Добірка наукової літератури з теми "Crop protection"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Crop protection".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Crop protection"

1

Matthews, G. A. "Crop production and crop protection." Crop Protection 14, no. 8 (December 1995): 689–90. http://dx.doi.org/10.1016/0261-2194(95)90011-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shishatskiy, Oleg N. "Global Crop Protection Industry." Journal of Siberian Federal University. Biology 14, no. 4 (December 2021): 541–49. http://dx.doi.org/10.17516/1997-1389-0371.

Повний текст джерела
Анотація:
The problem of the steady food supply to the population is becoming particularly pressing in the face of a projected decrease in the specific area of agricultural land per resident. In an effort to increase crop yields, agriculture depends mainly on chemical plant protection agents (PPAs), which produce strong negative effects. The research activities need to be concentrated on developing the alternative plant protection technologies that will ensure a sufficient crop yield increase. Based on statistical data of the Food and Agriculture Organization of the United Nations (FAO) and studies and analytical reviews on protection of agricultural crops, the present work describes current market trends in the global crop protection industry: the volume and dynamics of the global PPA market, the regional distribution of this market, and the consolidation of key producers. Recent years have seen a decrease in the number of new chemical PPAs entering the market due to the greater research effort devoted to novel crop protection technologies, in particular genetically modified crops (GM crops), biological PPAs, and other alternative technologies, which are being developed and put on the market in response to increasingly stringent regulations in agrochemistry and ecology. Recommendations are made to producers of agrochemicals that will allow them to remain competitive and contribute to satisfaction of the growing demand for agricultural products
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Racke, Ken, Pieter Spanoghe, Nathan De Geyter, and Bipul Saha. "Crop Protection Chemistry." Chemistry International 41, no. 4 (October 1, 2019): 53–55. http://dx.doi.org/10.1515/ci-2019-0429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jamison, Judy. "Crop fungal protection." Nature Biotechnology 18, no. 12 (December 2000): 1233. http://dx.doi.org/10.1038/82314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aeschlimann, J. P. "Integrated crop protection." Agriculture, Ecosystems & Environment 13, no. 1 (April 1985): 89–92. http://dx.doi.org/10.1016/0167-8809(85)90107-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Umaerus, Vilhelm. "Crop rotation in relation to crop protection." Netherlands Journal of Plant Pathology 98, S2 (March 1992): 241–49. http://dx.doi.org/10.1007/bf01974491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hernández-Soto, Alejandro, and Randall Chacón-Cerdas. "RNAi Crop Protection Advances." International Journal of Molecular Sciences 22, no. 22 (November 10, 2021): 12148. http://dx.doi.org/10.3390/ijms222212148.

Повний текст джерела
Анотація:
RNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through host-induced gene silencing (HIGS) and emerging evidence that spray-induced gene silencing (SIGS) techniques can work as well to control viruses, bacteria, fungi, insects, and nematodes. For SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption by the target organism. One alternative is encapsulation in liposomes, virus-like particles, polyplex nanoparticles, and bioclay, which can be obtained through the recombinant production of RNAi in vectors, transgenesis, and micro/nanoencapsulation. The materials must be safe, biodegradable, and stable in multiple chemical environments, favoring the controlled release of RNAi. Most of the current research on encapsulated RNAi focuses primarily on oral delivery to control insects by silencing essential genes. The regulation of RNAi technology focuses on risk assessment using different approaches; however, this technology has positive economic, environmental, and human health implications for its use in agriculture. The emergence of alternatives combining RNAi gene silencing with the induction of resistance in crops by elicitation and metabolic control is expected, as well as multiple silencing and biotechnological optimization of its large-scale production.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hicks, Brian. "Future of crop protection." Pesticide Outlook 13, no. 3 (July 5, 2002): 104. http://dx.doi.org/10.1039/b205182f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Matthews, Graham. "Crop protection in Turkmenistan." Pesticide Outlook 12, no. 4 (November 6, 2001): 149. http://dx.doi.org/10.1039/b106291n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abelson, Philip H. "Uncertainties About Crop Protection." Weed Technology 11, no. 3 (September 1997): 629–32. http://dx.doi.org/10.1017/s0890037x00045553.

Повний текст джерела
Анотація:
My remarks today will be largely devoted to assessing some of the effects of the Food Quality Protection Act of 1996. As introduced, the act had wide support among grower groups, the food industry, and the pesticide industry. Voting on the bill was unanimous in both House and Senate, and action was completed in 1 wk. The legislation was signed by the President on August 3, 1996. President Clinton wanted to be seen as a strong advocate of children's health. The Republican Congress wanted to show that it was pro-environment.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Crop protection"

1

Ashby, Alison Mary. "Agrobacterium tumefaciens : chemotaxis and crop protection." Thesis, Durham University, 1988. http://etheses.dur.ac.uk/6723/.

Повний текст джерела
Анотація:
Chemotaxis in Agrobacierium tumefaciens was studied. Several plant derived monocyclic phenolic compounds were analysed for their ability to act as chemoattractants for A. tumefaciens C58C (^1) and as inducers of the Ti-plasmid virulence operons. The results divided the phenolics into 4 groups. A strong correlation between vir- inducing ability and Ti-plasmid requirement for chemo taxis was established and chemical structure rules for vir induction and chemo taxis are outlined. Furthermore, virA and virG were found to be the Ti-plasmid virulence genes required for chemo taxis towards the monocyclic phenolic compound acetosyringone. Chemotaxis towards both monocotyledonous and dicotyledonous plant extracts was analysed. Undiluted shoot and root extracts from both sources elicited a response from both Ti-plasmid harbouring and cured A. tumefaciens C58C(^1) However, when diluted extracts of Wheat and Kalanchoe shoot homogenate were analysed, a distinct enhancement of chemotaxis was conferred by the Ti-plasmid, suggesting that recognition of, and attraction towards, susceptible plants is not the step blocked in monocot transformation. Analysis of cell wall material revealed that native cell wall components are not required for chemotaxis of A. tumefaciens C58C (^1) towards plant extracts. Results obtained on chemotaxis along with current knowledge of vir- induction allowed the development of a novel idea involving Agrobacterium as a biocontrol agent. A chitinase gene from Serratia marcescens was manipulated such that its promotor was removed. The promotorless cassette was linked to the virB pro-motor from an octopine Ti-plasmid and the construct introduced into Agrobacterium harbouring virA and virG. The potential benefit of this biocontrol system with respect to other existing biocontrol systems is that expression of the pesticidal gene is regulated by components of wound exudate and therefore is a conservative process, pesticide being produced only when a plant is wounded, at a time when it is most susceptible to attack by plant pathogens, and then exclusively in the microrhizosphere around the wound site.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shi, Xiaoqing. "Biotechnological production of antifungal proteins for crop protection." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671681.

Повний текст джерела
Анотація:
Els fongs patògens de plantes causen importants pèrdues en les collites, posant en perill la seguretat i qualitat alimentària. Els pèptids antimicrobians (AMPs) mostren una activitat lítica potent i duradora específicament enfront de microorganismes, de manera que tenen un gran potencial com a nous fungicides naturals per al control dels fongs patògens. La seva explotació requereix de sistemes de producció ràpids, eficaços, econòmics i segurs. El principal objectiu d’aquest treball era desenvolupar sistemes de producció sostenibles de AMPs, i la seva caracterització en el control d’infeccions fúngiques per avançar en la seva aplicació en l’agricultura. Les proteïnes antifúngiques (AFPs) secretades per fongs filamentosos són un grup de AMPs rics en cisteïnes, molt estables, actius específicament enfront de fongs. En aquest estudi vam demostrar que les plantes de Nicotiana bentamiana són una excel·lent biofactoria de AFPs mitjançant expressió transitòria usant un nou vector derivat del virus de mosaic del tabac. Utilitzant aquest sistema de producció en plantes, hem produït eficientment dues AFPs molt actives enfront de fongs fitopatògens, la AfpA de Penicillium expansum i la AfpB de Penicillium digitatum. Hem descobert que el compartiment subcel·lular on s’acumulen les AFPs té un impacte important en la producció obtinguda, probablement perquè la seva compartimentació evita la toxicitat cap a les cèl·lules vegetals. Els valors més alts es van obtenir quan les proteïnes es van acumular en els vacúols, aconseguint fins 0,170 mg / g de fulla en el cas de la proteïna més activa AfpA i fins a vuit vegades més per a la AfpB (1,2 mg / g de fulla). També vam demostrar que els extractes crus de plantes que contenen AFP són actius enfront a fongs, sense necessitat de purificar les proteïnes reduint considerablement el processament del material vegetal i els costos de producció. Per tant, el sistema desenvolupat és eficient per a la producció de AFPs, i també és econòmic i segur ja que es basa en plantes. A més, hem desenvolupat un sistema alternatiu per a la producció del pèptid antifúngic PAF102 que prèviament no s’havia pogut produir biotecnològicament. Aquest sistema es basa en acumular el pèptid en les gotes lipídiques (LDs) mitjançant la fusió a una proteïna oleosina de plantes. Mitjançant aquesta estratègia, hem produït PAF102 en llavors d’arròs en quantitats de 20 mg per gram de llavor. No obstant això, la producció en llavors és lenta i per accelerar el procés hem transferit la tecnologia de la fusió a oleosinas de plantes al sistema de Pichia pastoris. Usant aquest nou sistema hem obtingut rendiments comercialment rellevants amb produccions de 180 mg / l de cultiu en només 4 dies. L’acumulació de PAF102 a les LDs de les llavors d’arròs i del llevat facilita enormement la seva extracció per simple flotació en solucions denses, permetent la recuperació de pèptid biològicament actiu. Finalment, hem demostrat que tant AfpA i AfpB produïdes en plantes, com els extractes de plantes enriquits en aquestes proteines, són eficaços en la prevenció d’infeccions fúngiques en cultius econòmicament rellevants, com ara la podridura grisa causada per Botrytis cinerea en fulles i fruits de tomàquet, la piriculariosis causada per Magnaporthe oryzae, o les infeccions de les llavors d’arròs per Fusarium proliferatum. Els nostres resultats proporcionen un sistema de producció sostenible de AFPs i demostren la seva eficàcia en la protecció de les plantes contra les infeccions fúngiques, donant ferm suport per al seu ús com a “fungicides verds” eficaços i respectuosos amb el medi ambient en la protecció de cultius, mentres són al canmp o durant el periode postcollita.
Los hongos patógenos de plantas causan importantes pérdidas en las cosechas, poniendo en peligro la seguridad y calidad alimentaria. Los péptidos antimicrobianos (AMPs) muestran una actividad lítica potente y duradera específicamente frente a microorganismos, por lo que tienen un gran potencial como nuevos fungicidas naturales para el control de los hongos patógenos. Su explotación requiere de sistemas de producción rápidos, eficaces, económicos y seguros. El principal objetivo de este trabajo era desarrollar sistemas de producción sostenibles de AMPs, y su caracterización en el control de infecciones fúngicas para avanzar en su aplicación en la agricultura. Las proteínas antifúngicas (AFPs) secretadas por hongos filamentosos son un grupo de AMPs ricos en cisteínas, muy estables, activos específicamente frente a hongos. En este estudio demostramos que las plantas de Nicotiana bentamiana son una excelente biofactoría de AFPs mediante expresión transitoria usando un nuevo vector derivado del virus de mosaico del tabaco. Utilizando este sistema de producción en plantas, hemos producido eficientemente dos AFPs muy activas frente a hongos fitopatógenos, la AfpA de Penicillium expansum y la AfpB de Penicillium digitatum. Hemos descubierto que el compartimento subcelular donde se acumulan las AFPs tiene un impacto importante en la producción obtenida, probablemente porque su compartimentalización evita la toxicidad hacia las células vegetales. Los valores más altos se obtuvieron cuando las proteínas se acumularon en las vacuolas, alcanzando hasta 0,170 mg/g de hoja en el caso de la proteína más activa AfpA y hasta ocho veces más para la AfpB (1,2 mg/g de hoja). También demostramos que los extractos crudos de plantas que contienen AFP son activos frente a hongos, sin necesidad de purificar las proteínas reduciendo considerablemente el procesamiento del material vegetal y los costes de producción. Por lo tanto, el sistema desarrollado es eficiente para la producción de AFPs, y también es económico y seguro ya que se basa en plantas. Además, hemos desarrollado un sistema alternativo para la producción del péptido antifúngico PAF102 que previament no había podido producirse biotecnológicamente. Este sistema se basa en acumular el péptido en las gotas lipídicas (LDs) mediante la fusión a una proteína oleosina de plantas. Mediante esta estrategia, hemos producido PAF102 en semillas de arroz en cantidades de 20 mg por gramo de semilla. Sin embargo, la producción en semillas es lenta y para acelerar el proceso hemos transferido la tecnología de la fusión a oleosinas de plantas al sistema de Pichia pastoris. Usando este nuevo sistema hemos obtenido rendimientos comercialmente relevantes con producciones de 180 mg/l de cultivo en sólo 4 días. La acumulación de PAF102 en las LDs de las semillas de arroz y de la levadura facilita enormemente su extracción por simple flotación en soluciones densas, permitiendo la recuperación de péptido activo frente a hongos patógenos. Finalmente, hemos demostrado que tanto AfpA y AfpB producidas en plantas, como los extractos de plantas enriquecidos estas proteinas, son eficaces en la prevención de infecciones fúngicas en cultivos económicamente relevantes, tales como la podredumbre gris causada por Botrytis cinerea en hojas y frutos de tomate, el quemado del arroz causado por Magnaporthe oryzae, o las infecciones de las semillas de arroz por Fusarium proliferatum. Nuestros resultados proporcionan un sistema de producción sostenible de AFPs y demuestran su eficacia en la protección de las plantas contra las infecciones fúngicas, apoyando firmemente su uso como "fungicidas verdes" eficaces y respetuosos con el medio ambiente en la protección de cultivos y postcosecha.
Plant diseases caused by pathogenic fungi are responsible of important crop losses endangering food security and safety. Antimicrobial peptides (AMPs), exhibiting potent and durable lytic activity specifically against microorganisms, have a great potential as novel natural fungicides for the control of pathogenic fungi. However, viable exploitation of AMPs requires fast, cost-efficient, and safe production systems. The main goal of this work was to develop a sustainable platform for the production of bioactive AMPs, and to characterize them in the control of fungal infections in plants to advance in their application in agriculture. Antifungal proteins (AFPs) secreted by filamentous fungi are a group of highly stable cysteine-rich AMPs that specifically target fungal cells. In this study, we demonstrate that Nicotiana benthamiana plants are an excellent biofactory for producing AFPs through transient expression using a new vector derived from the tobacco mosaic virus. Using this plant-based production system we efficiently produced two different bioactive AFPs, the Penicillium expansum AfpA and Penicillium digitatum AfpB. We found that the subcellular compartment where AFPs are accumulated has an important impact on protein yield, probably avoiding toxicity towards plant cells. The highest yields were achieved when targeting AFPs to vacuoles, reaching up to 0.170 mg/g of fresh leaves of the highly active AfpA and eight times more of AfpB (1.2 mg/g of leaf). We also show that plant crude extracts containing AFPs are fully active against plant pathogens without requiring further protein purification, thus reducing significantly downstream processing. Therefore, the developed system is efficient for the production of AFPs, and also it is economic and safe since it is based on plants. We also developed an alternative system for the production of the linear PAF102 antifungal peptide that was recalcitrant to be produced in biological systems. This system is based on targeting the peptide to lipid droplets (LDs) through the fusion to a plant oleosin protein. Using this oleosin fusion technology, we produced PAF102 in rice seed LDs, reaching moderate yields of about 20 mg of peptide per gram of grain. Production on rice seeds is long process in order to speed the process, we successfully transferred the plant oleosin fusion technology to the Pichia pastoris system. We produced commercially relevant yields of PAF102 in these yeast LDs, reaching values of 180 mg/l of culture in only 4 days. The accumulation of PAF102 in the LDs of rice seeds and yeast facilitated its downstream extraction and recovery by simple flotation on dense solutions, with the recovered PAF102 being biologically active against pathogenic fungi. Finally, we demonstrate that in planta produced AfpA and AfpB, either purified protein or protein extracts enriched with these two proteins, are efficient in controlling important fungal diseases on economically relevant crops, including Botrytis gray mold disease in tomato leaves and fruits, blast disease in rice plants and Fusarium proliferatum infection in rice seeds. Our results provide a sustainable production system of AFPs, and evidence their efficacy on protecting plants from fungal infection, strongly supporting the use of AFPs as environmental friendly and effective “green fungicides” in crop and postharvest protection.
Universitat Autònoma de Barcelona. Programa de Doctorat en Biologia i Biotecnologia Vegetal
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mahendra, Vidhura. "Selected wavelength spectral filters for horticultural crop protection." Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kamaruddin, Rezuwan. "A naturally ventilated crop protection structure for tropical conditions." Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/11975.

Повний текст джерела
Анотація:
This study presents the theoretical and experimental results of natural ventilation rates induced by stack, wind and the combination of both stack and wind effects for a typical crop protection structure suitable for the tropics. The structure consists of simple structural frame, transparent roofing and insect screen side walls. It was found the relative importance of the stack and wind effects is dependent on the ratio between wind speed and the square root of the inside-outside temperature difference (u/AT°.5). In this study, the wind effect dominates over the stack effect when the ratio u/AT" becomes greater than 0.5. Ventilation rate induced by the stack effect was found to increase with increasing temperature difference between inside and outside of the crop protection structure according to a power law, with an index of 0.5. The wind effect ventilation rate was found to increase linearly with increasing outside wind speed measured at eaves level. In addition, the combination of the stack and wind effects could be represented as the vectorial sum of two the independent effects (40sw = (43)k2 + (1)„,nd21 0.5). However, the result of the wind effect in the combined effects was insignificant when the ratio of ventilator opening to the total wall area is higher than 20 %. Different methods have been used to determine the natural ventilation rates. The dynamic tracer gas was used as the control; direct airspeed measurement, energy balance and neutral plane methods were used to quantify ventilation induced by the stack effect. Pressure field measurements were used to quantify ventilation by wind effect. In addition, the dynamic tracer gas, energy balance, and stack and wind methods were used to quantify ventilation induced by the combined effects. However, these methods have their constraints and limitations because of statistically significant differences in the comparison between the methods. The tracer gas method was found very difficult to use in the highly porous structure. In addition, the ventilation rate measured by this method was 30-40 % less than the other methods. The energy balance method has the advantage that it estimates many important climatic and crop parameters, however, the errors were found to be the highest. The neutral plane method was suitable for measuring ventilation induced by stack effect, the simplest method, requiring only the measurement of the inside and outside temperatures. The direct airspeed measurement method was much easier to handle and the result was comparable to other methods suitable for determining the ventilation induced by the wind effect. The physical properties of the covering materials, namely light transmission, coefficient of discharge and airflow characteristics were also determined in this study. It was found that the light transmissions of transparent polythene film and insect screens were close to each other. The coefficient of discharge and light transmission were dominant parameters in the ventilation rate calculation. It was found that when air flows through a screen, the pressure drop increases linearly with the square of approach airspeed. Airflow distributions inside the crop protection structure induced by the stack and wind effects are also presented in this study. Finally, this study presents information on natural ventilation for tropical greenhouses that was not previously available.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sehsah, El-Sayed Mahmoud El-Beily. "Application techniques for biological crop protection in orchards and vineyards." Beuren Stuttgart Grauer, 2005. http://d-nb.info/98987236X/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bhuiyan, Md Serajul Islam. "Tri-trophic-level interactions between herbivorous insects and their natural enemies." Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chiarolla, Claudio. "Intellectual property and environmental protection of crop biodiversity under international law." Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/446.

Повний текст джерела
Анотація:
In agricultural research, plant genetic resources (PGR) are “non-traditional infrastructural resources”, which may generate higher social value and positive externalities if they are managed in an openly accessible manner. The privatisation of crop biodiversity is based on the assumption that the internalisation of these externalities is the panacea to fostering private research investment. However, if the domestic plant breeding and biotechnology capacity is limited, the above normative approach may fall short of expectations because the social costs of establishing or strengthening exclusion rights are higher than their social benefits. The International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) is the only international agreement whose normative approach reflects in part this economic reality. However, its constructively ambiguous intellectual property rights-related provisions do not effectively fence off crop biodiversity from private appropriation. Besides, the desire of most countries not to prejudice the negotiation of an international access and benefit sharing regime under the UN Convention of Biological Diversity may prevent the extension of the ITPGRFA’s “commons” management principles to a larger number of essential food crops. The scope of this study, which focuses on PGR and agricultural innovation, derives from the paramount importance that both the design and allocation of rights in these areas might have for global food security. The innovation system perspective shows that social and economic development depends on the institutional context in which technological change occurs. Finally, the study of the transition between property regimes shows that the global reform of the institutional arrangements, which govern the present and future allocation of wealth from agriculture, is insufficient to achieve international equity so as to meet the target of reducing the proportion of people who suffer from hunger in accordance with goal 1 of the Millennium Development Goals.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ayre, Kevin. "Evaluation of carabids as predators of slugs in arable land." Thesis, University of Newcastle Upon Tyne, 1995. http://hdl.handle.net/10443/946.

Повний текст джерела
Анотація:
An Enzyme-Linked Immunosorbent Assay (ELISA) was developed which detected slug antigens in postmortem gut analysis of carabid beetles. The ELISA was used to identify beetles which fed on slugs in three fields of oilseed rape and winter wheat in the Tyne valley, Northumberland. Generalist species such as Harpalus rufipes, Pterostichus melanarius, Pterostichus nladidus, Anlara silnilata and Nebria brevicollis fed on slugs in the field. Molluscan specialists such as Carabus violaceus and Cychrus caraboides also fed on slugs in the field. Laboratory studies indicated that many large and medium sized carabids were able to predate small slugs. Some beetle species did not eat slugs but exposure to the beetles increased slug mortality. Therefore, postmortem investigations may underestimate the impact that carabids exert on slugs as they do not measure the number of slugs killed. Slug mucus affected the locomotory activity of generalist and specialist beetle species. Beetles foraged longer, covered greater distances, made more turns, walked slower and spent more time stationary on soil covered in slug mucus compared to control areas. Abax parallelepipedus, P.melanarius, Pterostichus niger and H.rufipes all reduced slug damage to a chinese cabbage crop in a miniplot experiment compared with unprotected plots. However, these differences were not significant. A.parallelepipedus was most effective at reducing slug damage to the chinese cabbage but was rare in arable land. H.rufipes was least effective at reducing slug damage but was abundant in arable land in both years of the study. A high proportion of H.rufipes beetles fed on slugs in the field. None of these four species occurred at densities in the field which reduced slug damage in the miniplot experiment.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abukhashim, Nagia K. "Some effects of temperature on the biology of Tetranychus urticae (Koch)(Acarina)." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Todd, Catherine. "Investigations into 2,3-dihydroxy acid intermediates on the branched-chain amino acid biosynthetic pathway." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Crop protection"

1

Weather & crop protection. Zutphen: Roodbont Agricultural Publishers, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lever, Brian George. Crop protection chemicals. New York: Ellis Horwood, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Deguine, Jean-Philippe, Caroline Gloanec, Philippe Laurent, Alain Ratnadass, and Jean-Noël Aubertot, eds. Agroecological Crop Protection. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dorrance, Michael J. Practical crop protection. Edited by Alberta. Soil and Crop Management Branch. Edmonton, Alta: Alberta Agriculture, Food and Rural Development, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

N, Burton Earl, and Williams Peter V, eds. Crop protection research advances. New York: Nova Science Publishers, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schirmer, Ulrich, and Wolfgang Krämer. Modern crop protection compounds. Weinheim: Wiley-VCH, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hedin, Paul A., Julius J. Menn, and Robert M. Hollingworth, eds. Biotechnology for Crop Protection. Washington, DC: American Chemical Society, 1988. http://dx.doi.org/10.1021/bk-1988-0379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oliver, R., and H. G. Hewitt, eds. Fungicides in crop protection. Wallingford: CABI, 2014. http://dx.doi.org/10.1079/9781780641669.0000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jeschke, Peter, Matthias Witschel, Wolfgang Krämer, and Ulrich Schirmer, eds. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527699261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krämer, Wolfgang, Ulrich Schirmer, Peter Jeschke, and Matthias Witschel, eds. Modern Crop Protection Compounds. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527644179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Crop protection"

1

Reddy, P. Parvatha. "Crop Protection." In Sustainable Crop Protection under Protected Cultivation, 23–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-952-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pearce, R. Brent, and Dennis R. Keeney. "Crop Protection-Discussion." In International Crop Science I, 135–37. Madison, WI, USA: Crop Science Society of America, 2015. http://dx.doi.org/10.2135/1993.internationalcropscience.c23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Somasundaram, E., D. Udhaya Nandhini, and M. Meyyappan. "Organic Crop Protection." In Principles of Organic Farming, 165–238. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003260844-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Deguine, Jean-Philippe, Toulassi Nurbel, Caroline Gloanec, and Philippe Laurent. "Application of Agroecological Crop Protection to Vegetable Crops: The GAMOUR Experience." In Agroecological Crop Protection, 47–75. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gloanec, Caroline, Jean-Philippe Deguine, Didier Vincenot, Philippe Laurent, Maxime Jacquot, and Rachel Graindorge. "Application of Agroecological Crop Protection to Fruit Crops: The BIOPHYTO Experience." In Agroecological Crop Protection, 77–107. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Deguine, Jean-Philippe. "Agroecological Crop Protection, a Crop Protection Strategy for the Future." In Agroecological Crop Protection, 247–49. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1185-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kate, Kerry ten. "Crop Protection." In The Commercial use of Biodiversity, 188–227. Routledge, 2019. http://dx.doi.org/10.4324/9780429341540-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Harmonising Control Methods: Mirage and Reality." In Crop Protection, 107–30. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

"Ecological Bases of the Management of Populations." In Crop Protection, 131–52. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Habitat Management: The Factor Uniting Agronomy and Ecology." In Crop Protection, 153–76. CRC Press, 2009. http://dx.doi.org/10.1201/b10767-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Crop protection"

1

Karthika, S., Kalyana Rangan V, Aditya K, Anand Anil Kumar, and D. Selvakumar. "IOT BASED CROP PROTECTION SYSTEM." In 2021 6th International Conference on Communication and Electronics Systems (ICCES). IEEE, 2021. http://dx.doi.org/10.1109/icces51350.2021.9489031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pachlatko, J. "Natural Products in Crop Protection." In The 2nd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 1998. http://dx.doi.org/10.3390/ecsoc-2-01701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gogul Dev, N. S., K. S. Sreenesh, and P. K. Binu. "IoT Based Automated Crop Protection System." In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2019. http://dx.doi.org/10.1109/icicict46008.2019.8993406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

BERNER, Bogusława, and Jerzy CHOJNACKI. "Use of Drones in Crop Protection." In IX International ScientificSymposium "Farm Machinery and Processes Management in Sustainable Agriculture". Departament of Machinery Exploittation and Management of Production Processes, University of Life Sciences in Lublin, 2017. http://dx.doi.org/10.24326/fmpmsa.2017.9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"5.7 Application Techniques for Crop Protection." In CIGR Handbook of Agricultural Engineering Volume VI: Information Technology . St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2006. http://dx.doi.org/10.13031/2013.21682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meissle, Michael. "Can Bt crops contribute to sustainable crop protection? A European perspective." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.95555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hanna, Mark, Robert Hartzler, Don Erbach, and Kevin Paarlberg. "High Speed Row Crop Management." In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1995. http://dx.doi.org/10.31274/icm-180809-493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lee, Michael. "DNA Fingerprinting of Crop Germplasm." In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1993. http://dx.doi.org/10.31274/icm-180809-450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wintersteen, W. K., and J. S. Hornstein. "Worker Protection Standard Update." In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1994. http://dx.doi.org/10.31274/icm-180809-460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wintersteen, W. K., and J. S. Hornstein. "Worker Protection Standard Update." In Proceedings of the 1992 Crop Production and Protection Conference. Iowa State University, Digital Press, 1993. http://dx.doi.org/10.31274/icm-180809-443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Crop protection"

1

Wise, Kiersten, Anna Freije, Carl Bradley, Martin Chilvers, Loren Giesler, Daren Mueller, Adam Sisson, Damon Smith, and Albert Tenuta. Crop Protection Network: An Infrastructure for Multi-state Extension Efforts. United States: Crop Protection Netework, March 2017. http://dx.doi.org/10.31274/cpn-20190620-045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pomeroy, Robert, and Ryan Simkovsky. Integrated Pest Management (IPM) for Early Detection Algal Crop Protection (Final Report). Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1862344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nitchenko, L. B., and V. A. Plotnikov. THE SYSTEM OF CHEMICAL CROP PROTECTION AGAINST WEEDS, PATHOGENS AND INSECTSIN THE DATABASE OF RESOURCE SAVING TECHNOLOGIES OF CROP CULTIVATION. ФГБОУ ВО Курская ГСХА, 2018. http://dx.doi.org/10.18411/issn1997-0749.2018-07-07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Torok, Tamas. Novel enabling technologies of gene isolation and plant transformation for improved crop protection. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1149940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buddendorf, Bas, Mechteld ter Horst, and Ivo Roessink. Investigating the need for environmental risk assessment of chemical crop protection practices in seaweed. Wageningen: Wageningen Environmental Research, 2021. http://dx.doi.org/10.18174/550814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Edelman, Meir, and Autar K. Mattoo. The Rapidly-Metabolized Herbicide Binding Protein of the Thylakoids: Relationship to Phytosynthesis and Crop Protection. United States Department of Agriculture, July 1986. http://dx.doi.org/10.32747/1986.7566753.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Edelman, Meir, and Autar Mattoo. The Rapidly-Metabolized Herbicide Binding Protein of the Thylacoids: Relationship to Photosynthesis and Crop Protection. United States Department of Agriculture, February 1993. http://dx.doi.org/10.32747/1993.7603813.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Evenhuis, A., and H. T. A. M. Schepers. Efficacy to control potato late blight by applying biological crop protection products : EuroBlight field experiment AGV7716. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Field Crops, 2020. http://dx.doi.org/10.18174/541281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

van Boheemen, K., J. Riepma, and J. F. M. Huijsmans. Precision Agriculture and Crop Protection = (Precisielandbouw en Gewasbescherming) : Definitions and the relation between precision-applications and the authorisation procedure of PPPs. Wageningen: Stichting Wageningen Research, Wageningen Plant Research, Business Unit Agrosystems Research, 2022. http://dx.doi.org/10.18174/566499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shahak, Yosepha, and Donald R. Ort. Physiological Bases for Impaired Photosynthetic Performance of Chilling-Sensitive Fruit Trees. United States Department of Agriculture, May 2001. http://dx.doi.org/10.32747/2001.7575278.bard.

Повний текст джерела
Анотація:
Chilling-sensitivity is an important agricultural problem in both the U.S. and Israel. Most research attention has focused so far on herbaceous crop plants, even though the problem is also acute in the fruit tree industry. Under BARD funding we made substantial progress in identifying the mechanisms involved in the disruption of photosynthesis following a chill in mango. Our investigation with fruit trees has been substantially accelerated by drawing on our knowledge and experience with herbaceous crops. The four original research objectives, focused or discovering the underlying mechanisms of chill-induced inhibition of photosynthesis in fruit trees, and the main achievements are listed below. [1] Separating stomatal from non-stomatal components of chilling on photosynthesis in fruit trees. We found evidence that the dark chill-induced inhibition of photosynthesis in mango was E combination of both stomatal and mesophyll components. [2] Differentiating photo damage from light-induced photo protection of photosystem II (PSII). Dark chilling exacerbate high light photoinhibition, as a result of primary inhibition in the carbor reduction cycle. Nevertheless, in Israeli orchards we observed chronic photoinhibition of PSII photochemistry in the winter. This photo damage was reversible over a few days if sunlight was attenuated with filters or night temperature rose. Practical implications of this finding deserve further investment. Additional achievement was the development of a new biophysical tool to study macro-structural changes of LHCII particles in intact, attached leaves. [3] Determine the role of oxidative stress in the dark-chilling-induced inhibition, with emphasis on oxygen radical scavenging, lipid peroxidation and redox-controlled carbon-cycle enzymes. We found an increase in lipid peroxidation following a dark chill, and partial protective effects or an antioxidant. However, the photoinhibition observed in mango orchards in Israel during the winter did not appear to be a general oxidative stress. [4] Investigate whether chilling interferes with the diurnal and circadian rhythm of gene expression of key photosynthetic proteins as has been shown for chilling-sensitive crop plants. The results indicated that most of the circadian rhythm in photosynthesis was due to reduced lea: internal CO2 concentrations during the subjective night, as a result of rhythmic stomatal closure Chilling-induced interference with circadian timing in mango, does not play the central role in chilling inhibition of photosynthesis that has previously been demonstrated in certain chilling sensitive herbaceous plants. Practical implications of the research achievements are feasible, but require few more years of research.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії