Добірка наукової літератури з теми "Correlated fermions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Correlated fermions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Correlated fermions"

1

NG, T. K. "CONSTRAINT AND CONFINEMENT IN STRONGLY CORRELATED FERMION SYSTEMS." International Journal of Modern Physics B 15, no. 19n20 (August 10, 2001): 2569–82. http://dx.doi.org/10.1142/s0217979201006409.

Повний текст джерела
Анотація:
We discuss in this paper the low energy properties of a liquid of fermions coupling to a U(1) gauge field at wavevectors q<Λ≪k F at dimensions larger than one, where Λ≪k F is a high momentum cutoff and k F is the Fermi wave vector. In particular, we shall consider the e2→∞ limit where charge and current fluctuations at wave vectors q<Λ are forbidden, and the problem reduces to the problem of imposing constraint that no charge and current fluctuations are allowed in the liquid of fermions. Within a bosonization approximation, we show that the low energy properties of the system can be described as a Fermi liquid of chargeless quasiparticles which has vanishing wavefunction overlap with the bare fermion's in the system. The case of a two component system (t–J model) will also be discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Varma, C. M. "Developments in correlated fermions." Physica B: Condensed Matter 359-361 (April 2005): 1478–85. http://dx.doi.org/10.1016/j.physb.2005.01.460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yurke, B. "Interferometry with correlated fermions." Physica B+C 151, no. 1-2 (July 1988): 286–90. http://dx.doi.org/10.1016/0378-4363(88)90179-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

KISELEV, M. N. "SEMI-FERMIONIC REPRESENTATION FOR SPIN SYSTEMS UNDER EQUILIBRIUM AND NON-EQUILIBRIUM CONDITIONS." International Journal of Modern Physics B 20, no. 04 (February 10, 2006): 381–421. http://dx.doi.org/10.1142/s0217979206033310.

Повний текст джерела
Анотація:
We present a general derivation of semi-fermionic representation for spin operators in terms of a bilinear combination of fermions in real and imaginary time formalisms. The constraint on fermionic occupation numbers is fulfilled by means of imaginary Lagrange multipliers resulting in special shape of quasiparticle distribution functions. We show how Schwinger–Keldysh technique for spin operators is constructed with the help of semi-fermions. We demonstrate how the idea of semi-fermionic representation might be extended to the groups possessing dynamic symmetries. We illustrate the application of semi-fermionic representations for various problems of strongly correlated and mesoscopic physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Metzner, Walter, and Dieter Vollhardt. "Correlated Lattice Fermions ind=∞Dimensions." Physical Review Letters 62, no. 9 (February 27, 1989): 1066. http://dx.doi.org/10.1103/physrevlett.62.1066.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Metzner, Walter, and Dieter Vollhardt. "Correlated Lattice Fermions ind=∞Dimensions." Physical Review Letters 62, no. 3 (January 16, 1989): 324–27. http://dx.doi.org/10.1103/physrevlett.62.324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Roger, Michel. "Ring exchange and correlated fermions." Journal of Physics and Chemistry of Solids 66, no. 8-9 (August 2005): 1412–16. http://dx.doi.org/10.1016/j.jpcs.2005.05.065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SCHULZ, H. J. "CORRELATED FERMIONS IN ONE DIMENSION." International Journal of Modern Physics B 05, no. 01n02 (January 1991): 57–74. http://dx.doi.org/10.1142/s0217979291000055.

Повний текст джерела
Анотація:
A brief introduction to the bosonization method for interacting one-dimensional fermion systems is given. Using these results, the long-distance decay of correlation functions in the one-dimensional Hubbard model is determined exactly for arbitrary bandfilling and correlation strength, using the exact solution of Lieb and Wu. For infinite U the results are generalized to the case of nonzero nearest-neighbour interaction. The behaviour of thermodynamic quantities, of the frequency-dependent conductivity, and of the thermopower is also discussed, in particular in the proximity of the metal-insulator transitions occurring for half- and quarter-filling. The one-dimensional Luttinger liquid is shown to be unstable in the presence of interchain hopping. The results for the metal-insulator transition are compared with other scenarios developed in higher dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schulz, H. J. "Functional integrals for correlated fermions." Journal of Low Temperature Physics 99, no. 3-4 (May 1995): 615–24. http://dx.doi.org/10.1007/bf00752352.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Spałek, J., K. Byczuk, J. Karbowski, and W. Wójcik. "Strongly correlated fermions at low temperatures." Physica Scripta T49A (January 1, 1993): 206–14. http://dx.doi.org/10.1088/0031-8949/1993/t49a/034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Correlated fermions"

1

Schofield, Andrew John. "Flux phases for correlated fermions." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De, Lia Anthony Frances. "Functional-integral studies of correlated fermions." Honors in the Major Thesis, University of Central Florida, 1993. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/113.

Повний текст джерела
Анотація:
This item is only available in print in the UCF Libraries. If this is your Honors Thesis, you can help us make it available online for use by researchers around the world by following the instructions on the distribution consent form at http://library.ucf.edu/Systems/DigitalInitiatives/DigitalCollections/InternetDistributionConsentAgreementForm.pdf You may also contact the project coordinator, Kerri Bottorff, at kerri.bottorff@ucf.edu for more information.
Bachelors
Arts and Sciences
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shelton, David G. "Low dimensional strongly correlated systems." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Corboz, Philippe Roger. "Simulations of strongly correlated fermions and bosons /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheuk, Lawrence W. "Quantum gas microscopy of strongly correlated fermions." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112078.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 239-251).
This thesis describes experiments on ultracold fermionic atoms, and can be divided into two areas. The first concerns spin-orbit coupling; the second concerns quantum gas microscopy. With the use of Raman transitions, ID spin-orbit coupling of ultracold 6Li was realized. Using a novel type of spectroscopy, spin-injection spectroscopy, where the spin, energy, and momentum are all resolved, we directly observed the spinful dispersions of the spin-orbit bands. In addition, we demonstrated selective adiabatic loading of the spin-orbit bands, which can be used to create a spinless Fermi gas with effective p-wave interactions. Spin-injection spectroscopy was further applied to a novel spinful lattice system created using Raman and radio-frequency coupling, which allowed for state tomography of spinful bands. The second part of this thesis describes quantum gas microscopy of ultracold fermions. This enables one to simulate the Fermi-Hubbard model, a prototypical strongly correlated model, with site-resolved detectioi and control capablities. A new apparatus that can detect fermionic 40K in a square lattice with single-site resolution was constructed. High-fidelity site-resolved imaging was achieved using Raman imaging, which allowed for the direct observation of the band-insulating, the metallic, and the Mott-insulating states of the Hubbard model. The interactiondriven Mott insulator, where doubly occupied sites are highly suppressed, illustrates the strongly correlated nature of the Hubbard model. Harnessing the capability to measure the occupations of individual lattice sites with the microscope, we explored spatial correlations of both spin and charge in the Hubbard model as a function of doping. For the spin correlations, we observed weakening of antiferromagnetic correlations away from half-filling. However, in the charge correlations between local magnetic moments, non-monotonic behavior was observed. This can be understood as arising from competition between Pauli-blocking, dominant at low fillings, and doublon-holon bunching, which arises from superexchange and is strongest at half-filling. The anti-bunching correlations at low filling can be interpreted as the first direct real-space observation of the interaction-enhanced Pauli hole.
by Lawrence W. Cheuk.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Del, Re Lorenzo. "Multicomponent strongly correlated fermions in optical lattices." Doctoral thesis, SISSA, 2016. http://hdl.handle.net/20.500.11767/4907.

Повний текст джерела
Анотація:
The present thesis is devoted to the study of physical phenomena emerging from strong correlations in strongly interacting quantum many-body systems with several components. Hubbard models are widely used as minimal models which take into account the interactions between particles and they have been studied in relation to phenomena such as Mott localization, unconventional superconductivity, quantum magnetism and many others. All of these striking phenomena share their origin from the strong correlations among fermions induced by their mutual interactions. Furthermore, condensed matter models are usually realized only in an approximate fashion in actual solid-state systems, making the situation all the more puzzling and hard to be treated analytically or numerically. Therefore, a great effort has been performed to simulate Hubbard models in a system of atoms cooled down to ultra low temperatures and trapped in optical lattices. The most peculiar feature of cold atoms experiments consists in the possibility of tuning relevant physical parameters of the systems, as the density or the interactions among atoms, using laser and/or magnetic fields. This paved the way to the observation of fundamental quantum states of matter as the weakly interacting Bose-Einstein condensate, the super fluid to Mott insulator transition, the super fluid BEC-BCS crossover, the Mott transition in systems of composite fermions and so on. Hence, it is considered of great interest establishing connections between the quantum simulations cold atomic toolbox and systems realized in solid-state physics...
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sandri, Matteo. "The Gutzwiller Approach to out-of-equilibrium correlated fermions." Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3900.

Повний текст джерела
Анотація:
Correlated electron systems represent a wide class of materials which at equilibrium display fascinating properties. Several recent experimental breakthroughs in the field of femtosecond spectroscopy and cold atomic gases allow nowadays to investigate the real time dynamics of these many-body quantum systems. Since strongly correlated systems usually escape single particle approaches, the theoretical study of their dynamics constitutes a formidable problem which necessitates the development of novel techniques. In this Thesis we investigate the out-of-equilibrium physics of simple paradigmatic models that are believed to capture some essential physics of interacting fermions by means of the time dependent extension of the Gutzwiller Variational Approach. After an introductory Chapter on the recent results in this field, in Chapter 2 we present the Gutzwiller Approach in-and-out of equilibrium. In Chapter 3 we investigate the dynamics for the single band Hubbard model after a linear ramp of the Coulomb interaction. We will show that a dynamical transition appears for any duration of the ramp; this dynamical point is adiabatically connected to the zero temperature Metal-to-Insulator transition. We will then consider the role of quantum fluctuations beyond mean field. In Chapter 4 we consider the dynamics of an initial antiferromagnetic state under a quench of the interaction in the single band fermionic Hubbard model. We will show that non-thermal ordered states survive more than expected and that two different nonequilibrium antiferromagnets can be distinguished. Finally in Chapter 5 we will consider a two-band Hubbard model which we believe captures the main physics of the paradigmatic compound vanadium sesquioxide, V2 O3 . After an investigation of the equilibrium properties for this model, we will provide evidences that non-thermal metallic phases can emerge upon an excitation of a Mott insulator.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Tianhan. "Strongly Correlated Topological Phases." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066403.

Повний текст джерела
Анотація:
Cette thèse porte principalement sur l'étude de modèles de fermions en interactions contenant un couplage spin-orbite. Ces modèles (i) peuvent décrire une classe de matériaux composés d'iridates sur le réseau en nid d'abeille ou (ii) pourraient être réalisés artificiellement dans des systèmes d’atomes froids. Nous avons étudié, dans un premier temps, le système à demi-remplissage avec l'interaction de Hubbard et un couplage spin-orbite anisotrope. Nous avons trouvé plusieurs phases: la phase isolant topologique pour de faibles corrélations, et deux phases avec des ordres magnétiques frustrés, l'ordre de Néel et l'ordre spiral, dans la limite de très fortes corrélations. La transition entre les régimes de faibles et de fortes corrélations est une transition de Mott dans laquelle les excitations électroniques se fractionnent en excitations de charge et de spin. Les charges sont localisées par l'interaction. Le secteur de spin présente de fortes fluctuations qui sont modélisées par un gaz d’instantons. Nous avons ensuite exploré la physique d'un système régi au demi-remplissage par le modèle de Kitaev-Heisenberg, qui présente une phase magnétique de type zig-zag. En dopant le système, autour du quart remplissage, la structure de bande présente de nouveaux centres de symétrie en plus de la symétrie d'inversion. Le couplage de spin de Kitaev-Heisenberg favorise alors la formation de paires de Cooper dans un état triplet autour de ces centres de symétrie. La condensation de ces paires de Cooper autour de ces vecteurs d'onde non triviaux se manifeste par une modulation spatiale du paramètre d'ordre supraconducteur, comme dans la supraconductivité de Fulde–Ferrell–Larkin–Ovchinnikov (FFLO). La dernière partie de la thèse propose et étudie une implémentation des phases topologiques dite de Haldane et de Kane-Mele dans un système avec deux espèces de fermions sur le réseau en nid d'abeille, stabilisée grâce à l’interaction RKKY médiée par l’espèce rapide et qui agit sur l’espèce lente
This thesis is dedicated largely to the study of theoretical models describing interacting fermions with a spin-orbit coupling. These models (i) can describe a class of 2D iridate materials on the honeycomb lattice or (ii) could be realized artificially in ultra-cold gases in optical lattices. We have studied, in the first part, the half-filled honeycomb lattice model with on-site Hubbard interaction and anisotropic spin-orbit coupling. We find several different phases: the topological insulator phase at weak coupling, and two frustrated magnetic phases, the Néel order and spiral order, in the limit of strong correlations. The transition between the weak and strong correlation regimes is a Mott transition, through which electrons are fractionalized into spins and charges. Charges are localized by the interactions. The spin sector exhibits strong fluctuations which are modeled by an instanton gas. Then, we have explored a system described by the Kitaev-Heisenberg spin Hamiltonian at half-filling, which exhibits a zig-zag magnetic order. While doping the system around the quarter filling, the band structure presents novel symmetry centers apart from the inversion symmetry point. The Kitaev-Heisenberg coupling favors the formation of triplet Cooper pairs around these new symmetry centers. The condensation of these pairs around these non-trivial wave vectors is manifested by the spatial modulation of the superconducting order parameter, by analogy to the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconductivity. The last part of the thesis is dedicated to an implementation of the Haldane and Kane-Mele topological phases in a system composed of two fermionic species on the honeycomb lattice. The driving mechanism is the RKKY interaction induced by the fast fermion species on the slower one
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Soni, Medha. "Investigation of exotic correlated states of matter in low dimension." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30381/document.

Повний текст джерела
Анотація:
La physique statistique quantique formule les règles permettant de classifier les différentes particules. Dans cette thèse nous avons étudié deux projets, l'un portant sur les anyons dits de "Fibonacci" et l'autre sur les fermions sur réseau optique. Ici, nous avons naturellement étendu cette étude aux cas pertinent d'anyons itinérants en interaction sur des échelles. Notre but a été de construire le modèle 2D le simple possible d'anyons itinérants en interaction, analogue direct des systèmes fermioniques et inspiré par les études précédentes. En particulier, nous nous sommes demandé si la séparation spin-charge, bien connu à 1D, pouvait subsister dans le cas d'anyons sur une échelle. De plus, dans l'étude de ce modèle, nous avons découvert une nouvelle phase incompressible pouvant présenter un caractère topologique. Dans le cas des fermions confinés sur un réseau optique unidimensionnel, nous avons étudié les effets d'un chargement non-adiabatique et proposé des protocoles visant à minimiser le réchauffement du gaz quantique. Les atomes ultra-froids sur réseau optique constituent une réalisation idéale pour étudier les systèmes fortement corrélés soumis à un potentiel périodique. Le refroidissement évaporatif d'un nuage d'atomes confiné, c.a.d. sans le potentiel du réseau, s'est avéré être un processus très efficace. Les protocoles courants permettent d'obtenir(pour des fermions) des températures aussi basses que T/TF ≈ 0.08, impossible à réaliser en présence du réseau optique. Notre étude concerne les effets de redistribution de densité pour un système 1D de fermions. Notre but était de voir si des défauts causés par la mauvaise répartition des particules lors du chargement du réseau optique pouvaient empêcher les atomes de se refroidir jusqu'à la température voulue. Nous avons conçu des scenario améliorés où certains paramètres sont modifiés de façon dynamique afin de réduire la densité de défauts créés
Quantum statistics is an important aspect of quantum mechanics and it lays down the rules for identifying dfferent classes of particles. In this thesis, we study two projects, one that surveys models of Fibonacci anyons and another that delves into fermions in optical lattices. We analyse the physics of mobile non-Abelian anyons beyond one-dimension by constructing the simplest possible model of 2D itinerant interacting anyons in close analogy to fermionic systems and inspired by the previous anyonic studies. In particular, we ask the question if spin-charge separation survives in the ladder model for non-Abelian anyons. Furthermore, in the study of this model, we have found a novel physical effective model that possibly hosts a topological gapped state. For fermions in one dimensional optical lattices, we survey the effects of non-adiabatic lattice loading on four different target states, and propose protocols to minimise heating of quantum gases. The evaporative cooling of a trapped atomic cloud, i.e. without the optical lattice potential, has been proven to be a very effective process. Current protocols are able to achieve temperatures as low as T/TF ≈ 0.08, which are lost in the presence of the optical lattice. We aim to understand if defects caused by poor distribution of particles during lattice loading are important for the fermionic case, forbidding the atoms to cool down to the desired level. We device improved ramp up schemes where we dynamically change one or more parameters of the system in order to reduce density defects
Стилі APA, Harvard, Vancouver, ISO та ін.
10

de, Woul Jonas. "Fermions in two dimensions and exactly solvable models." Doctoral thesis, KTH, Matematisk fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-50471.

Повний текст джерела
Анотація:
This Ph.D. thesis in mathematical physics concerns systems of interacting fermions with strong correlations. For these systems the physical properties can only be described in terms of the collective behavior of the fermions. Moreover, they are often characterized by a close competition between fermion localization versus delocalization, which can result in complex and exotic physical phenomena. Strongly correlated fermion systems are usually modelled by many-body Hamiltonians for which the kinetic- and interaction energy have the same order of magnitude. This makes them challenging to study as the application of conventional computational methods, like mean field- or perturbation theory, often gives unreliable results. Of particular interest are Hubbard-type models, which provide minimal descriptions of strongly correlated fermions. The research of this thesis focuses on such models defined on two-dimensional square lattices. One motivation for this is the so-called high-Tc problem of the cuprate superconductors. A main hypothesis is that there exists an underlying Fermi surface with nearly flat parts, i.e. regions where the surface is straight. It is shown that a particular continuum limit of the lattice system leads to an effective model amenable to computations. This limit is partial in that it only involves fermion degrees of freedom near the flat parts. The result is an effective quantum field theory that is analyzed using constructive bosonization methods. Various exactly solvable models of interacting fermions in two spatial dimensions are also derived and studied.
QC 20111207
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Correlated fermions"

1

Kalos, Malvin H. Model fermion Monte Carlo with correlated pairs II. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lerner, I. V., B. L. Althsuler, V. I. Fal’ko, and T. Giamarchi, eds. Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lerner, I. V. Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems. Dordrecht: Springer Netherlands, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cooper, Paul Andrew. Models for strongly correlated electrons on cage geometries: Heavy fermions and superconductivity. Birmingham: University of Birmingham, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Self-consistent quantum field theory and bosonization for strongly correlated electron systems. Berlin: Springer, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

1959-, Arias J. M., Gallardo M. I. 1959-, and Lozano M. 1949-, eds. Many-body theory of correlated fermion systems: Proceedings of the VI Hispalensis International Summer School : Oromana, Sevilla, Spain, June 9-12, 1997. Singapore: World Scientific, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Moriond Workshop (16th 1996 Les Arcs, Savoie, France). Correlated fermions and transport in mesoscopic systems: Proceedings of the XXXIst Rencontres de Moriond, Les Arcs, Savoie, France, January 20-27, 1996. Gif-sur-Yvette, France: Editions Frontières, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kalos, Malvin H. Model fermion Monte Carlo with correlated pairs. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yamada Conference (18th 1987 Sendai, Japan). Proceedings of the Yamada Conference XVIII on Superconductivity in Highly correlated Fermion systems, Sendai, Japan August 31-September 3, 1987. Amsterdam: North-Holland, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Onuki, Yoshichika. Physics of Heavy Fermions: Heavy Fermions and Strongly Correlated Electrons Systems. World Scientific Publishing Co Pte Ltd, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Correlated fermions"

1

van Dongen, Peter, and Dieter Vollhardt. "Correlated Lattice Fermions in High Dimensions." In Condensed Matter Theories, 269–78. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3686-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bhaseen, M. J., J. S. Caux, I. I. Kogan, and A. M. Tsvelik. "Disordered Dirac Fermions: Three Different Approaches." In New Theoretical Approaches to Strongly Correlated Systems, 173–203. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0838-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vollhardt, Dieter. "Variational Wave Functions for Correlated Lattice Fermions." In Interacting Electrons in Reduced Dimensions, 107–21. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0565-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Spałek, J., A. Rycerz, W. Wójcik, and R. Podsiadły. "Lattice Fermions With Optimized Wave Functions: Exact Results." In Open Problems in Strongly Correlated Electron Systems, 443–45. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0771-9_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kukushkin, I. V. "Magneto-Optics of Composite Fermions and Skyrmions." In Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 185–218. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ramakrishnan, T. V., and B. S. Shastry. "Microscopic Theory of Strongly Correlated Fermi Systems." In Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions, 109–14. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0947-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Spałek, J., and W. Wójcik. "Almost Localized Fermions and Mott-Hubbard Transitions at Non-Zero Temperature." In Spectroscopy of Mott Insulators and Correlated Metals, 41–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zaanen, J., and Z. Nussinov. "Stripes and Nodal Fermions as Two Sides of the Same Coin." In Open Problems in Strongly Correlated Electron Systems, 129–40. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0771-9_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Affleck, Ian. "The Kondo Screening Cloud." In Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 1–12. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Savchenko, A. K. "Metal-Insulator Transition in Dilute 2D Electron and Hole Gases." In Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, 219–39. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0530-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Correlated fermions"

1

Nagaosa, Naoto. "Correlated Weyl Fermions in Oxides." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Poilblanc, Didier. "Modelling and simulating strongly correlated fermions." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XI: Eleventh Training Course in the Physics of Strongly Correlated Systems. AIP, 2007. http://dx.doi.org/10.1063/1.2751990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bennett, Edmund. "Majorana fermions & spin representations." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XVI: Sixteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2012. http://dx.doi.org/10.1063/1.4755826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

BYCZUK, K. "DYNAMICAL MEAN-FIELD THEORY FOR CORRELATED LATTICE FERMIONS." In 43rd Karpacz Winter School of Theoretical Physics. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812709455_0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

WILL, S., B. PAREDES, L. HACKERMÜLLER, U. SCHNEIDER, TH BEST, M. MORENO, and I. BLOCH. "STRONGLY CORRELATED BOSONS AND FERMIONS IN OPTICAL LATTICES." In Proceedings of the XIX International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814282345_0018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BLOCH, I. "STRONGLY CORRELATED BOSONS AND FERMIONS IN OPTICAL LATTICES." In Proceedings of the XXI International Conference on Atomic Physics. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814273008_0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pruschke, Thomas. "Landau's Fermi Liquid concept to the extreme: The physics of Heavy Fermions." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XVI: Sixteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2012. http://dx.doi.org/10.1063/1.4755822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rigol, M. "Mott domains of bosons and fermions confined in optical lattices." In LECTURE ON THE PHYSICS OF HIGHLY CORRELATED ELECTRON SYSTEMS VII: Seventh Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors. AIP, 2003. http://dx.doi.org/10.1063/1.1612396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wysokiński, M. M., J. Jȩdrak, J. Kaczmarczyk, and J. Spałek. "Magnetic and thermodynamic properties of correlated fermions - application to liquid [sup 3]He." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XVI: Sixteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2012. http://dx.doi.org/10.1063/1.4755833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aono, Tomosuke. "Conductance and Thermopower of Dirac Fermions under the Kondo Effect." In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.3.012022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Correlated fermions"

1

Pu, Han, and Randall Hulet. Optical Lattice Simulations of Correlated Fermions. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada603643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schlottmann, P. Heavy fermions and other highly correlated electron systems. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5611054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Randeria, Mohit, and Nandini Trivedi. Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices. Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada597479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schlottmann, P. Final Technical Report, Grant DE-FG02-91ER45443: Heavy fermions and other highly correlated electron systems. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/765245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schlottmann, P. Heavy fermions and other highly correlated electron systems. Technical progress report, March 15, 1991--March 14, 1992. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10134059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Goncharov, A., and V. Struzhkin. Optical Spectroscopy of Strongly Correlated (MOTT-HUBBARD, Heavy-Fermion, Unconventional Superconductor) Materials Tuned Pressure. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/15013699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії