Добірка наукової літератури з теми "Coronagraphie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Coronagraphie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Coronagraphie":

1

Yudaev, Andrey, Alexander Kiselev, Inna Shashkova, Alexander Tavrov, Alexander Lipatov, and Oleg Korablev. "Wavefront Sensing by a Common-Path Interferometer for Wavefront Correction in Phase and Amplitude by a Liquid Crystal Spatial Light Modulator Aiming the Exoplanet Direct Imaging." Photonics 10, no. 3 (March 16, 2023): 320. http://dx.doi.org/10.3390/photonics10030320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We implemented the common-path achromatic interfero-coronagraph both for the wavefront sensing and the on-axis image component suppression, aiming for the stellar coronagraphy. A common-path achromatic interfero-coronagraph has its optical scheme based on a nulling rotational-shear interferometer. The angle of rotational shear can be chosen at a small angular extent of about 10 deg. Such a small angular shear maintains the coronagraphic contrast degradation known as the stellar leakage effect, caused by a finite stellar size. We study the phase and amplitude wavefront control by a liquid crystal spatial light modulator of reflection type which is used as the pixilated active adaptive optics unit. Therefore, adaptive optics perform a wavefront-correcting input toward a stellar interfero-coronagraph aiming at the direct exoplanet imaging. Presented here are both the numeric evaluations and the lab experiment stand to prove the declared functionality output.
2

Leboulleux, Lucie, Alexis Carlotti, and Mamadou N’Diaye. "Redundant apodization for direct imaging of exoplanets." Astronomy & Astrophysics 659 (March 2022): A143. http://dx.doi.org/10.1051/0004-6361/202142410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Context. Direct imaging and spectroscopy of Earth-like planets and young Jupiters require contrast values up to 106−1010 at angular separations of a few dozen milliarcseconds. To achieve this goal, one of the most promising approaches consists of using large segmented primary mirror telescopes with coronagraphic instruments. While they are able to reach high contrast at small angular separations, coronagraphs are highly sensitive to wavefront errors, however. The segmentation itself is responsible for phasing errors and segment-level vibrations that have to be controlled at a subnanometric accuracy. Aims. We propose an innovative method for a coronagraph design that allows a consequent relaxation of the segment phasing and stability constraints for low segment-count mirrors and generates an instrument that is more robust to segment-level wavefront errors. Methods. This method is based on an optimization of the coronagraph design that includes a segment-level apodization. This is repeated over the pupil to match the segmentation redundancy and improves the contrast stability beyond the minimum separation set by the single-segment diffraction limit. Results. We validate this method on a Giant Magellan Telescope (GMT)-like pupil (seven circular segments) for two coronagraph types: apodized pupil Lyot coronagraphs, and apodizing phase plate coronagraphs. For the apodized pupil Lyot coronagraphs, redundant apodization enables releasing the piston phasing constraints by a factor of 5-20 compared to classical designs. For the apodizing phase plate coronagraphs, the contrast remains almost constant up to 1 radian RMS of the phasing errors. We also show that redundant apodizations increase the robustness of the coronagraph to segment tip-tilt errors, as well as to missing segment errors. Conclusions. Redundant apodization enables reducing or even removing any constraints on the primary mirror segment phasing at the price of larger angular separations and lower throughputs. This method cannot be applied to higher-segment count mirrors such as the ELT or the TMT, but it is particularly suitable for low segment-count mirrors (fewer than ~20 segments) such as the GMT aperture. These mirrors aim for high-contrast imaging of debris disks or exoplanets down to 100 mas.
3

Tokunaga, A. T., C. Ftaclas, J. R. Kuhn, and P. Baudoz. "High Dynamic Range and the Search for Planets." Symposium - International Astronomical Union 211 (2003): 487–96. http://dx.doi.org/10.1017/s0074180900211200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
General arguments for optimized coronagraphy in the search for planets are presented. First, off-axis telescopes provide the best telescopic platforms for use with coronagraphy, and telescope fabrication technology now allows the fabrication of such telescopes with diameters of up to 6.5 m. We show that in certain circumstances a smaller telescope with an off-axis primary has a signal-to-noise advantage compared with larger Cassegrain telescopes. Second, to fully exploit the advantages of the coronagraph for suppressing stray light, it is necessary to use a high Strehl ratio adaptive optics system. This can be best achieved initially with modest aperture telescopes of 3–4 m in diameter. Third, application of simultaneous differential imaging and simultaneous polarimetric techniques are required to reach the photon-limit of coronagraphic imaging. These three developments, if pursued together, will yield significant improvements in the search for planets.
4

Itoh, Satoshi, та Taro Matsuo. "A Coronagraph with a Sub-λ/D Inner Working Angle and a Moderate Spectral Bandwidth". Astronomical Journal 163, № 6 (19 травня 2022): 279. http://dx.doi.org/10.3847/1538-3881/ac658a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Future high-contrast imaging spectroscopy with a large segmented telescope will be able to detect atmospheric molecules of Earth-like planets around G- or K-type main-sequence stars. Increasing the number of target planets will require a coronagraph with a small inner working angle (IWA), and wide spectral bandwidth is required if we enhance a variety of detectable atmospheric molecules. To satisfy these requirements, in this paper, we present a coronagraphic system that provides an IWA less than 1λ 0/D over a moderate wavelength band, where λ 0 is the design-center wavelength and D denotes the full width of the rectangular aperture included in the telescope aperture. A performance simulation shows that the proposed system approximately achieves a contrast below 10−10 at 1λ 0/D over the wavelengths of 650–750 nm. In addition, this system has a core throughput ≥10% at input separation angles of ∼0.7–1.4λ 0/D; to reduce telescope time, we need prior information on the target’s orbit by other observational methods to a precision higher than the width of the field of view. For some types of aberration including tilt aberration, the proposed system has a sensitivity less than ever-proposed coronagraphs that have IWAs of approximately 1λ 0/D. In future observations of Earth-like planets, the proposed coronagraphic system may serve as a supplementary coronagraphic system dedicated to achieving an extremely small IWA.
5

Xin, Yinzi, Laurent Pueyo, Romain Laugier, Leonid Pogorelyuk, Ewan S. Douglas, Benjamin J. S. Pope, and Kerri L. Cahoy. "Coronagraphic Data Post-processing Using Projections on Instrumental Modes." Astrophysical Journal 963, no. 2 (March 1, 2024): 96. http://dx.doi.org/10.3847/1538-4357/ad1879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Directly observing exoplanets with coronagraphs is impeded by the presence of speckles from aberrations in the optical path, which can be mitigated in hardware with wave front control, as well as in post-processing. This work explores using an instrument model in post-processing to separate astrophysical signals from residual aberrations in coronagraphic data. The effect of wave front error (WFE) on the coronagraphic intensity consists of a linear contribution and a quadratic contribution. When either of the terms is much larger than the other, the instrument response can be approximated by a transfer matrix mapping WFE to detector plane intensity. From this transfer matrix, a useful projection onto instrumental modes that removes the dominant error modes can be derived. We apply this approach to synthetically generated Roman Space Telescope hybrid Lyot coronagraph data to extract “robust observables,” which can be used instead of raw data for applications such as detection testing. The projection improves planet flux ratio detection limits by about 28% in the linear regime and by over a factor of 2 in the quadratic regime, illustrating that robust observables can increase sensitivity to astrophysical signals and improve the scientific yield from coronagraphic data. While this approach does not require additional information such as observations of reference stars or modulations of a deformable mirror, it can and should be combined with these other techniques, acting as a model-informed prior in an overall post-processing strategy.
6

Leboulleux, Lucie, Jean-François Sauvage, Rémi Soummer, Thierry Fusco, Laurent Pueyo, Laurent M. Mugnier, Christopher Moriarty, Peter Petrone, and Keira Brooks. "Experimental validation of coronagraphic focal-plane wavefront sensing for future segmented space telescopes." Astronomy & Astrophysics 639 (July 2020): A70. http://dx.doi.org/10.1051/0004-6361/202037658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Context. Direct imaging of Earth-like planets from space requires dedicated observatories, combining large segmented apertures with instruments and techniques such as coronagraphs, wavefront sensors, and wavefront control in order to reach the high contrast of 1010 that is required. The complexity of these systems would be increased by the segmentation of the primary mirror, which allows for the larger diameters necessary to image Earth-like planets but also introduces specific patterns in the image due to the pupil shape and segmentation and making high-contrast imaging more challenging. Among these defects, the phasing errors of the primary mirror are a strong limitation to the performance. Aims. In this paper, we focus on the wavefront sensing of segment phasing errors for a high-contrast system, using the COronagraphic Focal plane wave-Front Estimation for Exoplanet detection (COFFEE) technique. Methods. We implemented and tested COFFEE on the High-contrast imaging for Complex Aperture Telescopes (HiCAT) testbed, in a configuration without any coronagraph and with a classical Lyot coronagraph, to reconstruct errors applied on a 37 segment mirror. We analysed the quality and limitations of the reconstructions. Results. We demonstrate that COFFEE is able to estimate correctly the phasing errors of a segmented telescope for piston, tip, and tilt aberrations of typically 100 nm RMS. We also identified the limitations of COFFEE for the reconstruction of low-order wavefront modes, which are highly filtered by the coronagraph. This is illustrated using two focal plane mask sizes on HiCAT. We discuss possible solutions, both in the hardware system and in the COFFEE optimizer, to mitigate these issues.
7

Vigan, A., M. N’Diaye, K. Dohlen, J. F. Sauvage, J. Milli, G. Zins, C. Petit, et al. "Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor." Astronomy & Astrophysics 629 (August 26, 2019): A11. http://dx.doi.org/10.1051/0004-6361/201935889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Second-generation exoplanet imagers using extreme adaptive optics (ExAO) and coronagraphy have demonstrated their great potential for studying close circumstellar environments and for detecting new companions and helping to understand their physical properties. However, at very small angular separation, their performance in contrast is limited by several factors: diffraction by the complex telescope pupil (central obscuration and spiders) not perfectly canceled by the coronagraph, residual dynamic wavefront errors, chromatic wavefront errors, and wavefront errors resulting from noncommon path aberrations (NCPAs). These latter are differential aberrations between the visible wavefront sensing path of the ExAO system and the near-infrared science path in which the coronagraph is located. In a previous work, we demonstrated the use of a Zernike wavefront sensor called ZELDA for sensing NCPAs in the VLT/SPHERE exoplanet imager and their compensation with the high-order deformable mirror of the instrument. These early tests on the internal light source led to encouraging results for the attenuation of the quasi-static speckles at very small separation. In the present work, we move to the next step with the on-sky validation of NCPA compensation with ZELDA. With an improved procedure for the compensation of NCPAs, we start by reproducing previous results on the internal source. We show that the amount of aberration integrated between 1 and 15 cycles/pupil (c/p) is decreased by a factor of approximately five, which translates into a gain in raw contrast of between 2 and 3 at separations below 300 mas. On sky, we demonstrate that NCPA compensation works in closed loop, leading to an attenuation of the amount of aberration by a factor of approximately two. However, we identify a loss of sensitivity for the sensor that is only partly explained by the difference in Strehl ratio between the internal and on-sky measurements. Our simulations show that the impact of ExAO residuals on ZELDA measurements is negligible for integration times beyond a few tenths of a second. Coronagraphic imaging on sky is improved in raw contrast by a factor of 2.5 at most in the ExAO-corrected region. We use coronagraphic image reconstruction based on a detailed model of the instrument to demonstrate that both internal and on-sky raw contrasts can be precisely explained, and we establish that the observed performance after NCPA compensation is no longer limited by an improper compensation for aberration but by the current apodized-pupil Lyot coronagraph design. We finally conclude that a coronagraph upgrade combined to a proper NCPA compensation scheme could easily bring a gain in raw contrast of a factor of two to three below 200 mas.
8

Cagigas, Miguel A., Manuel P. Cagigal, Pedro J. Valle, Vidal F. Canales, Antonio Fuentes, and Roberto López. "Planetary system detection by estimating the covariance of coronagraphic lucky images." Monthly Notices of the Royal Astronomical Society 488, no. 3 (July 15, 2019): 3262–67. http://dx.doi.org/10.1093/mnras/stz1954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT In this paper, we review two different methods to increase image contrast and propose the combination of both to detect faint companions surrounding a host star. Coronagraphy allows us to block light coming from the host star so that the residual star light can be reduced by several orders of magnitude. On the other hand, estimating the Covariance of Lucky Images (COELI) is a proven method to detect faint companions from ground-based telescope images. The dynamic range of the detection camera limits this technique. Hence, the application of COELI to coronagraphic images may increase the magnitude range of the detectable companions. COELI only requires the existence of a reference, which can be obtained using an existing stellar companion or using a coronagraphic mask designed to create a faint image of the host star. We provide an analysis of the combination of the techniques by processing coronagraphic images obtained by the William Herschel Telescope.
9

Clampin, Mark, John Krist, David R. Ardila, David A. Golimowski, Holland C. Ford, and Garth Illingworth. "ACS Coronagraphic Observations of Optically Thin Debris Disks." Symposium - International Astronomical Union 221 (2004): 449–57. http://dx.doi.org/10.1017/s0074180900241892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Advanced Camera for Surveys (ACS) offers a coronagraphic imaging mode with angular resolution of 0.026″pixel−1. In combination with with the appropriate subtraction of reference star point spread functions (PSF) the coronagraph is capable of achieving contrast ratios of ∼1000. We present some of the first ACS observations of the optically thin debris disk HD141569A and discuss new results from these observations.
10

Bos, S. P., D. S. Doelman, J. Lozi, O. Guyon, C. U. Keller, K. L. Miller, N. Jovanovic, F. Martinache, and F. Snik. "Focal-plane wavefront sensing with the vector-Apodizing Phase Plate." Astronomy & Astrophysics 632 (November 26, 2019): A48. http://dx.doi.org/10.1051/0004-6361/201936062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Context. One of the key limitations of the direct imaging of exoplanets at small angular separations are quasi-static speckles that originate from evolving non-common path aberrations (NCPA) in the optical train downstream of the instrument’s main wavefront sensor split-off. Aims. In this article we show that the vector-Apodizing Phase Plate (vAPP) coronagraph can be designed such that the coronagraphic point spread functions (PSFs) can act as wavefront sensors to measure and correct the (quasi-)static aberrations without dedicated wavefront sensing holograms or modulation by the deformable mirror. The absolute wavefront retrieval is performed with a non-linear algorithm. Methods. The focal-plane wavefront sensing (FPWFS) performance of the vAPP and the algorithm are evaluated via numerical simulations to test various photon and read noise levels, the sensitivity to the 100 lowest Zernike modes, and the maximum wavefront error (WFE) that can be accurately estimated in one iteration. We apply these methods to the vAPP within SCExAO, first with the internal source and subsequently on-sky. Results. In idealized simulations we show that for 107 photons the root mean square (rms) WFE can be reduced to ∼λ/1000, which is 1 nm rms in the context of the SCExAO system. We find that the maximum WFE that can be corrected in one iteration is ∼λ/8 rms or ∼200 nm rms (SCExAO). Furthermore, we demonstrate the SCExAO vAPP capabilities by measuring and controlling the 30 lowest Zernike modes with the internal source and on-sky. On-sky, we report a raw contrast improvement of a factor ∼2 between 2 and 4 λ/D after five iterations of closed-loop correction. When artificially introducing 150 nm rms WFE, the algorithm corrects it within five iterations of closed-loop operation. Conclusions. FPWFS with the vAPP coronagraphic PSFs is a powerful technique since it integrates coronagraphy and wavefront sensing, eliminating the need for additional probes and thus resulting in a 100% science duty cycle and maximum throughput for the target.

Дисертації з теми "Coronagraphie":

1

SCHMITTE, RIVEZ ANNICK. "Interets du doppler des membres inferieurs avant coronagraphie." Reims, 1992. http://www.theses.fr/1992REIMM067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alagao, Mary Angelie. "Characterization and optimization of the Evanescent Wave Coronagraph." Electronic Thesis or Diss., Saint-Etienne, 2023. http://www.theses.fr/2023STET0060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’imagerie directe des exoplanètes reste difficile en raison du contraste élevé et de la faible séparation angulaire entre l'étoile et la planète. Cela nécessite de supprimer l'éblouissement dû à l'étoile et de s'assurer que la lumière faible de la planète n'est pas noyée au milieu de divers bruits. La détection dépend de la maturité des techniques et des algorithmes utilisés, tout en tenant compte des compromis importants sur le contraste brut, la résolution angulaire et la transmission. L'une de ses composantes clés est l'utilisation de coronagraphes - des instruments ayant pour seul but de bloquer/réduire la lumière provenant de l'étoile. Ce travail présente un nouveau type de coronographe de Lyot, inventé par le Dr Yves Rabbia, qui repose sur le principe de la réflexion interne totale frustrée (FTIR) pour supprimer la lumière de l'étoile. Ce coronographe est appelé Evanescent Wave Coronagraph (EvWaCo) en raison de sa nature : son masque au plan focal, comprenant une lentille et un prisme, réfléchit la source hors axe (planète) et transmet la source sur l'axe (étoile) à l’aide des ondes évanescentes. Cette thèse vise à fournir au lecteur les bases qui mettent en évidence les trois principaux avantages d'EvWaCo : i) le masque est intrinsèquement achromatique, ii) la taille du masque est ajustable en modifiant la pression entre la lentille et le prisme, et iii) à la fois la lumière stellaire et la lumière planétaire peuvent être collectées simultanément pour une détection de front d'onde de bas ordre et un centrage approprié de l’étoile. Les performances d'EvWaCo sont évaluées à travers des expériences en laboratoire, puis comparées à des simulations numériques. Les résultats expérimentaux montrent un contraste brut égal à quelques 10-4 à 3 ��/�� sur toute la bande I (��c = 800 nm, ∆��/�� ≈ 20%) et à 4 ��/�� sur toute la bande R (��c = 650 nm, ∆��/�� ≈ 23%). Les simulations confirment la capacité de rejet achromatique d'EvWaCo, montrant un contraste brut de 10-4 à la même distance radiale sur les deux bandes spectrales. Cette thèse se conclut sur un bilan de l’état du banc développé et les perspectives futures
Direct imaging of exoplanets remains challenging due to the high contrast and the small angular separation between the star and the planet. It requires suppressing the blinding glare from the star and ensuring that the planet's faint light is not buried deep in various noises. Successful detection depends on the technological readiness and maturity of techniques and algorithms employed while considering the significant trade-offs on raw contrast, inner working angle, and throughput. One of its key components is the use of coronagraphs – instruments with the sole purpose of blocking/reducing the light from the star. This work presents a new type of Lyot coronagraph, invented by Dr. Yves Rabbia, that relies on the frustrated total internal reflection (FTIR) principle to suppress the starlight. This coronagraph is aptly called the Evanescent Wave Coronagraph (EvWaCo) owing to its nature that its focal plane mask, comprising a lens and a prism, reflects the off-axis source (planet) and transmits the on-axis source (star) by capturing the evanescent waves. This thesis aims to provide the reader with the groundwork that highlights EvWaCo's three main advantages: i) the mask is inherently achromatic, ii) the size of the mask is adjustable by changing the pressure between the lens and the prism, and iii) both the stellar light and the planet light can be collected simultaneously for low-order wavefront sensing, and proper stellar light centering. The performance of EvWaCo is assessed through experiments in a laboratory and then compared to numerical simulations. The experimental results show a raw contrast equal to a few 10-4 at 3 ��/�� over the full I-band (��c = 800 nm, ∆��/�� ≈ 20%) and at 4 ��/�� over the full R-band (��c = 650 nm, ∆��/�� ≈ 23%). The simulations confirm the achromatic rejection capability of EvWaCo as it showed a raw contrast of 10-4 at the same radial distance over both bandpasses. This thesis concludes with the status of its testbed and future perspectives
3

Chipman, Russell A. "Challenges in coronagraph optical design." SPIE-INT SOC OPTICAL ENGINEERING, 2017. http://hdl.handle.net/10150/627190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The point spread function (PSF) for astronomical telescopes and instruments depends not only on geometric aberrations and scalar wave diffraction, but also on the apodization and wavefront errors introduced by coatings on reflecting and transmitting surfaces within the optical system. Geometrical ray tracing provides incomplete image simulations for exoplanet coronagraphs with the goal of resolving planets with a brightness less than 10<^>-9 of their star located within 3 Airy disk radii. The Polaris-M polarization analysis program calculates uncorrected coating polarization aberrations couple around 10<^>-5 light into crossed polarized diffraction patterns about twice Airy disk size. These wavefronts not corrected by the deformable optics systems. Polarization aberrations expansions have shown how image defects scale with mirror coatings, fold mirror angles, and numerical aperture.
4

Xin, Yeyuan(Yeyuan Yinzi). "Coronagraphic data post-processing using projections on instrumental modes." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 71-76).
High contrast astronomy has yielded the direct observations of over a dozen exoplanets and a multitude of brown dwarfs and circumstellar disks. Despite advances in coronagraphy and wavefront control, high contrast observations are still plagued by residual wavefront aberrations. Post-processing techniques can provide an additional boost in separating residual aberrations from an astrophysical signal. This work explores using a coronagraph instrument model to guide post-processing. We consider the propagation of signals and wavefront error through a coronagraphic instrument, and approach the post-processing problem using "robust observables." We model and approximate the instrument response function of a classical Lyot coronagraph (CLC) and find from it a projection that removes the dominant error modes.
We use this projection to post-process synthetically generated data, and assess the performance of the new model-based post-processing approach compared to using the raw intensity data by calculating their respective flux ratio detection limits. We extend our analysis to include the presence of a dark hole using a simulation of the CLC on the High-contrast imager for complex aperture telescopes (HiCAT) testbed. We find that for non-time-correlated wavefront errors, using the robust observables modestly increases our sensitivity to the signal of a binary companion for most of the range of separations over which our treatment is valid, for example, by up to 50% at 7.5[lambda]/D. For time-correlated wavefront errors, the results vary depending on the test statistic used and degree of correlation. The modest improvement using robust observables with non-time-correlated errors is shown to extend to a CLC with a dark hole created by the stroke minimization algorithm.
Future work exploring the inclusion of statistical whitening processes will allow for a more complete characterization of the robust observables with time-correlated noise. We discuss the dimensionality of coronagraph self-calibration problem and motivate future directions in the joint study of coronagraphy and post-processing.
by Yeyuan (Yinzi) Xin.
S.M.
S.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronautics
5

Pueyo, Laurent, Neil Zimmerman, Matthew Bolcar, Tyler Groff, Christopher Stark, Garreth Ruane, Jeffrey Jewell, et al. "The LUVOIR architecture ``A'' coronagraph instrument." SPIE-INT SOC OPTICAL ENGINEERING, 2017. http://hdl.handle.net/10150/626292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In preparation for the Astro 2020 Decadal Survey NASA has commissioned the study four flagship missions spanning to a wide range of observable wavelengths: the Origins Space Telescope (OST, formerly the Far-Infrared Surveyor), Lynx (formerly the X-ray Surveyor), the Large UV/Optical/Infrared Surveyor (LUVOIR) and the Habitable Exoplanet Imager (HabEx). One of the key scientific objectives of the latter two is the detection and characterization of the earth-like planets around nearby stars using the direct imaging technique (along with a broad range of investigations regarding the architecture of and atmospheric composition exoplanetary systems using this technique). As a consequence dedicated exoplanet instruments are being studied for these mission concepts. This paper discusses the design of the coronagraph instrument for the architecture "A" (15 meters aperture) of LUVOIR. The material presented in this paper is aimed at providing an overview of the LUVOIR coronagraph instrument. It is the result of four months of discussions with various community stakeholders (scientists and technologists) regarding the instrument's basic parameters followed by meticulous design work by the the GSFC Instrument Design Laboratory team. In the first section we review the main science drivers, presents the overall parameters of the instrument (general architecture and backend instrument) and delve into the details of the currently envisioned coronagraph masks along with a description of the wavefront control architecture. Throughout the manuscript we describe the trades we made during the design process. Because the vocation of this study is to provide a baseline design for the most ambitious earth-like finding instrument that could be possibly launched into the 2030's, we have designed an complex system privileged that meets the ambitious science goals out team was chartered by the LUVOIR STDT exoplanet Working Group. However in an effort to minimize technological risk we tried to maximize the number of technologies that will be matured by the WFIRST coronagraph instruments.
6

Thompson, Samantha Jayne. "OSCA, an Optimised Stellar Coronagraph for Adaptive optics." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1338360/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Described here is the design, manufacturing, testing and commissioning of a coronagraph facility for the 4.2 metre William Herschel Telescope (WHT) and its adaptive optics system (NAOMI). The use of the NAOMI adaptive optics system gives an improved image resolution of ~ 0.15 arcseconds at a wavelength of 2.2μm. This enables the Optimised Stellar Coronagraph for Adaptive optics (OSCA) to null stellar light with smaller occulting masks and thus allows regions closer to bright astronomical objects to be imaged. OSCA is a fully deployable instrument which when in use leaves the focus of the NAOMI beam unchanged. This enables OSCA to be used in conjunction with a number of instruments that have already been commissioned at the WHT. The main imaging camera used with OSCA is INGRID; a 1024 × 1024 pixel HgCdTe cooled short-wave infra-red (SWIR)detector at the NAOMI focus. OSCA also has the option of being used in conjunction with an integral field spectrograph for imaging at visible wavelengths. OSCA provides a selection of 10 different occulting masks with sizes of 0.25 - 2.0 arcseconds in diameter,including two with novel gaussian profiles. There is also a choice of two different sized Lyot stops (pupil plane masks). A dichroic placed before the AO system can give improved suppression performance when occulting masks larger than the seeing disk are used. Also presented are results from observing time with the OSCA system, which highlight the challenges faced by astronomers to obtain high contrast, high resolution images from ground based telescopes. At a time during which there is much activity towards terrestrial planet finding, questions as to the system requirements required for such a task are discussed.
7

Chipman, Russell A. "Image formation in coronagraphs due to mirror polarization aberrations." SPIE-INT SOC OPTICAL ENGINEERING, 2017. http://hdl.handle.net/10150/627180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The PSF for astronomical telescopes and instruments depends not only on geometric wavefront aberrations, but also on those polarization aberrations from the polarization properties of reflecting and transmitting surfaces. The image plane irradiance distribution is the linear superposition of four PSF images: one for each of the two orthogonal polarizations and one for each of two cross-coupled polarization terms.
8

Mawet, D., P. Wizinowich, R. Dekany, M. Chun, D. Hall, S. Cetre, O. Guyon, et al. "Keck Planet Imager and Characterizer: concept and phased implementation." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Keck Planet Imager and Characterizer (KPIC) is a cost-effective upgrade path to the W.M. Keck observatory (WMKO) adaptive optics (AO) system, building on the lessons learned from first and second-generation extreme AO (ExA0) coronagraphs. KPIC will explore new scientific niches in exoplanet science, while maturing critical technologies and systems for future ground-based (TMT, FELT, GMT) and space-based planet imagers (HabEx, LUVOIR). The advent of fast low-noise IR cameras (IR-APD, MKIDS, electron injectors), the rapid maturing of efficient wavefront sensing (WFS) techniques (Pyramid, Zernike), small inner working angle (IWA) coronagraphs (e.g., vortex) and associated low-order wavefront sensors (LOWFS), as well as recent breakthroughs in high contrast high resolution spectroscopy, open new direct exoplanet exploration avenues that are complementary to planet imagers such as VLT-SPHERE and the Gemini Planet Imager (GPI). For instance, the search and detailed characterization of planetary systems on solar-system scales around late-type stars, mostly beyond SPHERE and GPI's reaches, can be initiated now at WMKO.
9

Knight, Justin M., John Brewer, Ryan Hamilton, Olivier Guyon, Thomas D. Milster, and Karen Ward. "Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging." SPIE-INT SOC OPTICAL ENGINEERING, 2017. http://hdl.handle.net/10150/627078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5 mu m with depths ranging over 1 mu m. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.
10

Martinache, Frantz, Nemanja Jovanovic, and Olivier Guyon. "Subaru Coronagraphic eXtreme Adaptive Optics: on-sky performance of the asymmetric pupil Fourier wavefront sensor." SPIE-INT SOC OPTICAL ENGINEERING, 2016. http://hdl.handle.net/10150/622025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument relies on a technique known as the asymmetric pupil Fourier wavefront sensor (APF-WFS) to compensate for the non-common path error that affects the performance of high contrast imaging instruments. The APF-WFS is a powerful tool that senses the wavefront at the level of the science detector, and leads to unbiased wavefront estimates. This paper presents the latest status, linearity properties and reports on the on-sky performance of this sensor, as it is implemented on SCExAO, used to control low-order Zernike modes in a close-loop system.

Книги з теми "Coronagraphie":

1

United States. National Aeronautics and Space Administration., ed. [Coronagraphic observations and analyses of the ultraviolet solar corona. [Washington, DC: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. National Aeronautics and Space Administration., ed. [Coronagraphic observations and analyses of the ultraviolet solar corona. [Washington, DC: National Aeronautics and Space Administration, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mazereau, Pascal. A la poursuite du soleil: La construction du coronographe d'amateur. Paris: Eyrolles, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Workshop, National Solar Observatory/Sacramento Peak Summer. Infrared tools for solar astrophysics: What's next? : proceeedings of the fifteenth National Solar Observatory/Sacramento Peak Summer Workshop, Sunspot, New Mexico, USA, 19-22 September 1994. Singapore: World Scientific, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shaklan, Stuart B. Techniques and instrumentation for detection of exoplanets V: 23-24 August 2011, San Diego, California, United States. Bellingham, Wash: SPIE, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

R, Coulter Daniel, and Society of Photo-optical Instrumentation Engineers., eds. Techniques and instrumentation for detection of exoplanets: 5-7 August 2003, San Diego, California, USA. Bellingham, Wash., USA: SPIE, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ferrari, A., M. Carbillet, and C. Aime. Astronomy with high contrast imaging III: Instrumental techniques, modeling and data processing, Nice, France, May 16, 2005, Fréjus, France, May 17-19, 2005. Les Ulis, France: EDP Sciences, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shaklan, Stuart B. Techniques and instrumentation for detection of exoplanets IV: 4-5 August 2009, San Diego, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coulter, Daniel R. Techniques and instrumentation for detection of exoplanets III: 28-30 August 2007, San Diego, California, USA. Bellingham, Wash., USA: SPIE, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

United States. National Aeronautics and Space Administration, ed. Spacelab Lyman alpha-white light coronagraph program: Final report for the period 12 March 1980 through 1 October 1983. [Washington, DC: National Aeronautics and Space Administration, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Coronagraphie":

1

Rouan, Daniel. "Coronagraphy." In Encyclopedia of Astrobiology, 546–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rouan, Daniel. "Coronagraphy." In Encyclopedia of Astrobiology, 363–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rouan, Daniel. "Coronagraphy." In Encyclopedia of Astrobiology, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_356-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rouan, Daniel. "Coronagraphy." In Encyclopedia of Astrobiology, 674–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Noci, G., J. L. Kohl, M. C. E. Huber, E. Antonucci, S. Fineschi, L. D. Gardner, G. Naletto, et al. "The Ultraviolet Coronagraph Spectrometer." In Lecture Notes in Physics, 261–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-59109-5_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Boccaletti, Anthony, Jean-Charles Augereau, Gaël Chauvin, Pierre Riaud, Jacques Baudrand, François Lacombe, Daniel Rouan, Anne-Marie Lagrange, and Pierre Baudoz. "Lyot Coronagraphy at the Palomar and Phase-Mask Coronagraphy at the VLT." In Science with Adaptive Optics, 25–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/10828557_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rabbia, Yves, Pierre Baudoz, and Jean Gay. "Achromatic Interfero-Coronagraphy and VLT." In Scientific Drivers for ESO Future VLT/VLTI Instrumentation, 273–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-43215-0_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gay, J., Y. Rabbia, and C. Manghini. "Interfero-Coronagraphy Using Pupil π-Rotation." In Infrared Space Interferometry: Astrophysics & the Study of Earth-Like Planets, 187–90. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5468-0_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fisher, R. R., and M. Guhathakurta. "SPARTAN 201 White Light Coronagraph Experiment." In Mass Supply and Flows in the Solar Corona, 267–72. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0930-7_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brueckner, G. E., R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, J. D. Moses, D. G. Socker, et al. "The Large Angle Spectroscopic Coronagraph (LASCO)." In The SOHO Mission, 357–402. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0191-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Coronagraphie":

1

Ftaclas, Christ, Edward T. Siebert, and Richard J. Terrile. "A High Efficiency Coronagraph for Astronomical Applications." In Space Optics for Astrophysics and Earth and Planetary Remote Sensing. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/soa.1988.wa5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Direct detection of extra-solar planetary systems is one of a class of astronomical problems requiring a significant reduction of diffracted light within a few arcseconds of a bright point source. Traditional approaches to diffraction reduction control have included pupil plane apodization, which extracts enormous penalties in effective collecting area to obtain small angle performance, and coronagraphs, in which high efficiency requires extensive occultation of the central source giving up a valuable portion of the field of view. We have developed a hybrid, high efficiency, coronagraph which is optimized for diffraction reduction within a few Airy radii of a bright unresolved source. The coronagraph utilizes a graded, or apodized transmission mask to occult the central source. Theoretical models have shown that the mask renders the Lyot stop more efficient while allowing some transmission very close to the parent star. For targets near the parent star we have found that the coronagraphic efficiency remains virtually independent of radius even when transmission losses through the mask are taken into account. Instead of being used to reduce the wings of a focal plane diffraction pattern, apodization is used in this design to reduce the diffraction wings of the pupil plane image. With a more compact pupil plane image, the application of a Lyot stop becomes much more efficient resulting in greatly improved performance without the loss of a valuable portion of the field of view. Theoretical results will be presented as well as data from a breadboard experiment.
2

Watson, Steven M., and James P. Mills. "Incorporating coronographs with segmented telescopic systems for extrasolar planetary imaging." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wv2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Detection of nonsolar planets is a challenging problem. Due to the planets' faintness relative to the star, it is necessary to suppress the stellar diffracted energy to very low levels. In addition, the planets' proximity to the star requires large diameter optics. This research examines various multiaperture and segmented telescopic systems incorporating Lyot coronagraphs to suppress the stellar diffracted energy and provide the required resolution so that the extrasolar planets can be directly imaged. Because of the phasing tolerances and required contrast ratios, the IR band of 10.5-13.5 µm was examined over a field of view of 0.2-2 arcsec. Various telescopic objectives with the Lyot coronagraph were examined for their ability to suppress the stellar diffracted energy levels. The designs examined were comprised of segmented circular, hexagonal, apodized hexagonal, and rectangular systems. The Lyot coronagraph consists of a Gaussian apodizer at the focal plane of the objective and a Lyot stop at the image plane of the objective.
3

Orban de Xivry, Gilles, Olivier Absil, Elsa Huby, and Aïssa Jolivet. "Post-coronagraphic PSF sharpening with the vortex coronagraph." In Adaptive Optics for Extremely Large Telescopes 5. Instituto de Astrofísica de Canarias (IAC), 2017. http://dx.doi.org/10.26698/ao4elt5.0066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cady, Eric, Camilo Mejia Prada, Xin An, Kunjithapatham Balasubramanian, Rosemary Diaz, N. Jeremy Kasdin, Brian Kern, et al. "Laboratory performance of the shaped pupil coronagraphic architecture for the WFIRST/AFTA coronagraph." In SPIE Optical Engineering + Applications, edited by Stuart Shaklan. SPIE, 2015. http://dx.doi.org/10.1117/12.2189113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kasdin, N. Jeremy, Robert J. Vanderbei, Michael G. Littman, Michael Carr, and David N. Spergel. "The shaped pupil coronagraph for planet finding coronagraphy: optimization, sensitivity, and laboratory testing." In SPIE Astronomical Telescopes + Instrumentation, edited by John C. Mather. SPIE, 2004. http://dx.doi.org/10.1117/12.552273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blind, Nicolas, Bruno Chazelas, Jonas Kühn, Eddy Hocimi, Christophe Lovis, Mathilde Beaulieu, Thierry Fusco та ін. "RISTRETTO: coronagraph and AO designs enabling High Dispersion Coronagraphy at 2 λ/D". У Adaptive Optics Systems VIII, редактори Dirk Schmidt, Laura Schreiber та Elise Vernet. SPIE, 2022. http://dx.doi.org/10.1117/12.2628320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smartt, Raymond N., Serge Koutchmy, and Eugene W. Cross. "Prototype reflecting coronagraph." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wv1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A miniature 1-m focal length coronagraph has been constructed at NSO/SP, based on a 5-cm diam superpolished silicon mirror from Zeiss, F.R.G. The optical configuration is simply off-axis reflection from the objective to an occulting disk, Lyot stop, and secondary optics. The coronagraph has been designed to be used either with photographic recording or a video CCD camera, both in combination with a VARO image tube. Details of the design and preliminary results are presented. It is shown that a mirror-objective-based coronagraph has many advantages and few disadvantages compared with the traditional singlet-objective-lens Lyot coronagraph. This reflecting coronagraph design is shown to be appropriate for larger systems, using other types of mirror substrate, with the prospect of very small net instrumental polarization, of crucial importance for certain coronal studies, with excellent aberration correction over modest fields.
8

Ashcraft, Jaren N., Ewan S. Douglas, Ramya M. Anche, Kyle Van Gorkom, Maxwell A. Millar-Blanchaer, William Melby, and Emory Jenkins. "The space coronagraph optical bench (SCoOB): 3. Mueller matrix polarimetry of a coronagraphic exit pupil." In Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave, edited by Laura E. Coyle, Marshall D. Perrin, and Shuji Matsuura. SPIE, 2024. http://dx.doi.org/10.1117/12.3019204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smartt, Raymond N., Serge Koutchmy, and Eugene W. Cross. "Reflecting coronagraph designs with specialized applications." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thtt2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With improvements in super-polished mirror technology, coronagraphs can be designed based on mirror objectives. Reflecting coronagraphs provide superior performance capabilities compared with classical singlet-lens-objective Lyot coronagraphs. Specifically, an all-reflecting design has the advantage of full achromaticity; wavelength coverage is limited only by atmospheric spectral transmittance, mirror reflectance, and detector response, and simple heat-flux rejection is inherent in the design. Further, large-aperture systems can be designed to be capable of producing high-angular-resolution imaging. A program to develop reflecting coronagraphs at NSO/SP is described, including the construction of two prototype instruments, of 5-cm and 15-cm apertures, respectively. In particular, applications in the infrared are emphasized; since strong spectral lines are available, the sky brightness is reduced, as are the scattering properties of super-polished surfaces. The advantages of some designs for certain nighttime applications, using either ground- or space-based systems, are discussed.
10

Riggs, A. J. Eldorado, Garreth Ruane, Carl T. Coker, Stuart B. Shaklan, Brian D. Kern, and Erkin Sidick. "Fast linearized coronagraph optimizer (FALCO) I: a software toolbox for rapid coronagraphic design and wavefront correction." In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, edited by Howard A. MacEwen, Makenzie Lystrup, Giovanni G. Fazio, Natalie Batalha, Edward C. Tong, and Nicholas Siegler. SPIE, 2018. http://dx.doi.org/10.1117/12.2313812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Coronagraphie":

1

Altrock, Richard C. Ground-Based Coronagraphic Observations of Solar Streamers. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada267259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Iraida S. Mirror Coronagraphic Device - Development and Manufacture of a Reflecting Coronagraphic Device for Application in a Low-Scattered Light Telescope. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada327249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Karovska, Margarita. Enhancement of Lasco C1, C2, and C3 Coronagraph Images. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada359690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karpen, Judith T. A Search for Precursor Activity Associated with Coronal Mass Ejections, Using White-Light Coronagraph Observations Obtained with the SOLWIND Instrument on Board the Air Force P78-1 Satellite. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada170139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії