Добірка наукової літератури з теми "CO₂storage"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CO₂storage".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "CO₂storage"

1

Schoch, Hannah, and Ted Abel. "Transcriptional co-repressors and memory storage." Neuropharmacology 80 (May 2014): 53–60. http://dx.doi.org/10.1016/j.neuropharm.2014.01.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Miocic, Johannes M., Stuart M. V. Gilfillan, Jennifer J. Roberts, Katriona Edlmann, Christopher I. McDermott, and R. Stuart Haszeldine. "Controls on CO 2 storage security in natural reservoirs and implications for CO 2 storage site selection." International Journal of Greenhouse Gas Control 51 (August 2016): 118–25. http://dx.doi.org/10.1016/j.ijggc.2016.05.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Fan, Yu Li, Xinhui Xia, Wei Cai, Qingguo Chen, and Minghua Chen. "Metal–CO 2 Electrochemistry: From CO 2 Recycling to Energy Storage." Advanced Energy Materials 11, no. 25 (May 13, 2021): 2100667. http://dx.doi.org/10.1002/aenm.202100667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Heinemann, N., R. J. Stewart, M. Wilkinson, G. E. Pickup, and R. S. Haszeldine. "Hydrodynamics in subsurface CO 2 storage: Tilted contacts and increased storage security." International Journal of Greenhouse Gas Control 54 (November 2016): 322–29. http://dx.doi.org/10.1016/j.ijggc.2016.10.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sidaway, P., and K. L. Brain. "Real time monitoring of neurotransmitter uptake and storage in PC-12 cells: Implication for co-storage and co-transmission." Autonomic Neuroscience 163, no. 1-2 (September 2011): 69. http://dx.doi.org/10.1016/j.autneu.2011.05.089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xiao, Jian Hua, Xue Hui Li, and Le Fu Wang. "NOx Storage-Reduction with CO over Combined Catalysts." Advanced Materials Research 726-731 (August 2013): 2214–19. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.2214.

Повний текст джерела
Анотація:
The combined catalysts Mn/Ba/Al2O3-Pt/Ba/Al2O3and Mn/Ba/Al2O3+Pt/Ba/Al2O3for NOxstorage-reduction were investigated. Mn/Ba/Al2O3indicated high activity of NO oxidation and NOxstorage in the oxidation-storage reaction and certain reduction activity in the storage-reduction reaction. The combination of Pt/Ba/Al2O3with Mn/Ba/Al2O3could enhance the activity of NOxstorage-reduction under dynamic lean-rich burn conditions. Compared to Pt/Ba/Al2O3catalyst, although the Pt content decreased half over Mn/Ba/Al2O3-Pt/Ba/Al2O3and Mn/Ba/Al2O3+Pt/Ba/Al2O3, the NOxconversion increased 9.4% and 6.3% at 350 °C. The pollutions such as NOxand CO could be eliminated effectively over two combined catalysts with low Pt content under dynamic lean-rich burn conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kempf, Klaus. "Storage solutions in a co‐operative library system." Library Management 26, no. 1/2 (January 2005): 79–88. http://dx.doi.org/10.1108/01435120510572905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Adamtey, Noah, Olufunke Cofie, Godfred K. Ofosu-Budu, Seth K. A. Danso, and Dionys Forster. "Production and storage of N-enriched co-compost." Waste Management 29, no. 9 (September 2009): 2429–36. http://dx.doi.org/10.1016/j.wasman.2009.04.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mercangöz, Mehmet, Jaroslav Hemrle, Lilian Kaufmann, Andreas Z’Graggen, and Christian Ohler. "Electrothermal energy storage with transcritical CO 2 cycles." Energy 45, no. 1 (September 2012): 407–15. http://dx.doi.org/10.1016/j.energy.2012.03.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eiling, A., R. Pott, and H. Kathrein. "Magnetic and storage properties of co-modified pigments." IEEE Transactions on Magnetics 22, no. 5 (September 1986): 741–43. http://dx.doi.org/10.1109/tmag.1986.1064559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "CO₂storage"

1

Gundogan, Ozgur. "Geochemical modelling of CO₂ storage." Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2505.

Повний текст джерела
Анотація:
The injection of CO2 into the reservoir acidifies the brine, which in turn drives mineral dissolution and precipitation processes. This thesis explores how far geochemical modelling can be applied to evaluate the CO2-brine-rock interactions during CO2 storage in North Sea saline formations. First, modelling requirements and the capabilities and limitations of the numerical codes used in this study (PHREEQC, GEM, TOUGHREACT and MoReS) were identified. Solubility of CO2 in brine by different models at conditions relevant to CO2 storage was compared. Batch modelling of three sandstone core samples from target CO2 storage formations was performed to compare the numerical codes and assess mineral trapping capacity of the formations. Finally, reactive transport modelling of Rannoch formation at reservoir scale was studied. The simulation results of GEM and MoReS were compared. It was shown that current codes can model geochemical reactions with acceptable simplifications and the choice of simulator is not critical for the model predictions. It was demonstrated how thermodynamic data and activity models can affect the modelling results. It was also found that the models are sensitive to relative mineral composition, grid discretization, permeability models, and kinetic parameters. Mineral trapping is comparable to solubility trapping in Rannoch formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lazaro, Vallejo Lorena. "Improved streamline-based simulation for CO₂ storage." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9546.

Повний текст джерела
Анотація:
CO2 Storage is one of the key technologies to mitigate climate change at a large scale and ensuring that the injected CO2 stays trapped underground is one of the main challenges. It is critical to develop fast and more physically accurate methods for CO2 storage simulations, otherwise computation times become prohibitive, especially when geological uncertainty is large, as in deep saline aquifers. Injection strategies and geological uncertainty have an impact on how much CO2 can be trapped as residual saturation. Fast and accurate simulators such as the one in this work are necessary to run the large number of simulations used in optimising CO2 sequestration. Our existing research streamline simulator has been extended with two improved thermodynamic models to maintain thermodynamic equilibrium along the streamlines. This minimises time-step size dependence and convergence errors. 1D simulation along the streamline was compared against analytical solution. Models were validated on 2D and 3D sections of the SPE 10th Comparative Model using water alternating gas (WAG) injection followed by chase brine. Results show that both new thermodynamic algorithms are faster (lower CPU cost) and have a faster convergence of results than the previous algorithm. Based on the validated model, we run 3D simulations for a single well strategy for the stage 2 CO2CRC Otway Project to test residual trapping. Simulation results were compared to TOUGH2 (finite-difference simulator) simulation results to study numerical dispersion, convergence of results and CPU times. Streamline simulations decreased computational time by a factor of five but results were not in agreement. Streamline simulations simulate advection processes accurately. However, there are other non-advective processes, such as diffusion, dispersion and buoyancy effects, which streamlines cannot simulate properly. This could cause the differences between streamline and TOUGH2 simulation results. Incompressibility was one of the main assumptions of the streamline-based simulator and this could pose some challenges when trying to simulate CO2 sequestration projects where injection strategy is complex. The CO2 streamline code was extended to add compressibility. Supercritical CO2 is slightly compressible so including compressibility in the streamline code is important to be able to model the physics more accurately. Streamlines can now end anywhere in the reservoir. Expansion or contraction of fluids can create source or sink cells which act as injection/production cells. Initially the pressure profile obtained numerically was compared to the analytical solution for radial single-phase flow and 1D simulations were run to study the effect of compressibility on the saturation profile. 2D simulations of a slightly compressible case on the SPE10 geological model were compared to ECLIPSE simulations, resulting in good matching. Then, the 3D Otway field case was re-simulated using the compressible code and results were compared to those obtained by TOUGH2 without obtaining a good agreement due to the complexity of the case. With most of the storage potential being in geological formations which are poorly characterised, monitoring will be a central part of any CO2 storage project. We have adapted a new approach for streamline-based history matching which exploits the analogy between the propagation of a wave front and the pressure front in the reservoir. This approach uses diffusive time-of-flight which determines the velocity at which pressure propagates as a function of static and fluid properties. This tool enables us to reconcile response data with static geological data at an earlier time, improving the management of the project. This approach has been applied to drawndown-buildup well test for a 2D synthetic case and a 3D real field case. Results for both cases were satisfactory, showing a clear improvement in the pressure matching after the 10th iteration in most cases.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MacMinn, Christopher William. "Analytical modeling of CO₂ migration in saline aquifers for geological CO₂ storage." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45642.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 53-55).
Injection of carbon dioxide into geological formations for long-term storage is widely regarded as a promising tool for reducing global atmospheric CO₂ emissions. Given the environmental and health risks associated with leakage of CO₂ from such a storage site, it is critical to ensure that injected CO₂ remain trapped underground for the foreseeable future. Careful site selection and effective injection methods are the two primary means of addressing this concern, and an accurate understanding of the subsurface spreading and migration of the CO₂ plume during and after injection is essential for both purposes. It is well known that some CO₂ will be trapped in the pore space of the aquifer rock as the plume migrates and spreads; this phenomenon, known as capillary trapping, is an ideal mechanism for geological CO₂ storage because the trapped gas is immobile and distributed over a large area, greatly decreasing the risk of leakage and enhancing the effectiveness of slower, chemical trapping mechanisms. Here, we present an analytical model for the post-injection spreading of a plume of CO₂ in a saline aquifer, both with and without capillary trapping. We solve the governing equation both analytically and numerically, and a comparison of the results for two different initial plume shapes demonstrates the importance of accounting for the true initial plume shape when capillary-trapping effects are considered. We nd that the plume volume converges to a self-similar, power-law trend at late times for any initial shape, but that the plume volume at the onset of this late-time behavior depends strongly on the initial shape even for weakly trapping systems.
by Christopher William MacMinn.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Goater, Aaron Lewis. "Multiphase flow simulation with applications for CO₂ storage." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9538.

Повний текст джерела
Анотація:
Geological storage of carbon dioxide (CO2) has potential to significantly reduce atmospheric emissions of greenhouse gases. However, challenges exist to the successful establishment of this process. These include estimating and understanding storage capacity as well as its economic viability. A large proportion of Europe’s potential storage capacity is to be found in large open aquifers. However, in times when the European carbon price is low, storage in depleted oil reservoirs may be required to make early commercial projects economically viable. Regulation will require that storage in these sites is well understood and it currently requires conformity of actual with modelled behaviour. In this thesis we consider two areas with direct implication for these issues. Firstly, we consider the effect of top-surface structure and heterogeneity upon the storage capacity of open aquifers. It is found that top-surface structure is more likely to decrease storage efficiency in models with low average reservoir dip and/or permeability. Heterogeneity is seen to reduce injectivity and reduce capacity in low permeability models but increase lateral spread of CO2 and storage efficiency in higher permeability cases. Both features can change storage capacity by more than a factor of two. Secondly, we undertake investigation into 1D solutions for three-phase flow problems representative of CO2 storage in depleted oil reservoirs. We begin by trying to determine rigorously the physical solution to three-phase flow problems that may have non-unique solutions using the third-order essentially non-oscillatory (ENO) numerical method. However, we demonstrate that ENO only produces first-order convergence in discontinuous solutions, which means rigorous analysis using our proposed methodology is not possible. We do, however, benchmark compositional three-phase, three-component ENO simulations against analytic solutions for the first time and demonstrate that ENO is still preferable to low-order numerical methods. Finally, we demonstrate the convergence of three-phase numerical solutions by comparing solutions with water-wet and oil-wet capillary pressure functions as the magnitude of the capillary pressure functions become small.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kim, Seunghee. "CO₂ geological storage: hydro-chemo-mechanically coupled phenomena and engineered injection." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/50110.

Повний текст джерела
Анотація:
Global energy consumption will increase in the next decades and it is expected to largely rely on fossil fuels. The use of fossil fuels is intimately related to CO₂ emissions and the potential for global warming. Geological CO₂ storage aims to mitigate the global warming problem by sequestering CO₂ underground. Coupled hydro-chemo-mechanical phenomena determine the successful operation and long term stability of CO₂ geological storage. This research explores various coupled phenomena, identifies different zones in the storage reservoir, and investigates their implications in CO₂ geological storage. Spatial patterns in mineral dissolution and precipitation are examined based on a comprehensive mass balance formulation. CO₂-dissolved fluid flow is modeled using a novel technique that couples laminar flow, advective and diffusive mass transport of species, mineral dissolution, and consequent pore changes to study the reactive fluid transport at the scale of a single rock fracture. The methodology is extended to the scale of a porous medium using pore network simulations to study both CO₂ reservoirs and caprocks. The two-phase flow problem between immiscible CO₂ and the formation fluid (water or brine) is investigated experimentally. Plug tests on shale and cement specimens are used to investigate CO₂ breakthrough pressure. Sealing strategies are explored to plug existing cracks and increase the CO₂ breakthrough pressure. Finally, CO₂-water-surfactant mixtures are evaluated to reduce the CO₂-water interfacial tension in view of enhanced sweep efficiency. Results can be used to identify optimal CO₂ injection and remediation strategies to maximize the efficiency of CO₂ injection and to attain long-term storage.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verdon, James P. "Microseismic monitoring and geomechanical modelling of CO₂ storage in subsurface reservoirs." Thesis, University of Bristol, 2011. http://hdl.handle.net/1983/eb611dda-5db8-4581-ae68-b422539a2b3b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hesse, Marc Andre. "Mathematical modeling and multiscale simulation of CO₂ storage in saline aquifers /." May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jayasekara, Manathum Nadeeshani Pushpamala. "Intelligent control of PV co-located storage for feeder capacity optimization." Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/1415.

Повний текст джерела
Анотація:
Battery energy storage is identified as a strong enabler and a core element of the next generation grid. However, at present the widespread deployment of storage is constrained by the concerns that surround the techno-economic viability. This thesis addresses this issue through optimal integration of storage to improve the efficiency of the electricity grid. A holistic approach to optimal integration includes the development of methodologies for optimal siting, sizing and dispatch coordination of storage.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hänchen, Markus. "CO storage by aqueous mineral carbonation : olivine dissolution and precipitation of Mg-carbonates." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Campbell, Brent D. "Geochemical investigation and quantification of potential CO₂ storage within the Arbuckle aquifer, Kansas." Thesis, Kansas State University, 2015. http://hdl.handle.net/2097/19086.

Повний текст джерела
Анотація:
Master of Science
Department of Geology
Saugata Datta
With the ever-rising atmospheric concentrations of CO₂ there arises a need to either reduce emissions or develop technology to store or utilize the gas. Geologic carbon storage is a potential solution to this global problem. This work is a part of the U.S. Department of Energy small-scale pilot studies investigating different areas for carbon storage within North America, with Kansas being one of them. This project is investigating the feasibility for CO₂ storage within the hyper-saline Arbuckle aquifer in Kansas. The study incorporates the investigation of three wells that have been drilled to basement; one well used as a western calibration study (Cutter), and the other two as injection and monitoring wells (Wellington 1-28 and 1-32). Future injection will occur at the Wellington field within the Arbuckle aquifer at a depth of 4,900-5,050 ft. This current research transects the need to understand the lateral connectivity of the aquifers, with Cutter being the focus of this study. Three zones are of interest: the Mississippian pay zone, a potential baffle zone, and the Arbuckle injection zone. Cored rock analyses and analyzed formation water chemistry determined that at Wellington there exists a zone that separated the vertical hydrologic flow units within the Arbuckle. This potential low porosity baffle zone within the Arbuckle could help impede the vertical migration of the buoyant CO₂ gas after injection. Geochemical analysis from formation water within Cutter indicates no vertical separation of the hydrologic units and instead shows a well-mixed zone. The lateral distance between Cutter and Wellington is approximately 217 miles. A well-mixed zone would allow the CO₂ plume to migrate vertically and potentially into potable water sources. Formation brine from Cutter was co-injected with supercritical CO₂ into a cored rock from within the Arbuckle (7,098 ft.). Results show that the injected CO₂ preferentially preferred a flow pathway between the chert nodules and dolomite. Post reaction formation chemistry of the brine showed the greatest reactivity occurring with redox sensitive species. Reactivity of these species could indicate that they will only be reactive on the CO₂ plumes front, and show little to no reactivity within the plume.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "CO₂storage"

1

Gielen, Dolf. Prospects for CO₂ capture and storage. Paris, France: OECD/IEA, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Celia, Michael Anthony. Geological storage of CO₂: Modeling approaches for large-scale simulation. Hoboken, NJ: Wiley, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boudjemline, Attia. Studies on Co/Pt multilayers as second generation magneto-optic storage media. Manchester: University of Manchester, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lynds, Ranie M. Geologic storage assessment of carbon dioxide (CO₂) in the Laramide basins of Wyoming. Laramie, Wyoming: Wyoming State Geological Survey, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

C, Thomas David, and Benson Sally, eds. Carb on dioxide capture for storage in deep geologic formations: Results from the COb2s Capture Project. Amsterdam: Elsevier, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mangan, Tom. Electronic commerce: A new approach toward business integration at Lanier Worldwide. [Atlanta, Ga.]: Information Management Forum, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

K, Fujita, Hamada M. 1943-, Shinozuka Masanobu, and Ariman Teoman, eds. Earthquake behavior of buried pipelines, storage, telecommunication, and transportation facilities: Presented at the 1989 ASME Pressure Vessels and Piping Conference-JSME Co-Sponsorship, Honolulu, Hawaii, July 23-27, 1989. New York, N.Y: American Society of Mechanical Engineers, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Steve, Whittaker, Wilson Malcolm, Monea Mike, Petroleum Technology Research Centre, and International Energy Agency, eds. IEA GHG Weyburn CO₂ monitoring & storage project summary report 2000-2004: From the proceedings of the 7th International Conference on Greenhouse Gas Control Technologies : September 5-9, Vancouver, Canada : Volume III. Regina: Petroleum Technology Research Centre, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Modelo de datos, catálogo de objetos CO-25: Version 2.O. Santafé de Bogotá: Ministerio de Hacienda y Crédito Público-Colombia, Instituto Geográfico Agustín Codazzi, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

San Francisco (Calif.). Office of the Controller. City Services Auditor Division. Port Commission: The Port inappropriately administered its leases with Affordable Self Storage, Inc. San Francisco: Office of the Controller, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "CO₂storage"

1

Nadgowda, Shripad J., Ravella C. Sreenivas, Sanchit Gupta, Neha Gupta, and Akshat Verma. "C2P: Co-operative Caching in Distributed Storage Systems." In Service-Oriented Computing, 214–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45391-9_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Patel, Daniel, Tor Langeland, Saman Tavakoli, and Morten Fjeld. "Groupware for Research on Subsurface CO$$_2$$ Storage." In Interactive Data Processing and 3D Visualization of the Solid Earth, 291–323. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90716-7_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Plank, Johann. "Cements for CO2 Capture and Storage Wells." In ACS Symposium Series, 369–410. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1412.ch008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Davies, Martin, and Jiang Lin. "Yue Hai (Fan Yu) Petrochemicals Storage Transportation Development Co., Ltd. v. Shanghai Port Fuxing Shipping Co., Ltd." In Chinese Maritime Cases, 1263–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-63716-6_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xu, Qingyu, and Benjamin F. Hobbs. "Transmission Planning and Co-optimization with Market-Based Generation and Storage Investment." In Lecture Notes in Energy, 201–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47929-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bohn, Th J., K. Werner, W. Bitterlich, and F. J. Josfeld. "Expert Opinion and Co-Operation in the Development Program High-Temperature-Storage-Tank." In Solar Thermal Energy Utilization, 211–317. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-01628-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meng, Qingliang, Xi Jiang, Didi Li, and Xiaoqin Zhong. "The Pressure Buildup and Salt Precipitation during CO 2 Storage in Closed Saline Aquifers." In Communications in Computer and Information Science, 66–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53962-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Klein, Richard L., and ÅSA K. Thureson-Klein. "Neuropeptide Co-storage and Exocytosis by Neuronal Large Dense-cored Vesicles: How Good is the Evidence?" In Current Aspects of the Neurosciences, 219–58. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-11922-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dahrabou, Asmae, Sophie Viseur, Aldo Gonzalez-Lorenzo, Jérémy Rohmer, Alexandra Bac, Pedro Real, Jean-Luc Mari, and Pascal Audigane. "Topological Comparisons of Fluvial Reservoir Rock Volumes Using Betti Numbers: Application to CO$$_{2}$$ Storage Uncertainty Analysis." In Computational Topology in Image Context, 101–12. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39441-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Azad, Sasan, Khezr Sanjani, and Mohammad Taghi Ameli. "Optimal Co-Generation of Electric and Heat Energy Systems Considering Heat Energy Storage Systems and CHP Units." In Whole Energy Systems, 199–214. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87653-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "CO₂storage"

1

Mustafi, Shuvo, Edgar Canavan, and Robert Boyle. "Co-Storage of Cryogenic Propellants for Lunar Exploration." In AIAA SPACE 2008 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-7800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yongning Zhou, Xiaojing Wu, and Zhengwen Fu. "Combinatorial investigations of Co-LiF and Co-Li3N nanocomposite as new lithium storage material." In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khan, K. H., M. G. Rasul, and M. M. K. Khan. "Building Energy Management: Co-Generation Coupling With Thermal Energy Storage." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33107.

Повний текст джерела
Анотація:
This paper is concerned with the feasibility study and evaluation of an energy savings opportunity in buildings energy management using co-generation coupling with thermal energy storage. Both the technical and economical feasibility is presented first for the co-generation and then compared with the co-generation using thermal energy storage. On-site co-generation with double effect absorption chiller provides a potential of at least 13% peak demand reduction and about 16% savings in energy consumption. It provides an internal rate of return (IRR) greater than 21% but saving potential is limited by the low demand of co-generated chilled water within the community of the institution. Thermal energy storage coupling with co-generation offers a simple and economically more attractive approach for maximizing the utilization of co-generated chilled water and shows 23% reduction in peak demand and 21% savings in energy consumption. It provides higher IRR, greater than 25%.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Singer, Kenneth D., and Irina Shiyanovskaya. "Co-extruded multilayer optical data storage media (Conference Presentation)." In Ultra-High-Definition Imaging Systems III, edited by Toyohiko Yatagai, Yasuhiro Koike, and Seizo Miyata. SPIE, 2020. http://dx.doi.org/10.1117/12.2553638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pedreira, O. Varela, K. Croes, H. Zahedmanesh, K. Vandersmissen, M. H. van der Veen, V. Vega Gonzalez, D. Dictus, L. Zhao, A. Kolies, and Zs Tokei. "Electromigration and Thermal Storage Study of Barrierless Co Vias." In 2018 IEEE International Interconnect Technology Conference (IITC). IEEE, 2018. http://dx.doi.org/10.1109/iitc.2018.8430396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hashmi, Md Umar, Deepjyoti Deka, Ana Busic, Lucas Pereira, and Scott Backhaus. "Co-optimizing Energy Storage for Prosumers using Convex Relaxations." In 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). IEEE, 2019. http://dx.doi.org/10.1109/isap48318.2019.9065984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Choi, Hyung Rim, and Min Je Cho. "Co-creation Knowledge Storage Model for Local Government Innovation." In Green and Smart Technology 2015. Science & Engineering Research Support soCiety, 2015. http://dx.doi.org/10.14257/astl.2015.120.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hong, Soon-Goo, Hyun Jong Kim, Hyung Rim Choi, and Min Je Cho. "A Study on Co-creation based Knowledge Storage Development." In Green and Smart Technology 2016. Science & Engineering Research Support soCiety, 2016. http://dx.doi.org/10.14257/astl.2016.140.52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Snæbjörnsdóttir, Sandra, Bergur Sigfússon, Kári Helgason, Chiara Marieni, Deirdre Elizabeth Clark, Thomas Ratouis, Martin Voigt, Eric Oelkers, Sigurdur Gislason, and Edda Aradottir. "Carbfix: CO2 storage through carbon mineralisation." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fauziah, Cut Aja, Emad A. Al-Khdheeawi, Stefan Iglauer, and Ahmed Barifcani. "Influence of Total Organic Content on CO–Water– Sandstone Wettability and CO Geo-Storage Capacity." In SPE Europec. Society of Petroleum Engineers, 2020. http://dx.doi.org/10.2118/200564-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "CO₂storage"

1

Sanguinito, Sean, Angela Goodman, and Foad Haeri. CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂-SCREEN) User’s Manual. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1617640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sanguinito, Sean, Angela Goodman, and Foad Haeri. CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂-SCREEN) User’s Manual. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1617697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McNabb, W., and K. Myers. Simulation of CO2 Storage. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1239233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Carothers, Christopher. Enabling Co-Design of Multi-Layer Exascale Storage Architectures. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1311761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vikara, Derek, Tyler Zymroz, Jeffrey A. Withum, Chung Yan Shih, ShangMin Lin, Hannah Hoffman, Allison Guinan, and Timothy Carr. Underground Natural Gas Storage - Analog Studies to Geologic Storage of CO2. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1492342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mclntire, Blayde, and Brian McPherson. Reservoir Engineering Optimization Strategies for Subsurface CO{sub 2} Storage. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1134753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Laes, Denise, Chris Eisinger, Richard Esser, Craig Morgan, Steve Rauzi, Dana Scholle, Vince Matthews, and Brian McPherson. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1134754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Neeraj Gupta. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO{sub 2}. Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/837075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Doran, Beth E., David Pingel, Daniel D. Loy, and Allen Trenkle. Research in Progress: On-Farm Storage of Ethanol Co-Products. Ames (Iowa): Iowa State University, January 2005. http://dx.doi.org/10.31274/ans_air-180814-1079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Madsen, Lisa J., Mina E. Ossiander, Malgorzata Peszynska, Grant Bromhal, and William Harbert. Risk Reduction of CO2 Storage with Stochastic Simulations. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1608927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії