Добірка наукової літератури з теми "Crops and climate"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Crops and climate".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Crops and climate":

1

Heffernan, Olive. "Cooling crops." Nature Climate Change 1, no. 902 (January 22, 2009): 14. http://dx.doi.org/10.1038/climate.2009.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Osborne, Tom, Julia Slingo, David Lawrence, and Tim Wheeler. "Examining the Interaction of Growing Crops with Local Climate Using a Coupled Crop–Climate Model." Journal of Climate 22, no. 6 (March 15, 2009): 1393–411. http://dx.doi.org/10.1175/2008jcli2494.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper examines to what extent crops and their environment should be viewed as a coupled system. Crop impact assessments currently use climate model output offline to drive process-based crop models. However, in regions where local climate is sensitive to land surface conditions more consistent assessments may be produced with the crop model embedded within the land surface scheme of the climate model. Using a recently developed coupled crop–climate model, the sensitivity of local climate, in particular climate variability, to climatically forced variations in crop growth throughout the tropics is examined by comparing climates simulated with dynamic and prescribed seasonal growth of croplands. Interannual variations in land surface properties associated with variations in crop growth and development were found to have significant impacts on near-surface fluxes and climate; for example, growing season temperature variability was increased by up to 40% by the inclusion of dynamic crops. The impact was greatest in dry years where the response of crop growth to soil moisture deficits enhanced the associated warming via a reduction in evaporation. Parts of the Sahel, India, Brazil, and southern Africa were identified where local climate variability is sensitive to variations in crop growth, and where crop yield is sensitive to variations in surface temperature. Therefore, offline seasonal forecasting methodologies in these regions may underestimate crop yield variability. The inclusion of dynamic crops also altered the mean climate of the humid tropics, highlighting the importance of including dynamical vegetation within climate models.
3

Hmielowski, Tracy. "Making Crops Climate Ready." CSA News 64, no. 4 (April 2019): 6–8. http://dx.doi.org/10.2134/csa2019.64.0403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Banga, Surinder S., and Manjit S. Kang. "Developing Climate-Resilient Crops." Journal of Crop Improvement 28, no. 1 (January 2, 2014): 57–87. http://dx.doi.org/10.1080/15427528.2014.865410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reilly, John. "Crops and climate change." Nature 367, no. 6459 (January 1994): 118–19. http://dx.doi.org/10.1038/367118a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SAAB, ANNE. "Climate-Resilient Crops and International Climate Change Adaptation Law." Leiden Journal of International Law 29, no. 2 (April 29, 2016): 503–28. http://dx.doi.org/10.1017/s0922156516000121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThis article explores the role of international climate change adaptation law in promoting the use of genetically engineered crops as an adaptation strategy. The severity of climate change impacts and the realization that, by now, some adverse effects are inevitable, has intensified the urgency to devise effective adaptation strategies. Genetically engineered climate-resilient crops are presented as one possible means to adapt to the predicted adverse impacts of climate change on agriculture and crop yields. Despite increased attention on the research and development of climate-resilient crops, particularly by private sector seed corporations, there are many controversies surrounding this proposed adaptation strategy. The key contentions relate to apprehensions about genetically engineered crops more generally, the effectiveness of climate-resilient crops, and the involvement of the private sector in international climate change adaptation initiatives.The main argument in this article is that the emerging field of international climate change adaptation law contributes to promoting genetically engineered climate-resilient crops as a possible means of adaptation. Moreover, international adaptation law creates an enabling environment for the active engagement of private sector corporations in devising adaptation strategies. Notwithstanding controversies over genetically engineered crops and the role of the private sector, there has been little consideration so far of the influence of the growing international legal regime on climate change on the types of adaptation strategies that are devised and promoted.
7

Morton, Lois Wright, and Lori J. Abendroth. "Crops, climate, culture, and change." Journal of Soil and Water Conservation 72, no. 3 (2017): 47A—52A. http://dx.doi.org/10.2489/jswc.72.3.47a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuden, A. B. "Climate change affects fruit crops." Acta Horticulturae, no. 1281 (June 2020): 437–40. http://dx.doi.org/10.17660/actahortic.2020.1281.57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gleadow, Roslyn, Alexander Johnson, and Michael Tausz. "Crops for a future climate." Functional Plant Biology 40, no. 2 (2013): iii. http://dx.doi.org/10.1071/fpv40n2_fo.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The papers in this special issue were mainly derived from sessions at the International Botanical Congress in July 2011 in Melbourne, and at the ComBio meeting in Cairns, September 2011. They make contributions towards one of the most burning issues we face today: increasing sustainable crop production to provide sufficient high quality food to feed an ever increasing global human population, all in the face of climate change. Plant and crop science will have a major part in ensuring that agricultural production can meet these multiple demands. Contributions in this volume go beyond raising issues and highlighting potential effects of climate change factors, but also point out ways to better adapt to the inevitable.
10

McGrath, Justin. "Climate, pollution and California’s crops." Nature Food 1, no. 3 (March 2020): 153. http://dx.doi.org/10.1038/s43016-020-0052-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Crops and climate":

1

Kambanje, Ardinesh. "Productivity and profitability of different maize varieties and cropping systems used in the smallholder sector of the Eastern Cape Province of South Africa : implication on food security." Thesis, University of Fort Hare, 2018. http://hdl.handle.net/10353/6237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Low maize yields in the midst of abundant arable land, favourable climatic conditions, input and financial support programs, plagues smallholder maize farming in Eastern Cape Province. These scenarios have led the province to be a net importer of maize. In essence, low production may signify a mis-match between maize varieties being promoted amongst smallholder farmers and their farming system. Thus, the main objective of the study was to investigate the productivity and profitability of different maize varieties and cropping system under smallholder agriculture in selected villages of the Eastern Cape Province of South Africa as well as, the implications posed on the household food security. The study sought to assess: (i) the productivity of different maize varieties and cropping systems, (ii) the effect of GM maize adoption on food security among smallholder farmers, (iii) the profitability of GM, conventional hybrids and OPV maize varieties produced by farmers under different agro-ecological conditions and (iv) the impact of different maize varieties and cropping systems on food security in the smallholder agriculture. A cross sectional quantitative-based survey study was carried out to obtain information from a total of 650 small holder farmers. The study was conducted in three local municipalities in Oliver Reginald (OR) Tambo District Municipality of the Eastern Cape Province of South Africa. Descriptive statistics, partial factor productivity, gross margin analysis, household food insecurity access score (HFIAS), ordinal logistic and linear regression were the analytical techniques used in establishing correlations among variables. Results obtained from the survey indicated that under mono-cropping system, Genetically Modified (GM) maize variety was highly productive with an average yield of 1.9 t/ha whilst, improved OPV maize variety was productive (with an average yield of 1.6 t/ha) under mixed cropping system. Furthermore, GM maize (GM = -R418.10), and landrace (GM = -R1 140.29) maize varieties had negative gross margins whilst, conventional hybrids (GM = R5 181.21) and improved OPV (GM = R1 457.41) were profitable. There was a significant and negative correlation between use of GM maize variety and reduction of household food insecurity. GM maize varieties, improved OPV, white maize, white as well as yellow GM maize varieties had a significant impact in reducing household food insecurity; whilst using more than one variety of maize (landraces and GMO) positively influenced household food insecurity. In light of these research findings, it is recommended that, there is need to address household food security by growing improved OPVs under a mixed cropping system and GM maize under monocropping system.
2

Schmidt, Holger. "Neue stabile Germylene Ligandeneffekte, Struktur, Reaktivität /." [S.l. : s.n.], 1998. http://catalog.hathitrust.org/api/volumes/oclc/76007677.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ng, Wai-yip. "Impact of climatic change during little ice age on agricultural development in north China, 1600-1650 Xiao bing qi qi hou bian qian yu Hua bei nong ye fa zhan : 1600-1650 nian jian de guan cha /." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43209397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Champalle, Clara. "Cash crops and climate shocks: flexible livelihoods in Southeast Yunnan, China." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rural landscape of the People's Republic of China has changed dramatically from land collectivization in the 1950s to the decollectivization reforms initiated by Deng Xiaoping in 1979. By the mid-1980s each rural household had again become responsible for its own agricultural production, and food security began to improve, even within the most remote areas. To further this agrarian transition, in the late 1990s the central state devised the Western Development Strategy to advance its 'less developed' western regions, within which provincial governments subsidized cash crops. The aim of this thesis is first to examine the importance of cash crops and related subsidies for Han and minority nationality farmer households in Honghe Hani-Yi Autonomous Prefecture, Yunnan, China; second, to assess how extreme weather events affect these farmers' livelihoods and to investigate the coping mechanisms they employ. To answer this aim I draw on a conceptual framework that incorporates key elements from sustainable livelihoods, food security, and vulnerability and resilience to climate variability literatures. Focusing on four townships in Honghe Prefecture, southeast Yunnan, I completed statistical analyses of quantitative data regarding recent extreme weather events in the region and ethnographic fieldwork, including conversational interviews with farmers and semi-structured interviews with local officials completed in summer 2011. I find that state-sponsored cash crops do not always bring higher financial capital rewards and that cash crop farmers have been increasingly exposed to extreme precipitation and temperatures since the year 2000, which constrain their access to livelihood capitals, essential for (re)investing in cash cropping. In turn, farmers cope with and/or adapt to climate shocks according to their initial livelihood decision-making and the specifics of the event, while also being influenced by their location and ethnicity. In sum, I argue that farmers' vulnerability is rooted in social, temporal and spatial variables, many of which are not being considered by state officials.
Le paysage rural de la République Populaire de Chine s'est considérablement transformé depuis la collectivisation dans les années 50 jusqu'aux réformes de dé-collectivisation instauré par Deng Xiaoping en 1979. Au milieu des années 80, chaque ménage rural est redevenu responsable de sa propre production agricole et la sécurité alimentaire semble s'être améliorée, même dans les régions les plus reculées. Pour intensifier la transition agraire et le développement rural, l'état a commencé à la fin des années 90 à subventionner les cultures commerciales au niveau provincial, à travers sa « Stratégie de développement de l'ouest du pays ». L'objectif de ce mémoire est premièrement d'examiner l'importance des cultures commerciales subventionnées par l'état pour les agriculteurs, particulièrement issus des minorités ethniques (Yi, Hmong, Yao, et Zhuang) et de la majorité Han dans la Préfecture de Honghe, Yunnan; et deuxièmement d'évaluer les effets des phénomènes climatiques extrêmes sur leurs moyens d'existence et d'étudier les mécanismes de survie auxquels ils ont recours. Pour remplir cet objectif, j'utilise un cadre théorique incorporant les éléments clés des littératures sur les moyens d'existence durables, la sécurité alimentaire, ainsi que la vulnérabilité et la résilience à la variabilité du climat. Mes méthodes comprennent une analyse statistique des données quantitatives des récents phénomènes climatiques extrêmes dans la région et un travail ethnographique dans quatre cantons de la Préfecture de Honghe, notamment des entrevues non structurées avec les agriculteurs et semi-structurées avec les cadres locaux au cours de l'été 2011. Je constate que les cultures commerciales subventionnées par l'état ne s'accompagnent pas toujours d'une amélioration du capital financier des agriculteurs et que ces cultures sont de plus en plus exposées à de fortes précipitations et d'extrêmes températures, qui réduisent l'accès aux capitaux de subsistance, nécessaire au réinvestissement dans les cultures commerciales. Par conséquent, les agriculteurs développent des stratégies de survie et/ou d'adaptation selon leurs moyens d'existence choisis et le type de phénomènes climatiques, mais sont également affectés par leur emplacement et leur ethnicité. En somme, je remarque que l'accès des agriculteurs aux ressources est essentiellement fonction de trois variables : sociale, temporelle et spatiale ; celles-ci souvent ignorées par les cadres gouvernementaux.
5

Wang, Xuhui. "Impacts of climate change and agricultural managements on major global cereal crops." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066625/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les terres cultivées représentent un cinquième de la surface émergée de la Terre. Elles fournissent des nutriments à l'homme, modifient le cycle biogéochimique et l'équilibre énergétique de la terre. L’évolution des terres cultivées dans le contexte du changement climatique et avec une intensification des actions anthropiques constitue un enjeu important pour la sécurité alimentaire et les exigences environnementales du développement durable. Le manuscrit de thèse s’inscrit dans cette thématique en exploitant les données de différentes sources et la modélisation numérique. Les données utilisées sont : les statistiques de rendements, les observations agro-météorologiques à long terme, les résultats des sites d’expérimentation avec du réchauffement, les jeux de données globales issus des processus de fusion ou d’assimilation, les données climatiques historiques et de projection future. La modélisation fait appel aux modèles statistiques et aux modèles de processus. Le manuscrit est composé d’une série de travaux de détection et d'attribution. Ils explorent la phénologie, le rendement et leurs réponses aux changements climatiques et aux pratiques de gestion. Ils sont soit sur l'échelle régionale soit sur l’échelle globale, en fonction de la disponibilité des données et de leur pertinence. Le chapitre 2 décrit la construction et l’utilisation d'un modèle statistique avec des données provinciales de rendement au Nord-est de Chine et des données climatiques historiques. Les résultats montrent un effet asymétrique de la température diurne sur le rendement du maïs. Le rendement du maïs augmente de 10.0±7.7% en réponse à une augmentation moyenne de 1oC pendant la saison de croissance quand il s’agit de la température minimale de nuit (Tmin), mais le rendement diminue de 13,4±7,1% quand il s’agit de la température maximale de jour (Tmax). Il y a une grande disparité spatiale pour la réponse à Tmax, ce qui peut s'expliquer partiellement par le fort gradient spatial de la température pendant la saison de croissance (R = -0,67, P <0,01). La réponse du rendement aux précipitations dépend aussi des conditions d'humidité. Malgré la détection d'impacts significatifs du changement climatique sur le rendement, une part importante de ses variations n’est pas expliquée par les variables climatiques, ce qui souligne le besoin urgent de pouvoir attribuer proprement les variations de rendement au changement climatique et aux pratiques de gestion. Le chapitre 3 présente le développement d’un algorithme d'optimisation basé sur la théorie de Bayes pour optimiser les paramètres importants contrôlant la phénologie dans le modèle ORCHIDEE-crop. L’utilisation du modèle optimisé permet de distinguer les effets de la gestion de ceux du changement climatique sur la période de croissance du riz (LGP). Les résultats du modèle optimisé ORCHIDEE-crop suggèrent que le changement climatique affecte la LGP différemment en fonction des types du riz. Le facteur climatique a fait raccourcir la LGP du riz précoce (-2,0±5,0 jour / décennie), allonger la LGP du riz tardif (1,1±5,4 jour / décennie). Il a peu d'effet sur la LGP du riz unique (-0,4±5,4 jour / décennie). Les résultats du modèle ORCHIDEE-crop montrent aussi que les changements intervenus dans la date de transplantation ont provoqué un changement généralisé de la LGP, mais seulement pour les sites de riz précoce. Ceci compense à la hauteur de 65% le raccourcissement de la LGP provoquée par le changement climatique. Le facteur dominant du changement LGP varie suivant les trois types de riz. La gestion est le principal facteur pour les riz précoce et unique. Ce chapitre démontre aussi qu'un modèle optimisé peut avoir une excellente capacité à représenter des variations régionales complexes de LGP
Croplands accounts for one-fifth of global land surface, providing calories for human beings and altering the global biogeochemical cycle and land surface energy balance. The response of croplands to climate change and intensifying human managements is of critical importance to food security and sustainability of the environment. The present manuscript of thesis utilizes various types of data sources (yield statistics, long-term agrometeorological observations, field warming experiments, data-driven global datasets, gridded historical climate dataset and projected climate change) and also modelling approaches (statistical model vs. process model). It presents a series of detection and attribution studies exploring how crop phenology and crop yield respond to climate change and some management practices at regional and global scales, according to data availability. In Chapter 2, a statistical model is constructed with prefecture-level yield statistics and historical climate observations over Northeast China. There are asymmetrical impacts of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily maximum temperature (Tmax). There is a large spatial variation in the yield response to Tmax, which can be partly explained by the spatial gradient of growing season mean temperature (R=-0.67, P<0.01). The response of yield to precipitation is also dependent on moisture conditions. In spite of detection of significant impacts of climate change on yield variations, a large portion of the variations is not explained by climatic variables, highlighting the urgent research need to clearly attribute crop yield variations to change in climate and management practices. Chapter 3 presents the development of a Bayes-based optimization algorithm that is used to optimize key parameters controlling phenological development in ORCHIDEE-crop model for discriminating effects of managements from those of climate change on rice growth duration (LGP). The results from the optimized ORCHIDEE-crop model suggest that climate change has an effect on LGP trends, but with dependency on rice types. Climate trends have shortened LGP of early rice (-2.0±5.0 day/decade), lengthened LGP of late rice (1.1±5.4 day/decade) and have little impacts on LGP of single rice (-0.4±5.4 day/decade). ORCHIDEE-crop simulations further show that change in transplanting date caused widespread LGP change only for early rice sites, offsetting 65% of climate-change-induced LGP shortening. The primary drivers of LGP change are thus different among the three types of rice. Management is predominant driver of LGP change for early and single rice. This chapter demonstrated the capability of the optimized crop model to represent complex regional variations of LGP. Future studies should better document observational errors and management practices in order to reduce large uncertainties that exist in attribution of LGP change and to facilitate further data-model integration. In Chapter 4, a harmonized data set of field warming experiments at 48 sites across the globe for the four most-widely-grown crops (wheat, maize, rice and soybean) is combined with an ensemble of gridded global crop models to produce emergent constrained estimates of the responses of crop yield to changes in temperature (ST). The new constraining framework integrates evidences from field warming experiments and global crop modeling shows with >95% probability that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The field-observation based constraints from the results of the warming experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops
6

Ozdes, Mehmet. "The effect of climate and aerosol on crop production: a case study of central Asia." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effect of recent climate change in Central Asia poses a significant and potentially serious challenge to the region’s agricultural sector. An investigation of the aerosol-climate- crop yield correlation in this region is essential for a better understanding of the effect of aerosols and climate on Central Asian agriculture. Our goal is to investigate the linkages between aerosol, climate and major crop production (cotton, maize, wheat, and rice) in specified agricultural regions in the five Central Asian countries. Our approach is to perform the Pearson’s Correlation Coefficient analysis in order to observe the statistical correlation between crop yield, temperature, precipitation, and aerosol optical depth (AOD), for each indicated agricultural region in the selected countries. Besides, using NASA GIOVANNI website tools, we retrieve distribution maps and time series of temperature, precipitation and AOD to facilitate the analyses. The research shows that in some aspects, the relation between AOD, climate, and crop yield is different in Central Asia than in previous global or large scale research hypotheses. The statistical correlations vary not only across countries but also across agricultural regions. For example, in Kazakhstan, opposite correlations exist between precipitation and AOD in two different agricultural regions even though both regions are rain-fed. In the more arid countries (with lower rain rates) such as Turkmenistan and Uzbekistan, no correlation exists between crop production and temperature, precipitation, and AOD, while the less arid (with higher rain rate) countries (Kazakhstan, Kyrgyzstan, and Tajikistan) indicate a positive correlation.
7

Ng, Wai-yip, and 吳偉業. "Impact of climatic change during little ice age on agricultural development in north China, 1600-1650." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43209397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sundelin, William. "Growing crops or growing conflicts? : Climate variability, rice production and political violence in Vietnam." Thesis, Försvarshögskolan, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-9757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis contributes to research on climate change and violent conflict by testing the theory of a causal relationship between climate variability, agricultural production and political violence in the case of Vietnam 2010-2019. Climate-related negative shocks to agricultural production in developing countries are expected to lower the opportunity cost of violence through an income effect. This increases the risk of violent conflict. The thesis draws on a framework that combines climate-conflict research, civil war theory and research on how climactic factors affect rice cultivation in Southeast Asia. It tests the hypotheses emerging from the framework using mixed-effect models and a counterfactual comparison. Minimum temperature increases in the growing season for rice have been found to decrease rice yields, while maximum temperature increases have a positive effect on yield.The results show that minimum temperature increases are averse to Vietnamese rice production and have a positive relationship with political violence in the following year. Maximum temperature however is not significantly related to either rice production or violence. These results are in line with the hypotheses drawn from the framework. The minimum temperature effect on political violence is small compared to some of the covariates but robust to several different model specifications. The results provide evidence of a climate-conflict link through agricultural production in contemporary Vietnam which is similar to the findings in existing case studies in Southeast Asia. However, more research will be needed to decisively identify the causal mechanism and the specifics of how it works.

The seminar was held digitally. 

9

Almaraz, Suarez Juan Jose. "Climate change and crop production in southwestern Quebec : mitigation and adaptation." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anthropogenic greenhouse gas emissions are the main cause of increasing global temperatures. Climate change will affect crop production in Canada and, in turn agriculture has the potential to mitigate climate change. Analysis of historical climate and corn yield data, and field and greenhouse experiments were carried out in order to study the effect of climate variability and changes on corn yield, the adaptability of cropping systems to climate change conditions, the effect of tillage on soil greenhouse gas emissions (CO2 and N2O) associated with corn and soybean production, and the potential of Nod factors to increase biomass as way to mitigate CO2 emissions. In southwestern Quebec, corn yield variability has been strongly associated to July temperature and May precipitation during the last three decades. Field studies showed that switchgrass and sorghum-sudangrass were best adapted to dry and warm climate events. No-till improved corn yield when spring temperatures were warmer than normal. Soil CO2 fluxes were associated with temperature, while soil N2O fluxes were associated with precipitation. Conventional tillage (CT) had greater CO2 emissions than no-till (NT), particularly after disking in the spring. Both tillage systems had large N2O emission peaks during the wettest part of the season. In corn, peaks of N 2O occurred after nitrogen fertilizer application. NT had greater N 2O emissions than CT in the corn production systems; however, CT had greater N2O fluxes than NT in the soybean production system. Nod factors sprayed on soybean increased photosynthesis and biomass under controlled conditions. In the field, yield was increased by Nod factors under CT, but not under NT, and drought reduced the soybean response to Nod factors.
Les émissions anthropogènes de gaz à effet de serre sont la cause principale de l'augmentation globale des températures. Les changements climatiques vont affecter la production agricole au Canada, et en retour, l'agriculture pourrait limiter les changements climatiques. L'analyse de données historiques du climat et des rendements de maïs, combinés avec des expériences de serre et en champ ont été entreprises pour étudier l'effet de la variabilité et des changements de climat sur le rendement de maïs, l'adaptabilité des systèmes agricoles aux changements climatiques, l'effet du travail du sol sur les émissions de gaz à effet de serre (C02 et N20) associées avec la production de maïs et de soya, et le potentiel des facteurs Nod d'augmenter la biomasse pour limiter les émissions de CO2. L'analyse des données historiques ont démontré qu'au sud-ouest du Québec, la variabilité des rendements de maïs est fortement associée avec les températures de juillet et les précipitations de mai pendant les dernières trois décennies. Les expériences au champ ont démontré que le panic raide, et le sorghum-sudangrass sont les mieux adaptés aux conditions chaudes et sèches. Le semis direct a augmenté les rendements de maïs lorsque les températures printanières étaient plus chaudes que la normale. Les flux de C02 étaient associés avec la température, mais les flux de N20 étaient associés avec les précipitations. Le travail du sol conventionnel (CT) a produit plus d'émissions de CO2 que le semis direct (NT), particulièrement après le disquage au printemps. Les deuxsystèmes ont montré un large pic d'émission de N20 pendant les périodes les pluspluvieuses. Dans le maïs, les pics de N20 ont été détectés après la fertilisation enazote. NT a montré des émissions de N20 plus importantes que CT en productionde maïs, mais CT a montré des flux de N20 plus important que NT en productionde soya. Les facteurs Nod vaporisés sur le soya ont augmenté la photosynthèse etla biomasse sous conditions controllées. Au champ, le rendement a été augmentépar les facteurs Nod sous CT, mais pas sous NT, et la sécheresse a réduit laréponse du soya aux facteurs Nod.
10

Matthews-Pennanen, Neil. "Assessment of Potential Changes in Crop Yields in the Central United States Under Climate Change Regimes." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Climate change is one of the great challenges facing agriculture in the 21st century. The goal of this study was to produce projections of crop yields for the central United States in the 2030s, 2060s, and 2090s based on the relationship between weather and yield from historical crop yields from 1980 to 2010. These projections were made across 16 states in the US, from Louisiana in the south to Minnesota in the north. They include projections for maize, soybeans, cotton, spring wheat, and winter wheat. Simulated weather variables based on three climate scenarios were used to project future crop yields. In addition, factors of soil characteristics, topography, and fertilizer application were used in the crop production models. Two technology scenarios were used: one simulating a future in which crop technology continues to improve and the other a future in which crop technology remains similar to where it is today. Results showed future crop yields to be responsive to both the different climate scenarios and the different technology scenarios. The effects of a changing climate regime on crop yields varied both geographically throughout the study area and from crop to crop. One broad geographic trend was greater potential for crop yield losses in the south and greater potential for gains in the north. Whether or not new technologies enable crop yields to continue to increase as the climate becomes less favorable is a major factor in agricultural production in the coming century. Results of this study indicate the degree to which society relies on these new technologies will be largely dependent on the degree of the warming that occurs. Continued research into the potential negative impacts of climate change on the current crop system in the United States is needed to mitigate the widespread losses in crop productivity that could result. In addition to study of negative impacts, study should be undertaken with an interest to determine any potential new opportunities for crop development with the onset of higher temperatures as a result of climate change. Studies like this one with a broad geographic range should be complemented by studies of narrower scope that can manipulate climatic variables under controlled conditions. Investment into these types of agricultural studies will give the agricultural sector in the United States greater tools with which they can mitigate the disruptive effects of a changing climate.

Книги з теми "Crops and climate":

1

N, Singh S. Climate change and crops. Berlin: Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fahad, Shah, Osman Sönmez, Shah Saud, Depeng Wang, Chao Wu, Muhammad Adnan, and Veysel Turan. Developing Climate-Resilient Crops. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singh, S. N., ed. Climate Change and Crops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88246-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saikia, Siddhartha P. Climate change. Dehradun: International Book Distributors, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yadav, S. S. Crop adaptation to climate change. Chichester, West Sussex: Wiley-Blackwell, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

R, Reddy K., and Hodges H. F, eds. Climate change and global crop productivity. Wallingford, Oxon, UK: CABI Pub., 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Uzoma, Nwajiuba Chinedum, ed. Climate change and adaptation in Nigeria. Weikersheim: Margraf, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uzoma, Nwajiuba Chinedum, ed. Climate change and adaptation in Nigeria. Weikersheim: Margraf, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eitzinger, Josef. Landwirtschaft im Klimawandel: Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa. [Clenze]: Agrimedia, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eitzinger, Josef. Landwirtschaft im Klimawandel: Auswirkungen und Anpassungsstrategien für die Land- und Forstwirtschaft in Mitteleuropa. [Clenze]: Agrimedia, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Crops and climate":

1

Zohry, Abd El-Hafeez, and Samiha Ouda. "Climate-Resilient Crops." In Climate-Smart Agriculture, 115–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93111-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Umesh, M. R., Sangu Angadi, Prasanna Gowda, Rajan Ghimire, and Sultan Begna. "Climate-Resilient Minor Crops for Food Security." In Agronomic Crops, 19–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9151-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ouda, Samiha, and Abd El-Hafeez Zohry. "Climate Extremes and Crops." In Climate-Smart Agriculture, 93–114. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93111-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Das, Susmita, Adyant Kumar, Manashi Barman, Sukanta Pal, and Pintoo Bandopadhyay. "Impact of Climate Variability on Phenology of Rice." In Agronomic Crops, 13–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0025-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shabir, Sumera, and Noshin Ilyas. "The Possible Influence of Climate Change on Agriculture." In Agronomic Crops, 579–92. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0025-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nair, Kodoth Prabhakaran. "The CWR of Minor Fruit Crops." In Springer Climate, 79–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23037-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ijaz, Muhammad, Abdul Rehman, Komal Mazhar, Ammara Fatima, Sami Ul-Allah, Qasim Ali, and Shakeel Ahmad. "Crop Production Under Changing Climate: Past, Present, and Future." In Agronomic Crops, 149–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9151-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jamil, Shakra, Rahil Shahzad, Shakeel Ahmad, Zulfiqar Ali, Sana Shaheen, Hamna Shahzadee, Noreen Fatima, et al. "Climate Change and Role of Genetics and Genomics in Climate-Resilient Sorghum." In Developing Climate-Resilient Crops, 111–38. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109037-6-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khan, Shakeel A., Sanjeev Kumar, M. Z. Hussain, and N. Kalra. "Climate Change, Climate Variability and Indian Agriculture: Impacts Vulnerability and Adaptation Strategies." In Climate Change and Crops, 19–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88246-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Noreen, Sibgha, Muhammad Salim Akhter, Ali Noman, Ume Ummara, Seema Mahmood, and Mohamed Hashim. "Future Perspectives of Oxidative Stress and Antioxidant Defence System in Plants." In Developing Climate-Resilient Crops, 53–84. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003109037-4-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Crops and climate":

1

Miladinović, Dragana, Ana Marjanović Jeromela, Ankica Kondić-Špika, Goran Bekavac, Sonja Tancic Zivanov, Miroslav Zoric, Sandra Cvejic, et al. "Breeding of climate-smart crops at IFVCNS." In XIth International Congress of Geneticists and Breeders from the Republic of Moldova. Scientific Association of Geneticists and Breeders of the Republic of Moldova, Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2021. http://dx.doi.org/10.53040/cga11.2021.084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Evaluating cover crops as a climate change adaptation strategy." In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152144028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tangwa, Elvis, Vit Voženílek, Jan Brus, and Vilem Pechanec. "CLIMATE CHANGE AND THE AGRICULTURAL POTENTIAL OF SELECTED LEGUME CROPS IN EAST AFRICA." In GEOLINKS International Conference. SAIMA Consult Ltd, 2020. http://dx.doi.org/10.32008/geolinks2020/b1/v2/02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Land expansion to increase agricultural production in East Africa (Burundi, Ethiopia, Kenya, Rwanda, Tanzania and Uganda) will be limited by climate change. In this study, we predict landscape suitability for chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris), field pea (Pisum sativum) and pigeon pea (Cajanus cajan) cultivated across diverse agro-ecological zones (AEZs) in East Africa from 1970 to 2070, under the 4.5 emission scenario. Our aim was to understand how suitability shifts among the AEZs might affect the agricultural potential of the selected crops. We use the geolocations of each crop together with response curves from the species distribution software, Maxent to fine-tune the expert based EcoCrop model to the prevailing climatic conditions in the study region. Our optimal precipitation and temperature ranges compared reasonably with the FAO base parameters, deviating by ±200mm and ±5oC, respectively. There is currently a high potential for lentil, pea and common bean in the region. However, under future climates, the suitability of common bean and lentil with a much narrow climate range will shrink considerably while pigeon pea and chickpea will continue to be suitable. Under projected climatic conditions, the agricultural potential of these legumes will be limited by drought or heat stress as landscape suitability will shift optimally toward the cool sub-humid (tcsh), and the cool semi-arid (tcsa) zones. Tanzania, Kenya and Uganda will be the most affected and will lose a large share of suitable arable land. Different adaptation measures will be needed to increase the agricultural potential and optimized production in vulnerable AEZs. In general, smallholder farmers will have to substitute lentil and common bean for chickpea and pigeon pea or other suitable substitutes to address food security issues. Notwithstanding the limitations of this study, our results highlight the vulnerability of legumes crops as well as their production zones which could be useful in the formulation of adaptation strategies for the East African region.
4

"AgMIP (Crops & Soils)- The crucial role of soil when modeling the impact of climate change on crop production." In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152119457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Climate Change and Eastern Africa: A Review of Impact on Major Crops." In ASABE 1st Climate Change Symposium: Adaptation and Mitigation. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/cc.20152112695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shmeleva, Natalia. "Productivity of grasses under climate change conditions." In Multifunctional adaptive fodder production23 (71). ru: Federal Williams Research Center of Forage Production and Agroecology, 2020. http://dx.doi.org/10.33814/mak-2020-23-71-87-91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The directions and results of work on the analysis of productivity of perennial grasses under changing weather conditions are presented. It was found that the yield and quality of the green mass of hybrids significantly exceeds the parent forms, so expanding the crops of these crops is one of the ways to get a guaranteed harvest.
7

Cureton, Colin. "Supporting the commercialization, adoption, and scaling of climate-smart winter annual and perennial oilseeds." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/lyjl6277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The University of Minnesota Forever Green Initiative (FGI ) is an agricultural innovation platform developing viable, profitable perennial and winter annual crops and cropping systems that will provide “continuous living cover” on the Upper Midwestern agricultural landscape, which can likely improve climate mitigation and adaptation as well as provide other environmental co-benefits relative to conventional summer annual grain systems. Transdisciplinary FGI crop development research teams span genomics, plant breeding, agronomy, natural resource sciences, food science, social sciences, economics, and commercialization. Several of these crops include "cash cover crop" winter oilseeds such as winter camelina and pennycress, and perennial oilseeds such as perennial flax and silphium, which have diverse opportunities in oil markets. While developing the basic and applied science of these crops and cropping systems, FGI is supporting the commercialization, adoption, and scaling of FGI crops in partnership with researchers, growers, industry, policymakers, and communities. For example, early commercial winter camelina production (relay-cropping) and market interest is developing spanning fuel, feed, biopolymers, and food, largely in response to corporate commitments and consumer demand for sustainability, GHG reduction, climate change mitigation and adaptation, and supply chain resilience. Industry has an essential role to play in developing and scaling FGI crops by supporting basic research, contributing in-house expertise and facilities, and creating the market pull needed to move novel continuous living cover crops and cropping systems out onto the landscape and into the market.
8

Sailor, David J., and Jesse N. Rosen. "Modeling Regional Climate Impacts of a Proposed Hydroelectric Project." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper is a preliminary analysis of the potential for atmospheric thermal pollution from a man-made reservoir. The specific site for the study is a proposed hydroelectric project on the Sogamoso River in Colombia, S.A. The region is agricultural with the two staple crops being coffee and cocoa. These two crops are sensitive to both high temperatures and more dramatically to high humidity levels. Farmers from the region are concerned that the construction of the reservoir will negatively impact crop yield. We have used a numerical atmospheric model to simulate weather from the region both without and with the proposed reservoir. Simulations show the magnitude of the impact is too small to be of consequence to crop yield. With these results we draw conclusions about the potential impact of the reservoir on climate. This paper provides a brief introduction to the theory behind the climatic consequences of a large lake. Results are then discussed for two time periods, one during the rainy growing season and one during the dry season. One of the biggest uncertainties in the model boundary conditions arises from the specification of the lake temperature, so the sensitivity of the model to lake temperature is analyzed for one of the study dates. Finally it is shown how a small set of weather simulations are used to draw climatic conclusions.
9

Kozlova, I. V. "USE OF ARTIFICIAL CLIMATE CHAMBER TO REDUCE THE PERIOD OF TOMATO HYBRID Development." In «Breeding, seed production, cultivation technology and processing of agricultural crops». Federal State Budgetary Scientific Institution Federal Scientific Rice Centre, 2021. http://dx.doi.org/10.33775/conf-2021-220-223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mohammed, Assem H., Ahmed M. Gadallah, and Hesham A. Hefny. "Fuzzy query approach for crops planting dates adaptation with climate changes." In 2014 9th International Conference on Informatics and Systems (INFOS). IEEE, 2014. http://dx.doi.org/10.1109/infos.2014.7036709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Crops and climate":

1

Falck-Zepeda, José Benjamin, Patricia Biermayr-Jenzano, Maria Mercedes Roca, Ediner Fuentes-Campos, and Enoch Mutebi Kikulwe. Bio-innovations: Genome-edited crops for climate-smart food systems. Washington, DC: International Food Policy Research Institute, 2022. http://dx.doi.org/10.2499/9780896294257_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tobin, Daniel, Maria Janowiak, David Hollinger, Howard Skinner, Christopher Swanston, Rachel Steele, Rama Radhakrishna, and Allison Chatrchyan. Northeast and Northern Forests Regional Climate Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies. USDA Northeast Climate Hub, June 2015. http://dx.doi.org/10.32747/2015.6965350.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The northeastern United States is a diverse region containing the seven most densely populated States in the Nation. Agriculture in the Northeast is varied, including vegetable production, ornamentals and fruits, animal production, and field crops. Forests are a dominant land use in the northern parts of the region and in the Appalachian Mountains. Northeast farmers are already experiencing crop damage from extreme precipitation. Wet springs are delaying planting and harvest dates and reducing yields for grain and vegetables. Heavy rain in the Northeast has increased more than any other region in the country.
3

Kistner-Thomas, Erica. Recent Trends in Climate/Weather Impacts on Midwestern Fruit and Vegetable Production. USDA Midwest Climate Hub, November 2018. http://dx.doi.org/10.32747/2018.6893747.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
While the Midwest is famous for being the world’s leader in corn and soybean production, this region is also home to a variety of high value specialty crops. Specialty crops include fruits and vegetables, tree nuts, dried fruits, and nursery crops including floriculture.
4

Noort, M. W. J., and S. Renzetti. Breads from African climate-resilient crops for improving diets and food security. Wageningen: Wageningen Food & Biobased Research, 2023. http://dx.doi.org/10.18174/583371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ostoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, Mark Battany, and George Zhuang. Adapt - On-farm changes in the face of climate change: NRCS Area 3. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444387.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The agricultural economy is more vulnerable to projected changes in climate in some California counties than in others. This flyer highlights on-farm adaptation strategies to mitigate some of the effects of increased winter temperatures and more frequent summer heatwaves. Projected conditions will put the most strain on heat intolerant crops and crops with high chill requirements. When crops with these characteristics also have a high market value or are grown in large acreage, counties can be at risk for economic declines. Information on this flyer identifies the most vulnerable counties in California Area 3 for some key, climate-sensitive crops.
6

Ostoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, and Mark Battany. Adapt - On-farm changes in the face of climate change: NRCS Area 1. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444389.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The agricultural economy is more vulnerable to projected changes in climate in some California counties than in others. This flyer highlights on-farm adaptation strategies to mitigate some of the effects of increased winter temperatures and more frequent summer heatwaves. Projected conditions will put the most strain on heat intolerant crops and crops with high chill requirements. When crops with these characteristics also have a high market value or are grown in large acreage, counties can be at risk for economic declines. Information on this flyer identifies the most vulnerable counties in California Area 1 for five key, climate-sensitive crops.
7

Ostoja, Steven, Tapan Pathak, Andre S. Biscaro, and Mark Battany. Adapt - On-farm changes in the face of climate change: NRCS area 4. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7435379.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The agricultural economy is more vulnerable to projected changes in climate in some California counties than in others. This flyer highlights on-farm adaptation strategies to mitigate some of the effects of increased winter temperatures and more frequent summer heatwaves. Projected conditions will put the most strain on heat intolerant crops and crops with high chill requirements. When crops with these characteristics also have a high market value or are grown in large acreage, counties can be at risk for economic declines. Information on this flyer identifies the most vulnerable counties in California Area 4 for five key, climate-sensitive crops.
8

Ostoja, Steven, Tapan Pathak, Katherine Jarvis-Shean, Mark Battany, and Andre S. Biscaro. Adapt - On-farm changes in the face of climate change: NRCS Area 2. USDA California Climate Hub, April 2018. http://dx.doi.org/10.32747/2018.7444388.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The agricultural economy is more vulnerable to projected changes in climate in some California counties than in others. This flyer highlights on-farm adaptation strategies to mitigate some of the effects of increased winter temperatures and more frequent summer heatwaves. Projected conditions will put the most strain on heat intolerant crops and crops with high chill requirements. When crops with these characteristics also have a high market value or are grown in large acreage, counties can be at risk for economic declines. Information on this flyer identifies the most vulnerable counties in California NRCS Area 2 for six key, climate-sensitive crops.
9

Elias, Emile, Caiti Steele, Kris Havstad, Kerri Steenwerth, Jeanne Chambers, Helena Deswood, Amber Kerr, et al. Southwest Regional Climate Hub and California Subsidiary Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies. United States. Department of Agriculture, August 2015. http://dx.doi.org/10.32747/2015.6879806.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In 2015, the Southwest and California Climate Hubs published a report describing the potential vulnerability of crops, forests and animal agriculture to climate-driven environmental changes. The exposure of specific sectors of the agricultural and forestry industries varies across the region because the Southwest is climatically and topographically diverse. There is also variability in the sensitivity of different systems to the effects of climate change. Most significantly, there is potential within agricultural and forestry systems to adjust to climate-related effects either through inherent resilience or through conservative management practices. The purpose of this report is to describe regional vulnerabilities to climate change and adaptive actions that can be employed to maintain the productivity of working lands in the coming decades.
10

Elias, Emile, Caiti Steele, Kris Havstad, Kerri Steenwerth, Jeanne Chambers, Helena Deswood, Amber Kerr, et al. Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies in the Southwest and California. USDA Southwest Climate Hub, October 2017. http://dx.doi.org/10.32747/2017.6965582.ch.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This report describes the potential vulnerability of specialty crops, field crops, forests, and animal agriculture to climate-driven environmental changes. Here, vulnerability is defined as a function of exposure to climate change effects, sensitivity to these effects, and adaptive capacity. The exposure of specific sectors of the agricultural and forestry industries varies across the region because the Southwest is climatically and topographically diverse. There is also variability in the sensitivity of different systems to the effects of climate change. Most significantly, there is potential within agricultural and forestry systems to adjust to climate-related effects either through inherent resilience or through conservative management practices. The purpose of this analysis is to describe regional vulnerabilities to climate change and adaptive actions that can be employed to maintain productivity of working lands in the coming decades.

До бібліографії