the literature and we identified for the first time a phase transition at 320°C. The crystal structure of the high temperature phase (KCaCO3F-HT) was solved using neutron powder diffraction. A new manganese phase (KMnCO3F) was synthesized using the same technique and its crystal structure was solved by combining TEM, XR and neutrons powder diffraction techniques. This compound crystallizes within a hexagonal unit cell (P -6 c 2)
2

Desoeurbrun, Célestine. "Etude des relations entre la structure et les performances électrochimiques de matériaux MoS2-Ketjenblack pour les batteries lithium-soufre." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALI100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les batteries lithium-soufre (Li-S) sont des technologies de batterie prometteuses pour répondre à la demande croissante de stockage d’énergie. En raison de leur densité d’énergie théorique élevée de 2500 Wh.kg-1 en poids et de 2800 Wh.L-1 en volume [1], elles ont le potentiel de stocker pratiquement 3 fois plus d’énergie que les batteries Li-ion. Cependant, plusieurs défis entravent leur développement commercial. Parmi eux, l’effet de « navette redox » est l’un des principaux inconvénients de la technologie. Cette navette redox consiste en un mouvement d’aller-retour des polysulfures (Li2Sx, 2 < x < 8), composés intermédiaires générés lors de la dissolution du soufre entre les électrodes, entraînant une faible utilisation de soufre actif, une perte d’efficacité coulombique et une rapide dégradation de la capacité électrochimique au cours du temps.Dans la littérature, de nombreuses stratégies ont été proposées pour réduire ce phénomène, allant de l'utilisation de couches passives protectrices du lithium métal (Li), à la fonctionnalisation des séparateurs d'électrolyte, en passant par la conception de nouvelles électrodes positives utilisant des matériaux dont la fonction principale est de capturer efficacement les polysulfures (carbone poreux, structures métallo-organiques, matériaux à base de métaux tels que des oxydes ou des hydroxydes, voire des matériaux sulfures par exemple) [2]. Parmi les solutions proposées, le MoS2 s'est révélé être un bon candidat pour interagir spécifiquement avec les polysulfures [3].Ce projet de thèse est dédié à la conception d'électrodes positives de batteries Li-S, à base de MoS2-Ketenblack (Mo-KB), pour résoudre le phénomène de « navette redox ». Il vise à mieux comprendre les paramètres jouant un rôle dans le mécanisme de capture des polysulfures afin de concevoir des électrodes positive de Mo-KB optimisées pour i) réduire la diffusion des polysulfures et ii) favoriser leur réduction en Li2S.Différents échantillons de Mo-KB ont été synthétisés en veillant à varier la morphologie, la teneur, et la longueur des feuillets de MoS2 afin de modifier, à la fois, le type et le nombre de sites actifs disponibles et d'étudier l'impact sur les interactions avec les polysulfures et les performances des batteries Li-S qui en résulte.Pour ce faire, une nouvelle méthodologie UV-Vis, utilisant une sonde in situ pour quantifier systématiquement l'adsorption des polysulfures par les matériaux synthétisés, a été développée. En effet, cette méthodologie limite les artefacts générés lors de l’utilisation d’une configuration plus répandue : mesure UV-Vis avec cuvette en quartz. La méthodologie in situ contribue ainsi à comprendre l'effet réel de la nature des adsorbants (MoS2, MoS2-Ketjenblack, silice) sur les phénomènes d'adsorption et comment cela peut modifier la chimie des polysulfures en solution (réactions de dismutation et spéciation). Enfin, les échantillons poreux de Mo-KB, préalablement imprégnées de soufre, ont été intégrées dans la formulation d'électrodes positives Li-S afin d’évaluer leur efficacité d’adsorption et de conversion des polysulfures dans un système réel, au sein de pile-bouton. Des mesures électrochimiques ont été menées afin d’évaluer quantitativement l’impact de ces matériaux sur les performances électrochimiques (capacité, efficacité faradique, puissance, durée de vie du cycle) au fil du temps.References1. Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium-sulfur batteries. Chemical Society reviews 45, 5605–5634; 10.1039/c5cs00410a (2016).2. Chen, Y. et al. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Advanced materials (Deerfield Beach, Fla.), e2003666; 10.1002/adma.202003666 (2021).3. Liu, Y., Cui, C., Liu, Y., Liu, W. & Wei, J. Application of MoS 2 in the cathode of lithium sulfur batteries. RSC Adv. 10, 7384–7395; 10.1039/C9RA09769D (2020)
Lithium-sulfur (Li-S) batteries are promising candidates for energy storage. Due to their high theoretical gravimetric and volumetric energy density of 2500 Wh.kg-1 and 2800 Wh.L-1 [1], they have the potential to practically store about 3 times more energy than Li-ion batteries. However, several challenges hinder their commercial development. Among those, the “shuttle-effect” is one of the major drawbacks and consists of a back-and-forth movement between electrodes of the dissolved intermediates polysulfides (Li2Sx, 2 < x < 8) giving rise to low active sulfur utilization, poor coulombic efficiency, and rapid capacity decay.In literature, many strategies have been proposed ranging from protective Li passive layers to electrolyte separator functionalization, and new positive electrode design using efficient polysulfides trapping materials (e.g. porous carbon, metal-organic frameworks, metal-based material such as oxides or hydroxides or even sulfides materials)2. Among them, MoS2 has proven to be a good adsorbent candidate to interact with polysulfide species3.This PhD project is dedicated to the design of supported MoS2-Ketenblack (Mo-KB) for Li-S positive electrode to tackle the “shuttle effect” phenomenon. We aimed to better understand the parameter playing a role on the polysulfide trapping mechanism to design an optimized Mo-KB electrode to i) mitigate polysulfide shuttling, and ii) favor their reduction into Li2S.Samples with MoS2 morphology, Mo loading, slab length variation were synthesized to modify the type and number of actives sites to study the impact on polysulfides interactions, and the resulting impact on the Li-S battery performances.To do so, we setup a new UV-Vis methodology using in situ probe to systematically quantify the polysulfides adsorption onto the developed materials. Indeed, this methodology limits the artefacts due to the setup compared to usual UV-Vis setup using a quartz cuvette and helps to understand the true effect of adsorbents nature (MoS2, MoS2-Ketjenblack, silica) on the adsorption phenomena and how it may modify the chemistry in solution of polysulfides (disproportionation and speciation). Finally, the sulfur impregnated porous Mo-KB powders were subsequently integrated into the formulation of sulfur-positive electrodes within a coin cell battery environment to assess their effectiveness as both PS trap and catalytic surface to convert polysulfides. The electrochemical measurements performed aimed to quantitatively determine whether it would enhance the electrochemical performance (capacity, faradic efficiency, power, cycle life) over time.References1. Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium-sulfur batteries. Chemical Society reviews 45, 5605–5634; 10.1039/c5cs00410a (2016).2. Chen, Y. et al. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. Advanced materials (Deerfield Beach, Fla.), e2003666; 10.1002/adma.202003666 (2021).3. Liu, Y., Cui, C., Liu, Y., Liu, W. & Wei, J. Application of MoS 2 in the cathode of lithium sulfur batteries. RSC Adv. 10, 7384–7395; 10.1039/C9RA09769D (2020)
3

Adrien, Brazier. "Premiers pas vers l'observation in situ dans un Microscope Electronique en Transmission d'une batterie en cours de cyclage électrochimique." Phd thesis, Université de Picardie Jules Verne, 2009. http://tel.archives-ouvertes.fr/tel-01065908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les batteries, et en particulier les batteries lithium-ion (Li-ion), sont devenues des vecteurs de stockage de l'énergie particulièrement adaptés à l'avènement des très nombreuses applications portables (téléphones ou ordinateurs). Dans le but d'améliorer et de rendre plus sûrs ces vecteurs, il est impératif de pouvoir comprendre et caractériser de la manière la plus précise les matériaux les constituant et les interfaces les séparant. Pour cela, l'utilisation d'outils puissants et adaptés est essentielle, notamment depuis l'apparition de matériaux ayant une architecture à l'échelle nanométrique. Ainsi, l'utilisation de la Microscopie Electronique en Transmission (MET) est particulièrement prometteuse, pour sa capacité à analyser les propriétés morphologiques, structurales ou chimiques à cette échelle. Fort de ce constat, nous avons tenté de réaliser la première observation in situ dans un MET d'une batterie en cours de cyclage électrochimique. La première partie de ce manuscrit est dédiée à la présentation de la stratégie utilisée. En effet, les nombreuses difficultés liées à la fois à l'environnement du MET et à la nature même d'une batterie, nous ont forcé à faire des choix basés sur l'analyse de l'état de l'art, principalement en termes de matériaux, de technologies et d'équipements expérimentaux. Ainsi, ce projet est basé sur l'étude d'une microbatterie Li-ion tout solide. Le deuxième chapitre est lui consacré au procédé de fabrication par ablation laser de ces microbatteries tout solide, avec notamment la synthèse et la caractérisation de chacun des matériaux actifs constitutifs. La troisième partie décrit les solutions envisagées pour lever certaines des incertitudes qui avaient été identifiées. Nous avons ainsi réussi la première observation ex situ par MET d'une "nanobatteries" obtenue par découpe d'une microbatterie à l'aide d'un faisceau d'ions focalisés (FIB) dans un MEB à double faisceaux. Les analyses par MET entre des coupes de batteries après dépôt et ayant subi un cyclage électrochimique ont permis de mettre en évidence, pour la première fois, de nombreux dommages ou des mécanismes de détérioration des interfaces. Les premiers essais, et notamment la configuration utilisée, n'ayant pas permis de réaliser les premiers tests de cyclage in situ dans un MET, plusieurs modifications ont dû être opérées, qui sont présentées dans le dernier chapitre. Ce nouveau design a permis d'expérimenter un cyclage in situ sur des "nanobatteries" et de mettre en lumière les derniers challenges à relever.
4

Brazier, Adrien. "Premiers pas vers l'observation in situ dans un Microscope Electronique en Transmission d'une batterie en cours de cyclage électronique." Amiens, 2009. http://www.theses.fr/2009AMIE0123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les batteries Li-ion sont devenues des vecteurs de stockage de l'énergie particulièrement adaptés à l'avènement des très nombreuses applications portables. Dans le but d'améliorer et de rendre plus sûrs ces vecteurs, il est impératif de pouvoir comprendre et caractériser de la manière la plus précise les matériaux les constituant et les interfaces les séparant. Pour cela, l'utilisation d'outils puissants et adaptés, comme la Microscopie Electronique en Transmission (MET), est essentielle, notamment depuis l'apparition de matériaux ayant une architecture à l'échelle nanométrique. Fort de ce constat, nous avons tenté de réaliser la première observation in situ dans un MET d'une batterie en cours de cyclage électrochimique. La première partie de ce manuscrit est dédiée à la présentation de la stratégie utilisée. En effet, les nombreuses difficultés liées à la fois à l'environnement du MET et à la nature même d'une batterie, nous ont forcé à faire des choix, comme l'utilisation d'une microbatterie Li-ion tout solide. Le deuxième chapitre est lui consacré au procédé de fabrication de ces microbatteries tout solide, avec notamment la synthèse et la caractérisation de chacun des matériaux actifs constitutifs. La troisième partie décrit les résultats de la première observation ex situ par MET d’une "nanobatteries" obtenue par découpe d'une microbatterie à l'aide d'un faisceau d'ions focalisés (FIB) dans un MEB à double faisceaux. Les analyses par MET entre des coupes de batteries après dépôt et ayant subi un cyclage électrochimique ont permis de mettre en évidence, pour la première fois, de nombreux dommages ou des mécanismes de détérioration des interfaces. Les premiers essais n'ayant pas permis de réaliser les premiers tests de cyclage in situ dans un MET, plusieurs modifications ont dû être opérées, qui sont présentées dans le dernier chapitre. Ce nouveau design a permis d'expérimenter un cyclage in situ et de mettre en lumière les derniers challenges à relever
Li-ion batteries are energy storage devices that are suitable for portable applications and support the need of using intrinsically diffuse/intermittent renewable energy sources. In order to improve such devices and make them safer, it is crucial to understand and characterize in the most accurate way the constitutive materials and their interfaces. To do so the use of powerful tools, like Transmission Electron Microscope (TEM), is essential especially since nano-architectured materials have been developed. On this basis our project relates to the in situ study of an electrochemical system under operation within a TEM. The first part of this manuscript is devoted to the strategy of the study. Indeed, the technological issues inherent to both the TEM technique and the battery forced us to make some choices like the use of an all solid-state microbattery. The fabrication process of a microbattery, including the synthesis and the study of each active material, is detailed in the second chapter. The third part describes the solutions suggested to solve some of the technological issues encountered. We thus demonstrated the first ex situ TEM observation of "nanobatteries" obtained by cross-sectioning a microbattery using focus ion beam (FIB) in a dual beam SEM. Then, TEM analyses between pristine, cycled, and faulted all solid-state batteries have revealed drastic changes, damages or deterioration mechanisms, never highlighted previously. Since it was not possible during the previous experiments to achieve an in situ TEM observation of "nanobatteries" cycled within the microscope, we describe in the last chapter all the configuration modifications made. The new design of the samples allowed us to experiment live in situ TEM cycling and to reveal the last challenges that have to be faced
5

Leveau, Lucie. "Etude de nanofils de silicium comme matériau d'électrode négative de batterie lithium-ion." Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01234963v2/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cazot, Mathilde. "Development of Analytical Techniques for the Investigation of an Organic Redox Flow Battery using a Segmented Cell." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les batteries à électrolyte circulant ou redox flow batteries (RFB) représentent une technologie prometteuse pour répondre aux besoins grandissants de stockage d'énergie. Elles seraient particulièrement adaptées aux réseaux électriques qui comptent une part grandissante d'énergie d'origine renouvelable, produite en intermittence. L'objet de ce travail est l'étude d'un nouveau type de RFB, actuellement développé par l'entreprise Kemiwatt. Il repose sur l'utilisation de molécules organiques, qui sont abondantes et recyclables. Le but de cette étude est d'améliorer la compréhension fondamentale de la batterie grâce à l'utilisation d'outils d'analyse précis et innovants. Chaque composant du système a d'abord été analysé via des moyens expérimentaux ex-situ. Les deux électrolytes composant la batterie ont ensuite été étudiés séparément en conditions réelles de circulation dans une cellule symétrique. Couplées à un modèle d'électrode volumique, les données ont été analysées pour identifier les facteurs limitants de chaque solution. La batterie entière a ensuite été étudiée dans un dispositif segmenté, permettant l'accès à la distribution interne du courant. Une étude paramétrique, réalisée avec la cellule segmentée a permis d'observer les effets du courant, du débit et de la température sur le fonctionnement de la cellule, puis d'établir une cartographie des conditions de fonctionnement idéales, suivant la puissance et l'état de charge de la batterie. L'aspect hydrodynamique du système a finalement été abordé en développant un modèle fluidique ainsi qu'une maquette expérimentale de cellule transparente pour visualiser l'écoulement
Redox Flow Batteries (RFBs) are a promising solution for large-scale and low-cost energy storage necessary to foster the use of intermittent renewable sources. This work investigates a novel RFB chemistry under development at the company Kemiwatt. Based on abundant organic/organo-metallic compounds, this new technology promises the deployment of sustainable and long-lived systems. The study undertakes the building of a thorough knowledge base of the system by developing innovative reliable analytical tools. The investigation started from the evaluation of the main factors influencing the battery performance, which could be conducted ex-situ on each material composing the cell. The two electrolytes were then examined independently under representative operating conditions, by building a symmetric flow cell. Cycling coupled with EIS measurements were performed in this set-up and then analyzed with a porous electrode model. This combined modeling-experimental approach revealed unlike limiting processes in each electrolyte along with precautions to take in the subsequent steps (such as membrane pretreatment and electrolyte protection from light). A segmented cell was built and validated to extend the study to the full cell system. It provided a mapping of the internal currents, which showed high irregularity during cycling. A thorough parameter study could be conducted with the segmented platform, by varying successively the current density, the flow rate, and the temperature. The outcome of this set of experiments would be the construction of an operational map that guides the flow rate adjustment, depending on the power load and the state of charge of the battery. This strategy of flow rate optimization showed promising outcomes at the lab-cell level. It can be easily adapted to real-size systems. Ultimately, an overview of the hydrodynamic behavior at the industrial-cell level was completed by developing a hydraulic modeling and a clear cell as an efficient diagnostic tool
7

Redondo, Iglesias Eduardo. "Étude du vieillissement des batteries lithium-ion dans les applications "véhicule électrique" : combinaison des effets de vieillissement calendaire et de cyclage." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1203/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'étude du vieillissement des batteries est nécessaire car la dégradation de leurs caractéristiques détermine en grande partie le coût, les performances et l'impact environnemental des véhicules électrifiés, notamment des véhicules 100 % électriques. La méthodologie choisie pour cette thèse consiste en deux étapes bien différenciées, à savoir la caractérisation et la modélisation. Pour la première étape, on s'appuie sur des essais de vieillissement accéléré d'éléments de batterie. Malgré leur caractère accéléré, les campagnes d'essais de vieillissement sont très coûteuses en moyens humains comme matériels : une connaissance à priori des facteurs de vieillissement est nécessaire, soit par le moyen d'études bibliographiques, soit par la réalisation de précampagnes d'essais. Ces études préalables conduisent à la conception d'un plan d'expériences composé d'un certain nombre d'essais dont les résultats permettront de révéler comment les conditions d'utilisation influencent la dégradation des batteries. Dans la seconde étape, grâce à la connaissance apportée par l'étape de caractérisation, on procède à la modélisation du vieillissement. Celle-ci permet de mettre en évidence des lois de vieillissement qui sont généralisées pour prédire l'évolution des performances d'une batterie soumise à des conditions d'utilisation variables dans le temps. Le modèle de vieillissement qui en résulte peut être utilisé pour concevoir et utiliser d'une manière optimale les batteries des véhicules pour minimiser à la fois la consommation d'énergie et de ressources naturelles. En sachant que la dégradation d'une batterie se produit différemment selon si elle est au repos ou si elle est parcourue par un courant, une difficulté majeure est celle de déterminer comment se combinent les effets du vieillissement calendaire et de cyclage pour un véhicule électrique. Dans les applications "véhicules électriques", les batteries passent une part importante de leur temps au repos et les niveaux de courant pendant leur utilisation sont relativement faibles. Les résultats des essais de vieillissement accéléré réalisés dans cette thèse confirment le caractère non-linéaire de la combinaison des vieillissements calendaire et en cyclage lorsque les batteries suivent des profils d'utilisation similaires à l'application considérée. Le modèle de vieillissement qui est proposé dans le dernier chapitre se veut simple mais efficace. Ainsi il repose sur un faible nombre d'équations (2) et de paramètres (6) et il permet de simuler l'évolution de la capacité d'une cellule soumise à un vieillissement qui combine des périodes de cyclage et de repos. Les exemples d'application de ce modèle démontrent son utilité pour l'établissement de stratégies d'utilisation de batteries dans le but de prolonger leur durée de vie
Studying the ageing of batteries is necessary because the degradation of their features largely determines the cost, the performances and the environmental impact of electric vehicles, particularly of full electric vehicles. The chosen method in this thesis is divided in two distinct phases, namely characterisation and modelling. The first phase is based on accelerated ageing testing of battery cells. Despite being accelerated, ageing test campaigns are expensive in terms of workforce and equipments: an a priori knowledge of ageing factors is necessary, either by the means of bibliographic studies or by performing preliminary test campaigns. These initial studies lead to an experimental design setup including a certain number of ageing tests. The obtained results may reveal the influence of use conditions on the degradation of batteries. In the second phase, the battery ageing is modelled applying the knowledge acquired in the first phase. Here, the ageing laws are generalised to predict the performance degradation of a battery subjected to variable use conditions. The resulting ageing model can be used to optimally design and use the battery in a vehicle by minimising both energy and natural resources consumption. Given that battery degradation occurs in a different way if the battery is in rest condition or if a current flows through, a major challenge is to determine how calendar and cycling ageing effects combine together. In electric vehicle applications, batteries are not used (in rest condition) most of the time and current levels are relatively low when they are used. The results from accelerated ageing tests which have been carried out during this thesis confirm the non-linearity of the combination of calendar and cycling ageing when usage profiles are applied to the batteries. The usage profiles are similar to the considered application: the electric vehicle. In the last chapter of this manuscript a simple but effective ageing model is proposed. It lies in a low number of equations (2) and parameters (6) and enables to simulate the capacity fade of a battery cell subjected to ageing conditions combining cycling and rest periods. The application examples prove the usefulness of this model for the development of battery use strategies for the purpose of extending their lifespan
8

Cazot, Mathilde. "Development of Analytical Techniques for the Investigation of an Organic Redox Flow Battery using a Segmented Cell." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les batteries à électrolyte circulant ou redox flow batteries (RFB) représentent une technologie prometteuse pour répondre aux besoins grandissants de stockage d'énergie. Elles seraient particulièrement adaptées aux réseaux électriques qui comptent une part grandissante d'énergie d'origine renouvelable, produite en intermittence. L'objet de ce travail est l'étude d'un nouveau type de RFB, actuellement développé par l'entreprise Kemiwatt. Il repose sur l'utilisation de molécules organiques, qui sont abondantes et recyclables. Le but de cette étude est d'améliorer la compréhension fondamentale de la batterie grâce à l'utilisation d'outils d'analyse précis et innovants. Chaque composant du système a d'abord été analysé via des moyens expérimentaux ex-situ. Les deux électrolytes composant la batterie ont ensuite été étudiés séparément en conditions réelles de circulation dans une cellule symétrique. Couplées à un modèle d'électrode volumique, les données ont été analysées pour identifier les facteurs limitants de chaque solution. La batterie entière a ensuite été étudiée dans un dispositif segmenté, permettant l'accès à la distribution interne du courant. Une étude paramétrique, réalisée avec la cellule segmentée a permis d'observer les effets du courant, du débit et de la température sur le fonctionnement de la cellule, puis d'établir une cartographie des conditions de fonctionnement idéales, suivant la puissance et l'état de charge de la batterie. L'aspect hydrodynamique du système a finalement été abordé en développant un modèle fluidique ainsi qu'une maquette expérimentale de cellule transparente pour visualiser l'écoulement
Redox Flow Batteries (RFBs) are a promising solution for large-scale and low-cost energy storage necessary to foster the use of intermittent renewable sources. This work investigates a novel RFB chemistry under development at the company Kemiwatt. Based on abundant organic/organo-metallic compounds, this new technology promises the deployment of sustainable and long-lived systems. The study undertakes the building of a thorough knowledge base of the system by developing innovative reliable analytical tools. The investigation started from the evaluation of the main factors influencing the battery performance, which could be conducted ex-situ on each material composing the cell. The two electrolytes were then examined independently under representative operating conditions, by building a symmetric flow cell. Cycling coupled with EIS measurements were performed in this set-up and then analyzed with a porous electrode model. This combined modeling-experimental approach revealed unlike limiting processes in each electrolyte along with precautions to take in the subsequent steps (such as membrane pretreatment and electrolyte protection from light). A segmented cell was built and validated to extend the study to the full cell system. It provided a mapping of the internal currents, which showed high irregularity during cycling. A thorough parameter study could be conducted with the segmented platform, by varying successively the current density, the flow rate, and the temperature. The outcome of this set of experiments would be the construction of an operational map that guides the flow rate adjustment, depending on the power load and the state of charge of the battery. This strategy of flow rate optimization showed promising outcomes at the lab-cell level. It can be easily adapted to real-size systems. Ultimately, an overview of the hydrodynamic behavior at the industrial-cell level was completed by developing a hydraulic modeling and a clear cell as an efficient diagnostic tool
9

Nugues, Samuel. "Mesure de l'état de charge d'une batterie par coulométrie corrigée par impédancemétrie." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les systemes actuels de mesure de l'etat de charge d'une batterie ne permettent pas de connaitre de maniere fiable l'energie restante dans un accumulateur. Le premier chapitre detaille le fonctionnement electrotechnique des batteries de traction au nickel-cadmium, presente une modelisation electrique de ces dernieres, explicite le principe de mesure par coulometrie et enfin justifie l'interet de la mesure d'impedance. Dans une deuxieme partie, les bancs de mesure necessaires a l'experimentation relative aux mesures d'impedance sont presentes: banc de mesure d'impedance proprement dit, banc de cyclage permettant la decharge des batteries suivant un cycle qui simule le roulage d'un vehicule et sa recharge. Le troisieme chapitre traite de la methodologie de mesure de l'impedance que nous avons pris soin de definir afin de garantir la fiabilite et la reproductibilite des mesures. Dans la derniere partie, nous interpretons les nombreuses mesures realisees des parties reelle et imaginaire de l'impedance afin d'en deduire des conditions de mesure permettant de connaitre l'etat de charge avec precision et avec un minimum d'experimentations. Nous presentons pour finir les differentes associations pouvant etre envisagees entre la coulometrie et l'impedancemetrie pour realiser une jauge d'energie
10

Bodenes, Lucille. "Etude du vieillissement de batteries lithium-ion fonctionnant à haute température par Spectroscopie Photoélectronique à rayonnement X (XPS)." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3050/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les accumulateurs lithium-ion occupent aujourd’hui une place prédominante dans le domaine du stockage de l’énergie. Leur fonctionnement et les phénomènes impliqués dans leur vieillissement sont relativement bien connus, aux températures d’utilisation proches de la température ambiante. Cependant, leur utilisation dans le cadre d’applications dites « haute température », telles que le forage pétrolier, la stérilisation « in situ » ou la géolocalisation, nécessite la levée de certains verrous techniques : la stabilité de l’électrolyte et des liants d’électrodes, la compatibilité électrolyte/séparateur, le vieillissement des matériaux et l’évolution des interfaces. Les accumulateurs sélectionnés pour ces travaux de thèse sont constitués d’un matériau lamellaire de type Li(Ni,Mn,Co)O2 pour l’électrode positive, et de graphite pour l’électrode négative. Afin de décrire les phénomènes de vieillissement associés à une telle utilisation, des analyses de surface ont été menées par Spectroscopie Photoélectronique à rayonnement X sur les électrodes issues d’accumulateurs cyclés à haute température. Ces analyses ont permis de mettre en évidence la dégradation du liant de l’électrode positive et l’évolution des interfaces électrodes/électrolyte à 85 et 120°C, et d’améliorer le choix des composants des batteries pour de meilleures performances à haute température
Nowadays, lithium-ion batteries occupy a prominent place in the field of energy storage. Phenomena involved in their aging mechanisms are quite well known for operating temperatures close to room temperature. However, their use at high temperatures for applications such as oil drilling, "in situ" sterilization or freight tracking requires some technical issues to be improved: stability of the electrolyte and electrode binders, compatibility electrolyte / separator, aging of active materials and changes of the interfaces. The batteries selected for this thesis consist of a Li(Ni,Mn,Co)O2 lamellar material at the positive electrode and graphite at the negative electrode. To describe aging phenomena related to high temperature, surface analyzes were carried out by X-ray Photoelectron Spectroscopy on the electrodes of batteries cycled at 85 and 120°C. These analyzes reveal the degradation of the positive electrode’s binder, and the changes of electrodes/electrolyte’s interfaces at high temperature compared to ambient temperature

Книги з теми "Cyclage batterie":

1

Cerdas, Felipe. Integrated Computational Life Cycle Engineering for Traction Batteries. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-82934-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Britton, Doris L. Characterization and cycle tests of lightweight nickel electrodes. Cleveland, Ohio: Lewis Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Center, Lewis Research, ed. Characterization and cycle tests of lightweight nickel electrodes. Cleveland, Ohio: Lewis Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Statman, Jan Berliner. The battered woman's survival guide: Breaking the cycle. Dallas, Tex: Taylor Pub. Co., 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Statman, Jan Berliner. The battered woman's survival guide: Breaking the cycle. Dallas, Tex: Taylor Pub. Co., 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reid, Margaret A. Changes in impedance of Ni/Cd cells with voltage and cycle life. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. National Aeronautics and Space Administration., ed. Changes in impedance of Ni/Cd cells with voltage and cycle life. [Washington, DC: National Aeronautics and Space Administration, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

W, Hall Stephen, and United States. National Aeronautics and Space Administration., eds. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells. [Washington, DC]: National Aeronautics and Space Administration, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

United States. National Aeronautics and Space Administration., ed. Effect of impregnation method on cycle life of the nickel electrode. [Washington, DC]: National Aeronautics and Space Administration, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

George C. Marshall Space Flight Center., ed. Hubble Space Telescope thermal cycle test report for large solar array samples with BSFR cells (sample numbers 703 and 704). [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cyclage batterie":

1

Tarroja, Brian, Oladele Ogunseitan, and Alissa Kendall. "Life Cycle Assessment of Emerging Battery Systems." In The Materials Research Society Series, 243–58. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe large-scale deployment of battery energy storage systems is critical for enabling the electrification of transport and the integration of renewable energy resources into regional electricity systems. Producing these systems, however, can impose various types and extents of environmental impacts and resource requirements. For relatively mature battery technologies, such as lead-acid, nickel-metal hydride, and certain variations of lithium-ion batteries, a robust life cycle assessment (LCA) literature exists that characterizes the environmental impacts and material requirements for these systems. Newer battery technologies, however, are constantly being explored, developed, and refined to improve upon the cost, durability, efficiency, or other performance parameters of relatively mature battery technologies. These newer technologies, including but not limited to solid-state lithium batteries, metal anode-based lithium batteries, non-lithium-based chemistries, flow batteries of different chemistries, and metal-air batteries, show promise from an in-use performance standpoint but do not yet have as robust of an LCA literature that characterizes their environmental impacts and resource requirements at scale. Here, we provide an overview of the present state of the art in the research literature of LCAs that characterize the potential environmental impacts and resource requirements of these emerging technologies as a basis for outlining needs for future research.
2

Helbig, Christoph, and Martin Hillenbrand. "Principles of a Circular Economy for Batteries." In The Materials Research Society Series, 13–25. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe global market for batteries is rapidly growing, leading to significant material requirements to build up an in-use stock of batteries for mobility and stationary applications. One strategy to secure the material supply for batteries and simultaneously reduce the life cycle environmental impacts of batteries is the implementation of a circular economy for batteries, chiefly lithium-ion battery materials. In a circular economy, material cycles are narrowed, slowed, and closed to form cyclical or cascading material flows instead of linear take-make-waste schemes. The most common measures to implement a circular economy are so-called R-imperatives: refuse, rethink, reduce, reuse, repair, remanufacture, refurbish, repurpose, recycle, and recover. By implementing these R-imperatives, batteries can be designed to provide the highest functional value with the lowest material requirements. Their life is prolonged by repair and remanufacturing activities, and the valuable materials can be recycled through various processes. Legislative initiatives like the EU Battery Regulation and technological development foster the implementation of such a circular economy for batteries.
3

Cellura, Maurizio, Anna Irene De Luca, Nathalie Iofrida, and Marina Mistretta. "Social Life Cycle Assessment of Batteries." In The Materials Research Society Series, 291–306. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAs the demand for batteries is continuously increasing, understanding their social implications becomes increasingly important.This chapter points out the relevance of the social life cycle assessment (SLCA) to evaluate the effects on social issues of battery throughout its entire life cycle, from raw material extraction to disposal.In the first two paragraphs, the authors describe the main SLCA methodological tools and highlight that further efforts should be made on standardisation possibilities and the alignment to other life cycle methodologies, and testing of methods is necessary to overcome present obstacles and increase the applicability and interpretability results.In the third paragraph, a literature review is carried out to highlight the main critical hotspots in s-LCA studies. There are many studies on the environmental impacts of battery production in the literature, but the social aspects have not been adequately explored or they are limited to social acceptance. Moreover, indicators related to social aspects are not standardised, due to the obstacles to collect data from the specific production sector for all life cycle phases. Identifying the social impacts of battery supply chain must necessarily include all life cycle phases, such as the extraction and processing of raw materials, the production of intermediates, the production of battery cells, the assembly of the battery pack as final product and the disposal or recycling. Further, the literature review highlights the necessity of more research to clearly define the possible social impacts of batteries, especially objective analyses that can clearly quantify the impacts deriving from the life cycle phases and that allow comparisons among different scenarios, which can be highly variegated.
4

Hauck, Daniel, and Michael Kurrat. "Overdischarging Lithium-Ion Batteries." In Sustainable Production, Life Cycle Engineering and Management, 53–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70572-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schönemann, Malte. "Battery Production and Simulation." In Sustainable Production, Life Cycle Engineering and Management, 11–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49367-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Mechanism of Cycle Process for Graphite/LiFePO4 Battery." In Materials and Working Mechanisms of Secondary Batteries, 351–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Cycle Mechanism of Graphite/[Li(Ni0.4Co0.2Mn0.4)O2 + LiMn2O4] Battery." In Materials and Working Mechanisms of Secondary Batteries, 339–50. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Chuan-zheng, Yuwan Lou, Jian Zhang, Xiaohua Xie, and Baojia Xia. "Mechanism Research of Cycle Process for MH/Ni Battery." In Materials and Working Mechanisms of Secondary Batteries, 297–313. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5955-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nikolic, Malina, Nora Schelte, Michele Velenderic, Frederick Adjei, and Semih Severengiz. "Life Cycle Assessment of Sodium-Nickel-Chloride Batteries." In Atlantis Highlights in Engineering, 336–62. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-156-2_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Diekmann, Jan, Martin Grützke, Thomas Loellhoeffel, Matthias Petermann, Sergej Rothermel, Martin Winter, Sascha Nowak, and Arno Kwade. "Potential Dangers During the Handling of Lithium-Ion Batteries." In Sustainable Production, Life Cycle Engineering and Management, 39–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70572-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cyclage batterie":

1

Gendelis, Stanislavs. "EXPERIMENTAL STUDIES OF A LONG-TERM OPERATION OF DIFFERENT BATTERIES USED IN PV SYSTEM." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/4.1/s17.12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three photovoltaic (PV) systems with the identical solar panels, the same charge controllers, and similar loads, but with different used battery types: AGM deep-cycle, LiFePO4 and lead-carbon were installed in Riga, Latvia for a long-term monitoring and analysis of the operation efficiency and potential energy losses in batteries under real operation conditions. Results of one full year of monitoring are analysed in this paper resulting quantitative indicators during different seasons. During the wintertime with low energy production, the difference in energy losses for different battery types is relatively big. On the other hand, the performance analysis during summer months, when the received solar energy increases significantly, shows the narrowing gap in stored and used energy balance between different battery types. Energy losses for all the battery types strongly depend on the monthly discharged energy, growing up to more than 50% for months with negligible amount of sunlight, meaning very ineffective operation of batteries during this period. However, the amount of energy that is lost is reduced, regardless of the type of battery tested, if the battery has a higher charge. It can be inferred that lead batteries have significantly bigger energy losses in comparison to the other two types of batteries that were observed at all of the recorded charge levels, ranging from 2 to 10 kWh. At lower charge levels, the gap between the energy losses caused by deep-cycle batteries and those caused by lithium-ion batteries becomes more pronounced.
2

Alavi-Soltani, S. R., T. S. Ravigururajan, and Mary Rezac. "Thermal Issues in Lithium-Ion Batteries." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper reviews various studies carried out on thermal issues in lithium-ion batteries. Although thermal behavior of Li-ion batteries plays an important role in performance, life cycle and safety of these batteries, it has not been studied as intensely as chemical characteristics of these batteries. In this review paper, studies concerning thermal issues on Li-ion batteries are classified based on their methodologies and the battery components being investigated. The methodologies include mathematical thermal modeling, calorimetry, electrochemical impedance spectroscopy and thermal management system method. The battery components that have been studied include anode, cathode, electrolyte and the whole cell.
3

Gudi, Abhay, and Sastry Bonala. "Cycle Aging of a Commercial Lithium-Ion Cell – A Numerical Approach." In SAENIS TTTMS Thermal Management Systems Conference-2023. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<div class="section abstract"><div class="htmlview paragraph">With advancement and increase in usage of Li-ion batteries in sectors such as electronic equipment’s, Electric Vehicles etc battery lifetime is critical for estimation of product life. It is well known that temperature and voltage strongly influence the degradation of lithium-ion batteries and that it depends on the chemical composition and structure of the positive and negative electrodes. Lithium batteries are continuously subjected to various load cycles and ambient temperatures depending on application of battery. Thus, in many applications Cycle aging could be the main contributor or factor for battery degradation, thus reduction in life of product. Thus, there is strong need for researchers and engineers to help improve life of cells or batteries being used in electric vehicles.</div><div class="htmlview paragraph">In this present work, cycle aging of commercial 18650 cell is studied at ambient temperature. Experimental data shows that about nearly 20 % cell capacity degrades at ambient temperature. A numerical model is built using GT-Auto lion and validation study is conducted.</div><div class="htmlview paragraph">Further the work is extended numerically for different ambient temperatures. Ambient temperatures of 45degC, 5 degC and 25 deg C have been studied in the present work. Effect of parameters such as ambient temperature on SEI growth of electrode has been studied. Findings provide critical design insight to help cell manufacturers to come up with proper methodology that can be adapted to help prevent capacity degradation of cell. Thus, help improve life span of a product.</div></div>
4

Wang, C. Y., W. B. Gu, R. Cullion, and B. Thomas. "Heat and Mass Transfer in Advanced Batteries." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper presents an overview of heat and mass transfer issues in advanced rechargeable batteries such as nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) batteries. These batteries are important power sources for ultra-clean, fuel-efficient vehicles and modern portable electronics. Recent demands for environmentally responsible vehicles and strong portable power have prompted fundamental studies of heat and mass transport processes in battery systems in conjunction with electrochemistry and materials science. In this paper, discussions are presented on what are the critical heat and mass transfer issues present in advanced batteries and how these issues affect the battery performance, safety, life cycle, and cost. A theoretical framework describing the transport phenomena with electrochemical reactions is provided. Selected results are presented to illustrate the importance of coupled electrochemical and thermal modeling for advanced batteries. The recent progress is also reviewed in developing and validating battery models at Penn State GATE Center for Advanced Energy Storage.
5

Barbee, Gibson, and Philippe Westreich. "NS 999 Electric Switcher Update." In ASME 2013 Rail Transportation Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/rtdf2013-4708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Norfolk Southern Railway Company (NS) is developing an all-electric switching locomotive, the NS 999, to provide a zero point source emission electric locomotive option for rail switching service. The original NS 999, unveiled in September 2009, suffered from poor battery management and challenging battery packaging. The rebuilt NS 999, anticipated in the 4th quarter 2013, will be powered by Axion Power’s PbC® batteries. The Axion PbC® batteries provide increased charge/discharge cycle life and charge acceptance compared to conventional Valve Regulated Lead–Acid (VRLA) batteries, as well as increased usable energy when configured in series as ‘long strings.’ NS and Axion will review the challenges of the initial NS 999 battery management system, improvements to the battery management system, and test results from the Norfolk Southern Hybrid Locomotive Simulator using Axion’s PbC® lead–carbon hybrid battery/supercapacitor. Axion will present test data showing the low variation in strings of PbC® batteries compared to VRLA while simulating locomotive switching. PbC® batteries have a unique charging curve, known as “concave down, increasing,” which allows the batteries to self-equalize in strings. This characteristic of PbC® batteries provides for simpler battery management and reduced maintenance charging, while increasing the usable energy available within the string. The rebuilt experimental locomotive NS 999 will use Axion’s PbC® lead–carbon batteries for the energy storage system to power locomotive switching and recover braking energy. If this research is successful, a zero point source emission electric locomotive could provide an option to reduce emissions in urban non-attainment areas and reduce dependence on petroleum. The NS 999 electric switcher is the first step to the ultimate goal of recovering braking energy from high power conventional diesel locomotives.
6

Li, Weijian, Fengchong Lan, Jiqing Chen, and Yigang Li. "Capacity Characteristics Analysis and Remaining Useful Life Estimation Method of Ternary Lithium Battery Pack." In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2020-adm-060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Objective: Lithium-ion batteries have been widely used in electric cars as the source of power with its advantages of high energy density. The development and use of electric vehicles are affected by the performance degradation of the battery with cycling and ageing. However, the present researches on the battery cycle life are mainly focused on the single cell rather than battery packs, which is different from the actual situation of electric vehicles provided energy by battery packs. This paper examines the degradation characteristics of the battery pack during the charge and discharge cycle and suggest effective model to characterize the capacity degradation and predict the remaining useful life (RUL) of lithium-ion battery pack. Methods: An experiment was carried out for researching the degradation characteristics of the ternary lithium battery pack which is used in a electric car. The battery pack is tested for 400 charge and discharge cycles, in which the voltage and capacity data of the battery pack are collected through battery management system and test equipment. Random vector functional link (RVFL) network model is trained to track the pack's degradation trend over its cycle life based on experimental data analysis. Compared with RVFL, several approaches such as statistical models, Kalman filtering and Particle filtering are also applied to predict the remaining useful life of the pack. Results: From the analysis of experimental data, the remaining useful life of the battery pack drops from 37.271 Ah to 36.094 Ah after 400 cycles. At the end of discharge, the voltage distribution of the batteries in the battery pack is inconsistent, with a maximum difference up to 0.28V. When individual batteries reach the upper limit of charge or lower limit of discharge more quickly, the energy of the battery pack cannot be fully utilized and the remaining useful life is limited. The prediction results show that, Kalman filter and particle filter have errors in battery RUL prediction due to the form of state function. It can be seen in the prediction results at cycle 300 that RVFL model is more accurate to predict the battery pack remaining useful life trend. Conclusion: Different from the remaining life of a single battery, the inconsistency of battery capacity within a battery pack is an important factor limiting the overall battery pack life. The degree of capacity inconsistency of the batteries in the battery pack will further increase with cycling and ageing of the pack. Data-driven prediction models, such as SVM, neural network models, when performing predictions in 100 cycles, the amount of data available for training is insufficient to accurately predict RUL. Model-driven Kalman filtering and particle filtering prediction methods are limited by the form of model equations. As the number of cycles increases, Kalman filtering and particle filtering prediction methods are less accurate than SVM and RVFL.
7

Munoz-Carpio, Vicente D., Jerry Mason, Ismail Celik, Francisco Elizalde-Blancas, and Alejandro Alatorre-Ordaz. "Numerical and Experimental Study of Lead-Acid Battery." In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lead-Acid battery was the earliest secondary battery to be developed. It is the battery that is most widely used in applications ranging from automotive to industrial storage. Nowadays it is often used to store energy from renewable energy sources. There is a growing interest to continue using Lead-Acid batteries in the energy systems due to the recyclability and the manufacturing infrastructure which is already in place. Due to this rising interest, there is also a need to improve the efficiency and extend the life cycle of Lead-Acid batteries. To achieve these objectives, it is necessary to gain a better understanding of the physics taking place within individual batteries. A physics based computational model can be used to simulate the mechanisms of the battery accurately and describe all the processes that are happening inside; including the interactions between the battery elements, based upon the physical processes that the model takes into account. In the present paper, we present a discharge/charge experimental study that has been carried out with small Lead-Acid batteries (with a capacity of 7 Ah). The experiments were performed with a constant current rate of 0.1C [A]1 for two different battery arrangements. An in-house zero dimensional model was developed to perform simulations of Lead-Acid batteries under different operating conditions. A validation analysis of the model was executed to confirm the accuracy of the results obtained by the model compared to the aforementioned experiments. Additional simulations of the battery were carried out under different current rates and geometry modifications in order to study how the performance of the battery may change under these conditions.
8

Sahruddin, Nursyaheera, and Asmarashid Ponniran. "Life Cycle Assessment And Performances of Revived Industrial Lead-Acid Batteries Through Regeneration Technology : Regeneration Technology." In Conference on Faculty Electric and Electronic 2020/1. Penerbit UTHM, 2020. http://dx.doi.org/10.30880/eeee.2020.01.01.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The growing amount of battery production will produce more substances which increase the number of harmful chemicals to the environment such as carbon dioxide, nitrogen, and sulfur dioxide. Since most Malaysians are thrown their old batteries away and replace with new batteries. The recycled batteries and revived batteries are ways to reduce the number of batteries being disposed of. Hence this study aims to determine the carbon footprint and performances of revived industrial lead-acid batteries through regeneration technology. In this study, life cycle assessment is used as a method to assess environmental impacts on which carbon footprint associated with all the stages of a batteries' life through the regeneration technology. The three processes involved in regeneration technology which charging process, discharging process, and regeneration process to evaluated the voltage, capacity, and specific gravity. From the results, the revived industrial lead-acid batteries through regeneration technology are 199.91 kgCO2-eq of a carbon footprint than recycled batteries and the discharge time of 6 batteries are increased from 3 hours 55 minutes to 5 hours after using the regeneration technology. Thus, it is confirmed the revived industrial lead-acid batteries through regeneration technology are to be used preferably in reducing the disposed of batteries.
9

Zhou, Xin, Jeffrey L. Stein, and Tulga Ersal. "Battery State of Health Monitoring by Estimation of the Number of Cyclable Li-Ions." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper introduces a method to monitor battery state of health (SOH) by estimating the number of cyclable Li-ions, a health-relevant electrochemical variable. SOH monitoring is critical to battery management in particular for balancing the trade-off between maximizing system performance and minimizing battery degradation. However, SOH-related electrochemical variables cannot be directly measured non-invasively. Hence, estimation algorithms are needed to track those variables non-destructively while the battery is in use. In this paper, the extended Kalman filter (EKF) is used to estimate the number of cyclable Li-ions as an unknown battery parameter. Simulations are performed using an example parameter set for a hybrid-electric-vehicle battery whose cathode material is LiMn2O4 mixed with other Li-compounds to obtain estimation results under a typical electric vehicle current profile that consists of a 1 C constant current charge mode and a discharge current profile for an electric vehicle subject to the Urban Dynamometer Driving Schedule cycle. The simulations show promising results in estimation of the number of cyclable Li-ions using the EKF under the ideal conditions. Next, robustness of the algorithm under non-ideal conditions (i.e., with SOC estimation error, modeling error, and measurement noise) is analyzed, and it is shown that estimation of the number of cyclable Li-ions using the EKF preserves high accuracy even under these non-ideal conditions. The proposed estimation technique for the number of cyclable Li-ions can also be applied to other parameter sets and batteries with other cathode materials to monitor the SOH change resulting from any degradation mechanism that consumes cyclable Li-ions.
10

Huotari, Matti, Shashank Arora, Avleen Malhi, and Kary Främling. "A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks: Li-Ion Batteries Case-Study." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract It is of extreme importance to monitor and manage the battery health to enhance the performance and decrease the maintenance cost of operating electric vehicles. This paper concerns the machine-learning-enabled state-of-health (SoH) prognosis for Li-ion batteries in electric trucks, where they are used as energy sources. The paper proposes methods to calculate SoH and cycle life for the battery packs. We propose autoregressive integrated modeling average (ARIMA) and supervised learning (bagging with decision tree as the base estimator; BAG) for forecasting the battery SoH in order to maximize the battery availability for forklift operations. As the use of data-driven methods for battery prognostics is increasing, we demonstrate the capabilities of ARIMA and under circumstances when there is little prior information available about the batteries. For this work, we had a unique data set of 31 lithium-ion battery packs from forklifts in commercial operations. On the one hand, results indicate that the developed ARIMA model provided relevant tools to analyze the data from several batteries. On the other hand, BAG model results suggest that the developed supervised learning model using decision trees as base estimator yields better forecast accuracy in the presence of large variation in data for one battery.

Звіти організацій з теми "Cyclage batterie":

1

Hirst, Russell, James Baker, Rhea Molato-Gayares, and Albert Park. How to Stop Automotive Battery Recycling from Poisoning Our Children. Asian Development Bank, November 2023. http://dx.doi.org/10.22617/brf230487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This brief calls for better safety standards on how automotive batteries are recycled in Asia’s developing countries to reduce harmful lead pollution and its associated health impacts. With developing Asia home to over 400 million children with potentially harmful blood lead levels, it explains how the open-air recycling of used lead-acid batteries (ULAB) contaminates air, soil, and water. Using Viet Nam and the United Kingdom as comparative case studies, the brief demonstrates why countries in the region should educate workers on ULAB recycling risks and look to remediate contaminated sites. It also emphasizes the need to hold manufacturers responsible for the entire life cycle of batteries, including the recycling process.
2

Zhang, Jiguang, Qiuyan Li, Xiaolin Li, Wu Xu, and Ran Yi. Silicon-Based Anodes for Long-Cycle-Life Lithium-ion Batteries. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/2331443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Donghai, Arumugam Manthiram, Chao-Yang Wang, Gao Liu, and Zhengcheng Zhang. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1356813.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Allen, Jan L. High Cycle Life Cathode for High Voltage (5V) Lithium Ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ad1000144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pesaran, Ahmad, Lauren Roman, and John Kincaide. Electric Vehicle Lithium-Ion Battery Life Cycle Management. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1924236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Swaminathan, S., N. F. Miller, and R. K. Sen. Battery energy storage systems life cycle costs case studies. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/291017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wright, Randy Ben, and Chester George Motloch. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries. Office of Scientific and Technical Information (OSTI), March 2001. http://dx.doi.org/10.2172/911513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hutchinson, Ronda. Temperature effects on sealed lead acid batteries and charging techniques to prolong cycle life. Office of Scientific and Technical Information (OSTI), June 2004. http://dx.doi.org/10.2172/975252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Binod, Jitendra Kumar, Robert Leese, Joseph P. Fellner, Stanley J. Rodrigues, and K. M. Abraham. A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint). Fort Belvoir, VA: Defense Technical Information Center, January 2010. http://dx.doi.org/10.21236/ada515393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sullivan, J. L., and L. Gaines. A Review of Battery Life-Cycle Analysis. State of Knowledge and Critical Needs. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1219288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії